高一向量9-14

合集下载

人教版高一向量知识点

人教版高一向量知识点

人教版高一向量知识点向量是高中数学中的重要概念之一,它不仅在数学领域有着广泛的应用,同时也是理解物理学、几何学等学科的基础。

在人教版高一数学教材中,向量的学习内容主要包括向量的概念、向量的表示和运算以及向量的数量积。

本文将对这些知识点进行详细的介绍和解析。

一、向量的概念向量是有方向和大小的量,用箭头来表示。

在平面上,向量用有向线段表示;在空间中,向量用有向线段或有向立体线段表示。

向量有起点和终点,也可以表示为一个有序数对。

向量的表达形式有很多种,如 a 或 AB 表示一个向量。

向量的大小称为向量的模,记作 |a| 或 ||AB||,向量的起点记作 A,重点记作 B。

二、向量的表示和运算1. 向量的表示向量可以用有序数对、行向量和列向量来表示。

以有序数对表示时,向量 a 可以表示为 a(x,y);以行向量表示时,向量 a 可以表示为 a = (x y);以列向量表示时,向量 a 可以表示为 a = (x y)T。

2. 向量的加法和减法向量的加法和减法的运算规则与几何上的有向线段相对应。

设有向线段 AB 的终点是 C,有向线段 AD 的终点是 D,则有 AD = AB + BC。

若 B、D 在同一直线上,则 AD = AB - BD。

3. 向量的数量积向量的数量积又称内积、点积。

设有向量 a = (x1, y1),b = (x2, y2),则 a·b = x1x2 + y1y2。

数量积满足交换律:a·b = b·a,同时还满足分配律和结合律。

三、向量的数量积的性质1. 向量的数量积与夹角设有向量 a 和 b,夹角为θ,则a·b = |a| |b| cosθ。

利用这个性质可以求解向量的夹角,或者求解向量的模。

2. 向量共线与垂直若两个向量 a、b 共线,则 a·b = |a| |b|。

若两个向量a、b 垂直,则 a·b = 0。

3. 向量的模向量 a 的模可以表示为|a| = √(a·a)。

人教版高中数学必修二第9章9.4向量的应用精品课程课后练习及详解大全

人教版高中数学必修二第9章9.4向量的应用精品课程课后练习及详解大全

反思 感悟
用向量法求长度的策略 (1)根据图形特点选择基底,利用向量的数量积转化,用公式 |a|2=a2求解. (2)建立坐标系,确定相应向量的坐标,代入公式:若a=(x,y), 则|a|= x2+y2.
跟踪训练2 在△ABC中,已知A(4,1),B(7,5),C(-4,7),则BC边上的 中线AD的长是
∴A→B=-32C→D,∴A→B与C→D共线. 又|A→B|≠|C→D|,∴该四边形为梯形.
12345
4.当两人提起重量为|G|的旅行包时,两人用力方向的夹角为θ,用力大
小都为|F|,若|F|=|G|,则θ的值为
A.30°
B.60°
C.90°
√D.120°
解析 作O→A=F1,O→B=F2,O→C=-G(图略), 则O→C=O→A+O→B,
答案 物理中的向量:①物理中有许多量,比如力、速度、加速度、位 移都具有大小和方向,因而它们都是向量. ②力、速度、加速度、位移的合成就是向量的加法,因而它们也符合向 量加法的三角形法则和平行四边形法则;力、速度、加速度、位移的分 解也就是向量的分解,运动的叠加也用到了向量的加法. ③动量mv是数乘向量. ④力所做的功就是作用力F与物体在力F的作用下所产生的位移s的数量积.
解析 对于 A,A→B-A→C=C→B,故 A 中结论错误; 对于 B,设 θ 为向量A→B与B→C的夹角, 因为A→B·B→C=A→B·B→C·cos θ,而 cos θ<1, 故A→B·B→C<A→B·B→C,故 B 中结论正确; 对于 C,A→B+A→C·A→B-A→C=A→B2-A→C2=0, 故A→B=A→C,所以△ABC 为等腰三角形,故 C 中结论正确;
A.v1-v2
√B.v1+v2

04-第二节 平面向量的运算-课时3 向量的数量积高中数学必修第二册人教版

04-第二节 平面向量的运算-课时3 向量的数量积高中数学必修第二册人教版
1
2
=
2

4
即向量 − 与 + 夹角的余弦值是
1
2
2
.
4
知识点2 向量的垂直关系 4年2考
7.[2024北京房山区期中]已知向量,满足|| = 3,|| = 2,且
( − ) ⊥ ,则向量与的夹角为( B
π
A.
3
π
B.
6
)

C.
3

D.
6
【解析】 设向量与的夹角为 ,由( − ) ⊥ 得,
同的值,所以该集合中有4个元素.
5.(多选)[2024海南海口期中]△是边长为2的等边三角形,已知
=
1
+ ,
2
A.是单位向量
=−
1
,则下列结论中正确的是(
2
B.|| = 3
C.//
BCD
)
D. ⊥
【解析】 因为△是边长为2的等边三角形, = +
D.若圆的半径为2,则在上的投影向量的
模的最大值为6
AB
)
【解析】 如图,取的中点D,连接,则 ⊥ ,
由数量积公式及投影向量可得 ⋅ = |||| = 2,
⋅ = −|||| = −2,A,B正确;因为点C为圆上
任意一点,故当C,A重合时, ⋅ = 0,当 ⊥ 时, ⋅ = 0,故
) = 9 + 2( ⋅ + ⋅ + ⋅ ) = 0,所以 ⋅ + ⋅ + ⋅ =
9
− .
2
2.设向量,满足| + | = 3,| − | = 1,与的夹角为 ,则
||

高中试卷-6.3.3 平面向量加、减运算坐标表示(含答案)

高中试卷-6.3.3 平面向量加、减运算坐标表示(含答案)

第六章平面向量及其应用6.3.3平面向量加、减运算坐标表示一、基础巩固等于 【详解】因为12AB AD AD DE AE +=+=uuu r uuu r uuu r uuu r uuu r ,6.已知(5,4)a =r ,(3,2)b =r ,则与23a b -r r 平行的单位向量为( )A .525,55æöç÷ç÷èøB .525,55æöç÷ç÷èø或525,55æö--ç÷ç÷èøC .(1,2)或(1,2)--D .(1,2)【答案】B【详解】解:∵(5,4)a =r ,(3,2)b =r ,23(1,2)a b \-=r r ,22|23|125a b \-=+=r r ,则与23a b -r r 平行的单位向量为15(23)(1,2)5|23|a b a b ±×-=±-r r r r ,化简得,525,55æöç÷ç÷èø或525,55æö--ç÷ç÷èø.7.在矩形ABCD 中, 5AB =,3BC =,P 为矩形内一点,且52AP =,若(),AP AB AD R l m l m =+Îuuu r uuu r uuu r ,则53l m +的最大值为( )A .52B .102C .334+D .6324+【答案】B【详解】由题意,以点A 为坐标原点,以AB 所在直线为x 轴,AD 所在直线为y 轴,建立如图所示的平面直角坐标系,则()0,0A ,()5,0B ,()0,3D ,设(),P x y ,则(),AP x y =uuu r ,()5,3AB AD l m l m +=uuu r uuu r ,8.已知点P 分12PP uuuu v 的比为23-,设A .2-B .3(7,8),u u u r解得432x y ì=ïíï=î,所以4,23P æöç÷èø,当点P 靠近点2P 时,122PPPP =uuu r uuur ,则()()24124x x y y ì=-ïí-=-ïî,解得833x y ì=ïíï=î,所以8,33P æöç÷èø,11.(多选)已知向量1(1,2)e =-u r ,2(2,1)e =u u r ,若向量1122a e e l l =+r u r u u r ,则可使120l l <成立的a r 可能是 ( )A .(1,0)B .(0,1)C .(−1,0)D .(0,−1)【答案】AC【详解】11221212=(2,2)a e e l l l l l l =+-++r u r u u r 若(1,0)a =r ,则12122120l l l l -+=ìí+=î,解得1212,55l l =-=,120l l <,满足题意;若(0,1)a =r ,则12122021l l l l -+=ìí+=î,解得1221,55l l ==,120l l >,不满足题意;因为向量(1,0)-与向量(1,0)共线,所以向量(1,0)-也满足题意.12.(多选)已知向量(,3)a x =v ,(3,)b x =-v ,则下列叙述中,不正确是( )A .存在实数x ,使a bv v P B .存在实数x ,使()a b a +v v P v C .存在实数x ,m ,使()ma b a+v P v v D .存在实数x ,m ,使()ma b b +v P vv 【答案】ABC【详解】由a b r r P ,得29x =-,无实数解,故A 中叙述错误;(3,3)a b x x +=-+r r ,由()a b a +r r r ∥,得3(3)(3)0x x x --+=,即29x =-,无实数解,故B 中叙述错误;(3,3)ma b mx m x +=-+r r ,由()ma b a +r r r ∥,得(3)3(3)0m x x mx +--=,即29x =-,无实数解,故心中叙述错误;由()ma b b +r r r ∥,得3(3)(3)0m x x mx -+--=,即()290m x +=,所以0m =,x ÎR ,故D 中叙述正确.二、拓展提升13.如图,已知ABCD Y 的三个顶点A ,B ,C 的坐标分别是(2,1)-,(1,3)-,(3,4),求顶点D 的坐标.【答案】(2,2)【详解】解:设顶点D 的坐标为(,)x y .(2,1)A -Q ,(1,3)B -,(3,4)C ,(1(2),31)(1,2)AB \=----=uuu r ,(3,4)DC x y =--uuu r ,又AB DC =uuu r uuur,所以(1,2)(3,4)x y =--.即13,24,x y =-ìí=-î解得2,2.x y =ìí=î所以顶点D 的坐标为(2,2).由平行线分线段成比例得:1234h MB h AB ==,1122132142MNC ABC h NC S h NC NC S h BC BC h BC D D ´´==×=×´´89NC BC \=,89NC BC \=uuu r uuu r ,8(1)求点B,点C的坐标;(2)求四边形OABC的面积.【答案】(1)533,,,222 B Cæöæç÷çç÷çèøè。

高一数学平面向量的概念试题答案及解析

高一数学平面向量的概念试题答案及解析

高一数学平面向量的概念试题答案及解析1.已知向量表示“向东航行1km”,向量表示“向南航行1km”,则向量表示()A.向东南航行km B.向东南航行2kmC.向东北航行km D.向东北航行2km【答案】A【解析】根据题意由于向量表示“向东航行1km”,向量表示“向南航行1km”,那么可知向量表示向东南航行km ,故选A.【考点】向量的物理意义点评:主要是考查了向量的物理意义的运用,属于基础题。

2.在平行四边形ABCD中, + +等于()A.B.C.D.【答案】A【解析】结合图形,+ += + += ,故选A。

【考点】本题主要考查平面向量的线性运算。

点评:简单题,在平行四边形中,由平行四边形法则。

注意相等向量及相反向量。

3.已知点,向量,且,则点的坐标为。

【答案】【解析】设点的坐标为(x,y),则由得,(x-2,y-4)=2(3,4),所以x-2=6,y-4=8,所以x=8,y=12,即点的坐标为。

【考点】本题主要考查平面向量的概念及其坐标运算。

点评:简单题,注意若A(a,b),B(c,d),则。

4.作用于原点的两个力F1 ="(1,1)" ,F2 ="(2,3)" ,为使得它们平衡,需加力F3=【答案】(-3,-4)【解析】F3=-(F1+F2)=-(3,4)=(-3,-4).5.下列判断正确的是 ( )A.若向量与是共线向量,则A,B,C,D四点共线;B.单位向量都相等;C.共线的向量,若起点不同,则终点一定不同;D.模为0的向量的方向是不确定的。

【答案】D【解析】解:因为A.若向量与是共线向量,则A,B,C,D四点共线;可能构成四边形。

B.单位向量都相等;方向不一样。

C.共线的向量,若起点不同,则终点一定不同;不一定。

D.模为0的向量的方向是不确定的,成立6.下列命题中正确的是()A.若两个向量相等,则它们的起点和终点分别重合.B.模相等的两个平行向量是相等向量.C.若和都是单位向量,则.D.两个相等向量的模相等.【答案】D【解析】根据向量相等的定义易知两个相等向量的模相等,故选D相等向量只需要模相同,方向相同,所以(1)错;模相等的平行向量有可能方向相反,所以(2)错;都是单位向量,向量的模不一定相同,所以两个向量不一定相等,所以(3)错;相等向量是模相同,方向相同的向量,所以(4)对.解:对于(1),相等向量只需要模相同,方向相同,所以(1)错;对于(2)模相等的平行向量有可能方向相反,所以(2)错;对于(3),都是单位向量,向量的模不一定相同,所以两个向量不一定相等,所以(3)错;对于(4),相等向量是模相同,方向相同的向量,所以(4)对.故选C7.给出下列命题:①向量与是共线向量,则A、B、C、D四点必在一直线上;②两个单位向量是相等向量;③若, ,则;④若一个向量的模为0,则该向量的方向不确定;⑤若,则。

高一数学平面向量试题答案及解析

高一数学平面向量试题答案及解析

高一数学平面向量试题答案及解析1.正六边形中,()A.B.C.D.【答案】D【解析】故选D2.已知向量a b则向量a在向量b方向上的投影为 ( )A.B.C.0D.1【答案】B【解析】略3.已知中,点是的中点,过点的直线分别交直线于两点,若,,则的最小值是()A.B.C.D.【答案】D【解析】,因为,三点共线,所以,.【考点】1.平面向量基本定理;2.三点共线;3.基本不等式求最值.4.(本小题满分10分)已知向量,,且,(1)求a·b及|a+b|;(2)若f(x)=a·b-2λ|a+b|的最小值是-,求λ的值.【答案】(1),;(2)【解析】(1)首先根据向量积的坐标表示,然后再根据两角和的余弦公式进行化简,求向量的模,根据公式,展开公式,然后按照向量数量积的坐标表示和二倍角公式进行化简;(2),第一步先按二倍角公式展开,转化为关于的二次函数求最值,第二步,进行换元,配方,所以讨论,,三种情况,得到最小值,确定参数的取值.试题解析:(1),(2分)|,因为所以.(2)令因为,.∴原函数可化为①当,,即(不合题意,舍去).②当时,,即或(不合题意,舍去).③当时,矛盾.综上所述.【考点】1.向量数量积的坐标表示;2.三角函数的化简;3.二次函数求最值.5.已知平面向量,且,则()A.B.C.D.【答案】B【解析】,故选B.【考点】(1)平面向量共线(平行)的坐标表示;(2)平面向量的坐标运算.6.已知屏幕上三点满足,则的形状是()A.等腰三角形B.对边三角形C.直角三角形D.等腰直角三角形【答案】A【解析】设的中点为,则,为等腰三角形.故选A.【考点】(1)三角形的形状判断;(2)平面向量数量积的运算.7.在中,设,若点满足,则A.B.C.D.【答案】A【解析】由得,,答案选A.【考点】向量的线性运算8.已知,,若与垂直,则等于()A.1B.C.2D.4【答案】C【解析】,因为与垂直,则,【考点】(1)平面向量的数量积(2)向量的模9.如图,已知点,是单位圆上一动点,且点是线段的中点.(1)若点在轴的正半轴上,求;(2)若,求点到直线的距离.【答案】(1);(2);【解析】(1)根据中点坐标公式求出B点坐标,再利用向量数量积坐标式表示出即可;(2)结合已知图形,求出B点坐标,再求出C点坐标,然后写出OC所在直线方程,最后根据点到直线距离公式即可求出点A到OC的距离.试题解析:(1)点在轴正半轴上,,又点是线段的中点,,,;(2),,由点是线段的中点,,直线的方程为,即,点到直线的距离.【考点】1.中点坐标公式;2.向量数量积的坐标式;3.点到直线距离;10.(本小题10分)已知向量.(Ⅰ)若向量与平行,求的值;(Ⅱ)若向量与的夹角为锐角,求的取值范围【答案】(1)(2)且【解析】(1)本题考察的是两向量的平行,可以先根据条件写出两个向量与的坐标,利用平行向量的条件,即可求出的值.(2)因为向量与的夹角为锐角,则向量的数量积大于0且不共线,根据条件代入公式即可求出的取值范围.试题解析:(Ⅰ)依题意得-------2分∵向量与平行∴,解得(Ⅱ)由(2)得∵向量与的夹角为锐角∴,且∴且【考点】平面向量的综合题11.若,则向量的夹角为()A.B.C.D.【答案】C【解析】因为,设与的夹角为,,则,故选C.【考点】数量积表示两个向量的夹角12.已知向量,,若,则代数式的值是()A.B.C.D.【答案】C【解析】因为向量,,,所以,解得,而=,故选择C【考点】1.共线向量的坐标表示;2.同角函数基本关系式13.如图,在正方形中,,点为的中点,点在边上.若,则.【答案】【解析】以A为坐标原点,AB为x轴,AD为y轴建立直角坐标系,则,可得,即,所以【考点】向量坐线性运算14.已知向量,,若⊥,则实数的值为()A.B.C.-D.2【答案】A【解析】两向量垂直,所以数量积为0,代入公式,解得,故选A.【考点】向量数量积的坐标表示15.(本小题满分12分)设向量a=(4cosα,sinα),b=(sinβ,4cosβ),c=(cosβ,-4sinβ),(1)若a与b-2c垂直,求tan(α+β)的值;(2)求|b+c|的最大值.【答案】(1)2 (2)【解析】(1)由两向量垂直得到数量积为零,代入向量的坐标可得到关于的关系式,将其整理可得到的值;(2)将转化为用角的三角函数表示,求向量的模的最大值转化为求函数最大值问题,求解时要注意正余弦值的范围试题解析:(1)b-2c=(sinβ-2cosβ,4cosβ+8sinβ),又a与b-2c垂直,∴4cosα(sinβ-2cosβ)+sinα(4cosβ+8sinβ)=0,即4cosαsinβ-8cosαcosβ+4sinαcosβ+8sinαsinβ=0,∴4sin(α+β)-8cos(α+β)=0,得tan(α+β)=2.(2)由b+c=(sinβ+cosβ,4cosβ-4sinβ),∴|b+c|=当sin2β=-1时,|b+c|==4.max【考点】1.向量的坐标运算;2.向量的模;3.三角函数化简16.设为所在平面内一点,,则()A.B.C.D.【答案】A【解析】,.故A正确.【考点】平面向量的加减法.17.已知向量,且∥,则的最小值等于A.B.C.D.【答案】B【解析】由知,即,则.【考点】平面向量的坐标运算及用基本不等式求最值.18.已知的夹角为,则【答案】【解析】.【考点】1.向量的模;2.向量的内积.19.平面向量与的夹角为60°,=(2,0),=1,则|+2|等于()A.B.C.4D.12【答案】B【解析】【考点】向量的模与向量运算20.(本小题满分12分)已知平面向量,.(1)若,求的值;(2)若,求|-|.【答案】(1)(2)【解析】(1)由得到坐标关系式,代入相应坐标即可得到的值;(2)由直线平行得到坐标满足的的关系式,求得x值后,将向量用坐标表示,利用坐标求向量的模试题解析:(1)即(2)即当时,当时,【考点】1.向量平行垂直的判定;2.向量的模21.(本题满分15分)已知,,是同一平面上不共线的三点,且.(1)求证:;(2)若,求,两点之间的距离.【答案】(1)详见解析;(2).【解析】(1)将条件当中的式子变形,利用向量数量积的定义证明是等腰三角形即可;(2)根据(1)中所证再结合等腰三角形的性质,可将转化为与有关的方程,从而求解.试题解析:(1)由得,设为的中点,则,从而有,即,由于为的中点,且,因此由“三线合一”性质可知;(2)由(1)可知,,故,即,两点之间的距离为.【考点】1.等腰三角形的性质;2.平面向量数量积.【思路点睛】几何图形中向量的数量积问题是近几年高考的又一热点,作为一类既能考查向量的线性运算、坐标运算、数量积及平面几何知识,又能考查学生的数形结合能力及转化与化归能力的问题,实有其合理之处.解决此类问题的常用方法是:①利用已知条件,结合平面几何知识及向量数量积的基本概念直接求解(较易);②将条件通过向量的线性运算进行转化,再利用①求解(较难);③建系,借助向量的坐标运算,此法对解含垂直关系的问题往往有很好效果.22.已知为非零向量,且,,则下列说法正确的个数为()(1)若,则;(2)若,则;(3)若,则;(4)若,则.A.1B.2C.3D.4【答案】D【解析】(1)因为,,,均为非零向量,且,所以,必不共线,则,表示以是,为邻边的平行四边形的两条对角线,且该平行四边形为菱形,所以,,故(1)正确;(2),所以,故(2)正确;(3)若,则必不共线,所以以为邻边的平行四边形是矩形,所以,故(3)正确;(4)若非零向量满足,即,则以为邻边的平行四边形是矩形,所以,故(4)正确.【考点】向量加法、减法的几何意义,数量积的运算性质和向量垂直的条件.23.(2015秋•大兴安岭校级期末)已知向量=(1,2),=(2,2).(1)求(2﹣)•(2+);(2)设=(﹣3,λ),若与夹角为钝角,求λ的值.【答案】(1)12;(2)λ>﹣,且λ≠6.【解析】(1)向量的坐标运算和向量的数量积的坐标运算计算即可,(2)若与夹角为钝角,则则•<0,问题得以解决.解:(1)∵=(1,2),=(2,2),∴2﹣=(2﹣2,4﹣2)=(0,2),2+=(2+2,4+2)=(4,6),∴(2﹣)•(2+)=0×4+2×6=12;(2)若与夹角为钝角,则•<0,•=(﹣3,λ)•(1,﹣2)=﹣3﹣2λ<0,即λ>﹣,且与不能方向,即﹣3×(﹣2)﹣λ≠0,解得λ≠6,故λ的范围为λ>﹣,且λ≠6.【考点】平面向量数量积的运算;平面向量的坐标运算.24.如图所示,是的边上的中点,则向量= (填写正确的序号).①,②,③,④【答案】①【解析】.故选A.【考点】向量的线性运算.【名师】在向量线性运算时,要尽可能转化到平行四边形或三角形中,运用平行四边形法则、三角形法则,利用三角形中位线、相似三角形对应边成比例等平面几何的性质,把未知向量转化为与已知向量有直接关系的向量来求解.25.若向量a=(1,2),b=(1,-1),则2a+b与a-b的夹角等于()A.-B.C.D.【答案】C【解析】,所以设与的夹角为.,,.故C正确.【考点】1向量的数量积;2向量的模长.【易错点睛】本题主要考查向量的数量积和模长问题,难度一般.先由向量的数量积公式求得夹角的余弦值,由余弦值可求得角的大小.但应注意两向量的夹角范围为,若忽略角的范围容易出错.26. O为平面上的定点,A、B、C是平面上不共线的三点,若(﹣)•(+﹣2)=0,则△ABC是()A.以AB为底边的等腰三角形B.以AB为斜边的直角三角形C.以AC为底边的等腰三角形D.以AC为斜边的直角三角形【答案】C【解析】将条件式展开化简,两边同时加上,根据向量的线性运算的几何意义即可得出答案.解:∵(﹣)•(+﹣2)=0,∴+﹣2=+﹣2.即﹣2=﹣2.两边同时加,得()2=()2,即AB2=BC2.∴AB=BC.∴△ABC是以AC为底边的等腰三角形.故选:C.【考点】平面向量数量积的运算.27.已知,,,且与垂直,则实数λ的值为()A.B.C.D.1【答案】C【解析】由,所以,然后根据与垂直,展开后由其数量积等于0可求解λ的值.解:因为,所以,又,,且与垂直,所以==12λ﹣18=0,所以.故选C.【考点】数量积判断两个平面向量的垂直关系.28.(2015秋•嘉兴期末)已知向量是同一平面内的三个向量,其中.(1)若,且向量与向量反向,求的坐标;(2)若,且,求与的夹角θ.【答案】(1).(2).【解析】(1)令,根据模长关系列方程解出λ;(2)将展开求出,代入夹角公式计算.解:(1)设∵∴,∴.(2)∵||=,,∴2=5,2=.∵,∴22+3﹣22=+3=,∴.∴,∴.【考点】平面向量数量积的运算;平面向量的坐标运算.29.已知向量.(1)若点A,B,C能构成三角形,求x,y应满足的条件;(2)若△ABC为等腰直角三角形,且∠B为直角,求x,y的值.【答案】(1)3y﹣x≠1(2)或【解析】(1)点A,B,C能构成三角形,即三点不共线,再由向量不共线的条件得到关于x,y的不等式,即所求的x,y应满足的条件;(2)△ABC为等腰直角三角形,且∠B为直角,可得AB⊥BC且,|AB|=|BC|,转化为坐标表示,得到方程求出x,y的值解:(1)若点A,B,C能构成三角形,则这三点不共线,∵∴=(3,1),=(2﹣x,1﹣y),又与不共线∴3(1﹣y)≠2﹣x,∴x,y满足的条件为3y﹣x≠1(2)∵=(3,1),=(﹣x﹣1,﹣y),若∠B为直角,则AB⊥BC,∴3(﹣x﹣1)﹣y=0,又|AB|=|BC|,∴(x+1)2+y2=10,再由3(﹣x﹣1)﹣y=0,解得或.【考点】数量积判断两个平面向量的垂直关系;平面向量共线(平行)的坐标表示.30.已知||=||=1,与夹角是90°,=2+3,=k﹣4,与垂直,k的值为()A.﹣6B.6C.3D.﹣3【答案】B【解析】根据与垂直的条件,得到数量积等于0,求变量K的值,展开运算时,用到|a|=|b|=1,a与b夹角是90°代入求解.解:∵×=(2+3)×(k﹣4)=2k+(3k﹣8)×﹣12=0,又∵×=0.∴2k﹣12=0,k=6.故选B【考点】平面向量数量积的运算;数量积判断两个平面向量的垂直关系.31.已知.(1)若,求的坐标;(2)设,若,求点的坐标.【答案】(1);(2).【解析】(1)由可求得的坐标,再利用向量的运算用表示出,从而求得的坐标;(2)可假设,能求的的坐标,由可得关系式,,将此关系式转化成关于的方程,求出,从而得到点的坐标.试题解析:(1)(2)设则,,解得因此,点的坐标为【考点】向量的运算.32.在中,,,,下列推导不正确的是()A.若,则为钝角三角形B.,则ΔABC为直角三角形C.,则为等腰三角形D.,则为正三角形【答案】D【解析】A中,由可知,,得为钝角三角形;B中,由可知,,得为直角三角形;C中,由知得,,,,则为等腰三角形;D中,,总是成立,不能得到为正三角形.故选D.【考点】平面向量的数量积.33.已知点P在正△ABC所确定的平面上,且满足,则△ABP的面积与△BCP的面积之比为()A.1:1B.1:2C.1:3D.1:4【答案】B【解析】由,可得=2,即点P为线段AC的靠近点A的三等分点,即可得出.解:∵,∴==,∴=2,即点P为线段AC的靠近点A的三等分点,∴△ABP的面积与△BCP的面积之比==,故选:B.【考点】向量的加法及其几何意义.34.如图,已知:,为的中点,为以为直径的圆上一动点,则的最大值是()A.B.C.D.【答案】A【解析】以直线为轴,圆心为坐标原点建立如图所示的直角坐标系,则,所以,,设,则,,其中(,),所以的最大值为.故选A.【考点】平面向量的线性运算,平面向量的数量积.【名师】本题考查平面向量的数量积,解题的关键是建立适当的直角坐标系,把向量用坐标表示出来.本题中建立如解析中所示的坐标系后,可以把表示出来了,引入圆的参数方程表示法,可以把向量用参数表示,这样就可两向量的数量积表示为的函数:,由三角函数的性质可求得最大值.35.在△ABC中,已知D是AB边上一点,若=2,=+λ,则λ等于 ( ) A.B.C.-D.-【答案】A【解析】,而,代入原式得到,整理为,即为,所以,故选A.【考点】向量36.设是平行四边形的对角线的交点,为平面上任意一点,则= A.B.C.D.【答案】D【解析】由已知得,,,,,而,,所以.故选D.【考点】平面向量的加法;相反向量.37.已知的三个顶点及所在平面内一点,若,若实数满足,则()A.B.3C.-1D.2【答案】B【解析】根据向量减法的运算法则可得所以,又因为,所以,故选B.【考点】平面向量的线性运算.38.在四边形中,设且,,则四边形的形状是()A.梯形B.矩形C.菱形D.正方形【答案】B【解析】,,故四边形为平行四边形,又因为,,,故平行四边形为矩形.【考点】向量加法、减法的几何意义.39.已知向量,,,若∥,则= .【答案】 5;【解析】由题:,, ,∥,则:【考点】向量的坐标运算及平行的性质.40.已知非零向量、,且,,,则一定共线的三点是()A.、B.、C.、、D.、【答案】A【解析】根据三点共线的性质,、;、、皆不可能共线,只有、,、有可能共线,假设、共线,,令,可求得,、共线成立,假设、共线,,令,无解,假设不成立,故本题的正确选项为A.【考点】三点共线的证明.【方法点睛】证明三点共线的方法有多种,有向量法,因为共线的三点中任意连接两点所成向量必共线,而由共线向量的性质可知,当两向量共线时(两向量均不为零向量),其对应坐标成比例或者满足,以此来判断三点是否共线;也可建立坐标系,由其中两点确定一条直线,再将第三点代入直线方程,看其是否在直线上;三点钟任意连接两点,可形成三个向量,通过三个向量的模长的关系也可判断三点是否共线.41.已知,点是线段上的点,,则点的坐标为()A.B.C.D.【答案】D【解析】假设,则有,所以有,可求得,故本题的正确选项为D.【考点】三点共线的性质.42.设和是两个单位向量,夹角是,试求向量和的夹角.【答案】.【解析】本题考查的知识点是数量积表示两个向量的夹角,由和是两个单位向量,夹角是,我们易得,,进而我们可以求出,,,然后代入,即可求出答案.试题解析:,,,.,,故.【考点】数量积表示两向量的夹角.43.已知点,,,,则向量在方向上的投影为【答案】【解析】,,则向量在方向上的投影为.【考点】向量数量积的几何意义.44.下列四个式子中可以化简为的是()①②③④A.①④B.①②C.②③D.③④【答案】A【解析】由向量加法三角形法则可知①正确,由向量减法的三角形法则可知④正确,故选A.【考点】向量加法、减法的三角形法则.45.已知向量满足:(1)求向量与的夹角(2)求【答案】(1)(2)【解析】(1)设向量的夹角为θ,求出,展开,代入后求得θ值;(2)利用,展开后求得答案试题解析:(1)设向量与的夹角为,,,得,(2)【考点】平面向量数量积的运算46.在菱形中,若,则等于()A.2B.-2C.D.与菱形的边长有关【答案】B【解析】由题在菱形中,若,由,【考点】向量的运算及几何意义.47.已知是两个单位向量.(1)若,试求的值;(2)若的夹角为,试求向量与的夹角【答案】(1)(2)【解析】(1)由题为单位向量,且,可利用向量乘法运算的性质;,化为向量的乘法运算,求出,进而可求得(2)由的夹角为,可利用向量乘法的性质,分别先求出的值,再利用可得.试题解析:(1),是两个单位向量,,又,,即.(2),,,夹角 .【考点】向量的乘法运算及性质.48.设向量,若,则.【答案】【解析】由题//,可得:【考点】向量平行的性质.49.已知向量=(3,x),=(﹣2,2)(1)若向量⊥,求实数x的值;(2)若向量﹣与3+2共线,求实数x的值.【答案】(1)x=3(2)x=﹣3【解析】解:(1)∵⊥,∴•=﹣6+2x=0,解得x=3.(2)﹣=(﹣5,2﹣x),3+2=(7,3x+2).∵﹣与3+2共线,∴7(2﹣x)+5(3x+2)=0,解得x=﹣3.【点评】本题考查了向量坐标运算性质、向量共线定理、向量垂直与数量积的关系,考查了推理能力与计算能力,属于中档题.50.若,且,则向量与的夹角为A.30°B.60°C.120°D.150°【答案】C【解析】由,则;,得:与的夹角为120°。

高中数学新教材高一下期末复习第一讲 平面向量及其应用(解析版)

平面向量及其应用单元复习一知识结构图二.学法指导1.向量线性运算的基本原则和求解策略(1)基本原则:向量的加法、减法和数乘运算统称为向量的线性运算.向量的线性运算的结果仍是一个向量.因此,对它们的运算法则、运算律的理解和运用要注意向量的大小和方向两个方面.(2)求解策略:向量是一个有“形”的几何量,因此在进行向量线性运算时,一定要结合图形,这是研究平面向量的重要方法与技巧.2. 向量数量积的求解策略(1)利用数量积的定义、运算律求解.在数量积运算律中,有两个形似实数的完全平方公式在解题中的应用较为广泛,即(a+b)2=a2+2a·b+b2,(a-b)2=a2-2a·b+b2,上述两公式以及(a+b)·(a-b)=a2-b2这一类似于实数平方差的公式在解题过程中可以直接应用.(2)借助零向量.即借助“围成一个封闭图形且首尾相接的向量的和为零向量”,再合理地进行向量的移项以及平方等变形,求解数量积.(3)借助平行向量与垂直向量.即借助向量的拆分,将待求的数量积转化为有垂直向量关系或平行向量关系的向量数量积,借助a⊥b,则a·b =0等解决问题.(4)建立坐标系,利用坐标运算求解数量积. 3.解三角形的一般方法(1)已知两角和一边,如已知A ,B 和c ,由A +B +C =π求C ,由正弦定理求a ,b .(2)已知两边和这两边的夹角,如已知a ,b 和C ,应先用余弦定理求c ,再应用正弦定理先求较短边所对的角,然后利用A +B +C =π,求另一角.(3)已知两边和其中一边的对角,如已知a ,b 和A ,应先用正弦定理求B ,由A +B +C =π求C ,再由正弦定理或余弦定理求c ,要注意解可能有多种情况.(4)已知三边a ,b ,c ,可应用余弦定理求A ,B ,C .三.知识点贯通知识点1 平面向量的线性运算首尾相接用加法的三角形法则,如AB →+BC →=AC →;共起点两个向量作差用减法的几何意义,如OB →-OA →=AB →.例题1.如图,梯形ABCD 中,AB ∥CD ,点M ,N 分别是DA ,BC 的中点,且DCAB =k ,设AD →=e 1,AB →=e 2,以e 1,e 2为基底表示向量DC →,BC →,MN →.【答案】DC →=k e 2.BC →=e 1+(k -1)e 2. MN →==k +12e 2.【解析】∵AB →=e 2,且DCAB=k ,∴DC →=kAB →=k e 2.∵AB →+BC →+CD →+DA →=0,∴BC →=-AB →-CD →-D A →=-AB →+DC →+AD →=e 1+(k -1)e 2.又∵MN →+NB →+BA →+AM →=0,且NB →=-12BC →,AM →=12AD →,∴MN →=-AM →-BA →-NB →=-12AD →+AB →+12BC →=k +12e 2.知识点二 平面向量数量积的运算2121cos ||||y y x x b a b a +==⋅θ例题2:如图,在梯形ABCD 中,AB ∥CD ,AB =4,AD =3,CD =2,AM →=2MD →.若AC →·BM →=-3,则AB →·AD →= .【答案】32【解析】因为AC →·BM →=⎝ ⎛⎭⎪⎫AD →+12AB →·⎝ ⎛⎭⎪⎫-AB →+23AD →=-2-23AB →·AD →=-3,所以AB →·AD →=32.知识点三 平面向量的坐标运算若a =(a 1,a 2),b =(b 1,b 2),则①a +b =(a 1+b 1,a 2+b 2); ②a -b =(a 1-b 1,a 2-b 2); ③λa =(λa 1,λa 2); ④a ·b =a 1b 1+a 2b 2; ⑤a ∥b ⇔a 1=λb 1,a 2=λb 2(λ∈R ),或a 1b 1=a 2b 2(b 1≠0,b 2≠0);⑥a ⊥b ⇔a 1b 1+a 2b 2=0; ⑦|a |=a ·a =a 21+a 22;⑧若θ为a 与b 的夹角,则 cos θ=a ·b |a ||b |=a 1b 1+a 2b 2a 21+a 22b 21+b 22.例题3 .设a =(2,0),b =(1,3).①若(λa -b )⊥b ,求λ的值;②若m =λa +μb ,且|m |=23,〈m ,b 〉=π6,求λ,μ的值.【答案】①λ=2.②λ=1,μ=1或λ=-1,μ=2.【解析】 ①因为a =(2,0),b =(1,3),所以λa -b =(2λ,0)-(1,3)=(2λ-1,-3).又(λa -b )⊥b ,所以(λa -b )·b =0,即(2λ-1,-3)·(1,3)=0, 所以2λ-1-3=0.所以λ=2.②因为a =(2,0),b =(1,3),m =λa +μb =λ(2,0)+μ(1,3)=(2λ+μ,3μ). 因为|m |=23,〈m ,b 〉=π6,所以⎩⎪⎨⎪⎧(2λ+μ)2+(3μ)2=(23)2,cos π6=(2λ+μ,3μ)·(1,3)23×2,即⎩⎪⎨⎪⎧ λ2+λμ+μ2=3,λ+2μ=3.解得⎩⎪⎨⎪⎧ λ=1,μ=1,或⎩⎪⎨⎪⎧λ=-1,μ=2, 所以λ=1,μ=1或λ=-1,μ=2. 知识点四 平面向量的平行与垂直问题 1.证明共线问题常用的方法(1)向量a ,b (a ≠0)共线⇔存在唯一实数λ,使b =λa . (2)向量a =(x 1,y 1),b =(x 2,y 2)共线⇔x 1y 2-x 2y 1=0. (3)向量a 与b 共线⇔|a ·b |=|a ||b |.(4)向量a 与b 共线⇔存在不全为零的实数λ1,λ2,使λ1a +λ2b =0. 2.证明平面向量垂直问题的常用方法a ⊥b ⇔a·b =0⇔x 1x 2+y 1y 2=0, 其中a =(x 1,y 1),b =(x 2,y 2).例题4. (1)已知向量m =(λ+1,1),n =(λ+2,2),若(m +n )⊥(m -n ),则λ=( )A .-4B .-3C .-2D .-1(2)设A ,B ,C ,D 为平面内的四点,且A (1,3),B (2,-2),C (4,1). ①若AB →=CD →,求D 点的坐标.②设向量a =AB →,b =BC →,若k a -b 与a +3b 平行,求实数k 的值. (1)【答案】B【解析】因为m +n =(2λ+3,3),m -n =(-1,-1),且(m +n )⊥(m -n ),所以(m +n )·(m -n )=-2λ-3-3=0,解得λ=-3.故选B 。

向量公式汇总

向量公式汇总一、向量的基本运算1.向量的加法:若有向量a=(a₁,a₂,a₃)和b=(b₁,b₂,b₃),则向量a和b的和可以表示为a+b=(a₁+b₁,a₂+b₂,a₃+b₃)。

2.向量的减法:若有向量a=(a₁,a₂,a₃)和b=(b₁,b₂,b₃),则向量a和b的差可以表示为a-b=(a₁-b₁,a₂-b₂,a₃-b₃)。

3.向量的数量积(点积):若有向量a=(a₁,a₂)和b=(b₁,b₂),则向量a和b的数量积可以表示为a·b=a₁b₁+a₂b₂。

4.向量的数量积的性质:-交换律:a·b=b·a-结合律:(k·a)·b=k·(a·b),其中k为常数-分配律:(a+b)·c=a·c+b·c5.向量的向量积(叉积):若有向量a=(a₁,a₂,a₃)和b=(b₁,b₂,b₃),则向量a和b的向量积可以表示为a×b=(a₂b₃-a₃b₂,a₃b₁-a₁b₃,a₁b₂-a₂b₁)。

6.向量的向量积的性质:-反交换律:a×b=-b×a-结合律:(k·a)×b=k·(a×b),其中k为常数-分配律:(a+b)×c=a×c+b×c二、向量的模和方向7.向量的模:向量a=(a₁,a₂,a₃)的模可以表示为,a,=√(a₁²+a₂²+a₃²)。

8.单位向量:向量的模为1的向量称为单位向量。

对于向量a,若其模为1,则该向量为单位向量。

9.方向余弦:若有向量a=(a₁, a₂, a₃),则它的方向余弦可以表示为cosα=a₁/,a,, cosβ=a₂/,a,, cosγ=a₃/,a。

三、向量的坐标表示10.点P的坐标表示:若P(x,y)为平面直角坐标系中的一点,则点P的坐标向量可以表示为P=(x,y)。

高一数学讲义 第七章 平面向量

高一数学讲义 第七章 平面向量7.1 向量的基本概念及表示现实生活中,有些量在有了测定单位之后只需用一个实数就可以表示,例如温度,时间,面积,这些只需用一个实数就可以表示的量叫作标量.还有些量不能只用一个实数表示,例如位移,力,速度等既有大小又有方向的量,这些既有大小又有方向的量叫作向量.向量既有大小又有方向,因此向量不能比较大小.数学中常用平面内带有箭头的线段来表示平面向量.以线段的长来表示向量的大小:以箭头所指的方向(即从始点到终点的方向)来表示向量的方向.一般地,以点P 为始点,点Q 为终点的向量记作PQ .为书写简便,在不强调向量的起点与终点时,向量也可以用一个小写的字母并在上面画一个小箭头来表示,如a .PQ 的大小叫作PQ 的模,记作PQ ,类似地,a 的模记作a . 1.零向量:长度为0的向量叫做零向量,记作0;0的方向是任意的. 2.单位向量:长度为1的向量叫做单位向量.3.平行向量:方向相同或相反的向量叫做平行向量(也叫共线向量). 4.相等向量:长度相等且方向相同的向量叫做相等向量.5.负向量:与a 的模相等,方向相反的向量叫作a 的负向量,记作a -.我们规定:0的相反向量仍是零向量.易知对任意向量a 有()a a --=.向量共线与表示它们的有向线段共线不同:向量共线时表示向量的有向线段可以是平行的,不一定在一条直线上;而有向线段共线则线段必须在同一条直线上.规定。

与任一向量平行.图7-1图7-1三个向量a 、b 、c 所在的直线平行,易知这三个向量平行,记作a b c ∥∥,我们也可以称这三个向量共线.例l .如图7-2所示,128A A A 、是O 上的八个等分点,则在以128A A A 、及圆O 九个点中任意两点为起点与终点的向量中,模等于半径的向量有多少??A 8A 7A 6A 5A 4A 3A 2A 1图7-2解:(1)模等于半径的向量只有两类,一类是()128i OA i =、共8个;另一类是()128iAO i =、也有8个.两类合计16个. (2)以128A A A 、为顶点的O 的内接正方形有两个,一个是正方形1257A A A A ;另一个是正方形2468A A A A .在题中所述的向量中,只有这两个正方形的边(看成有向线段,每一边对应两个向量)的√2倍的向量共有42216⨯⨯=个. 注意:(1)在模等于半径的向量个数的计算中,要计算i OA 与()128i AO i =、两类.一般地我们易想到()128i OA i =、这8个,而易遗漏()128iAO i =、这8个.(2的两个向量,例如边13A A 对应向量13A A 与31A A ,因此与(1)一样,在解题过程中主要要防止漏算.认为满足条件的向量个数为8是错误的.例2.在平面中下列各种情形中,将各向量的终点的集会分别构成什么图形? (1)把所有单位向量的起点平移到同一点O .(2)把平行于直线l 的所有单位向量的起点平移到直线l 上的p 点. (3)把平行于直线l 的所有向量的起点平移到直线l 的点p . 解:(1)以点O 为圆心,l 为半径的圆.(2)直线l 上与点p 的距离为1个长度单位的两个点. (3)直线l .例3.判断下列命题的真假:①直角坐标系中坐标轴的非负轴都是向量; ②两个向量平行是两个向量相等的必要条件;③向量AP 与CD 是共线向量,则A 、B 、C 、D 必在同一直线上; ④向量a 与向量b 平行,则a 与b 的方向相同或相反; ⑤四边形ABCD 是平行四边形的宽要条件是AB DC =.解:①直角坐标系中坐标轴的非负半轴,虽有方向之别,但无大小之分,故命题是错误的.②由于两个向量相等,必知这两个向量的方向与长度均一致,故这两个向量一定平行,所以,此命题正确; ③不正确.AB 与CD 共线,可以有AB 与CD 平行;④不正确.如果其中有一个是零向量,则其方向就不确定;⑤正确.此命题相当于平面几何中的命题:四边形ABCD是平行四边形的充要条件是有一组对边平行且相等.1.下列各量中是向量的有__________.(A)动能(B)重量(C)质量(D)长度(F)作用力与反作用力(F)温度2.判断下列命题是否正确,若不正确,请简述理由.①向量AB与CD是共线向量,则A、B、C、D四点必在一直线上;②单位向量都相等;③任一向量与它的相反向量不相等;④共线的向量,若起点不同,则终点一定不同.3.回答下列问题,并说明理由.(1)平行向量的方向一定相同吗?(2)共线向量一定相等吗?(3)相等向量一定共线吗?不相等的向量一定不共线吗?4.命题“a b∥,b c∥()∥,则a bA.总成立B.当0a ≠时成立C.当0b ≠时成立D.当0c ≠时成立5.已知正六边形ABCDEF(见图7-3),在下列表达式中:①BC CD EC+;③FE ED++;②2BC DC+;④2ED FA-;与AC相等的有__________.CF图737.2向量的加减法两个向量可以求和.一般地,对于两个互不平行的向量a、b,以A为共同起点平移向量,有AB a=,=叫作a和b这两个向量的和,即AD b=,则以AB、AD为邻边的平行四边形ABCD的对角线AC c+=.求两个向量和的运算叫做向量的加法.上述求两个向量的和的方法称为向量加法的平行四a b c边形法则,见图7-4.平行四边形法则B图74又AD BC = AB BC AC ∴+=由此发现,当第二个向量的始点与第一个向量的终点重合时.这两个向量的和向量即为第一个向量的始点指向第二个向量终点的向量.此法则称为向量加法的三角形法则,地图7-5.三角形法则图75特殊地.求两个平行向量的和,也可以用三角形法则进行(如图7-6):(b )(a )a BA图76显然,对于任何a ,有0a a +=;()0a a +-=. 对于零向量与任一向量a ,有00a a a +=+=.向量的加法具有与实数加法类似的运算性质,向量加法满足交换律与结合律: 交换律:a b b a +=+结合律:()()a b c a b c ++=++与实数的减法相类似,我们把向量的减法定义为向量加法的逆运算.若向量a 与b 的和为向量c ,则向量b 叫做向量c 与a 的差,记作b c a =-.求向量差的运算叫做向量的减法.由向量加法的三角形法则以及向量减法的定义.我们可得向量减法的三角形法则,其作法:在平面内取一点O,作OA a=-,即a b-声可以表示为从向量b的终点指向向=,则BA a b=,OB b量a的终点的向量.注意差向量的“箭头”指向被减向量,见图7-7.CB图77此外,我们可以先做向量b的负向量OB b′,可根据向量加法的平行四边形法则得()=-OC a b=+-.易知向量OC BA=,因此,()+-=-.a b a b例1.如图7-8所示,已知向量a,b,c,试求作和向量a b c++.图78分析:求作三个向量的和的问题,首先求作其中任意两个向量的和,因为这两个向量的和仍为一个向量,然后再求这个新向量与另一个向量的和.即可先作a b+,再作()++.a b c解:如图7-9所示,首先在平面内任取一点O,作向量OA a=+,=,再作向量AB b=,则得向量OB a b然后作向量BC c=++即为所求.=,则向量OC a b cO图79例2.化简下列各式(1)AB CA BC ++; (2)OE OF OD DO -+--.解:(1)原式()0AB BC CA AB BC CA AC CA AC AC =++=++=+=-= (2)原式()()0OE OF OD DO EO OF EF =+-+=+-=例3.用向量方法证明:对角线互相平分的四边形是平行四边形.分析:要证明四边形是平行四边形只要证明某一组对边平行且相等.由相等向量的意义可知,只需证明其一组对边对应的向量是相等向量.已知:如图7-10,ABCD 是四边形,对角线AC 与BD 交于0,且AO OC =,DO OB =.ODCBA图710求证:四边形ABCD 足平行四边形. 证明:由已知得AO OC =,BO OD =,AD AO OD OC BO BO OC BC =+=+=+=,且A D B C ,,,不在同一直线上,故四边形ABCD 是平行四边形.例4.已知平面上有不共线的四点O A B C ,,,.若320OA OB OC -+=,试求AB BC的值.解:因为23OA OC OB +=,所以()2OB OA OC OB -=-.于是有2AB BC =-.因此2AB BC=.基础练习1.若对n 个向量12n a a a ,,,存在n 个不全为零的实数12n k k k ,,,,使得11220n n k a k a k a +++=成立,则称向量12n a a a ,,,为“线性相关”,依此规定,能说明()110a =,,()211a =-,,()322a =,“线性相关”的实数123k k k ,,依次可以取____________________(写出一组数值即可,不必考虑所有情况).2.已知矩形ABCD 中,宽为2,长为AB a =,BC b =,AC c =,试作出向量a b c ++,并求出其模的大小.3.设a ,b 为两个相互垂直的单位向量.已知OP a =,OR ra kb =+.若PQR △为等边三角形,则k ,r 的取值为( )A.k r == B.k r =C.k r ==D.k r = 4.若A B C D 、、、是平面内任意四点,则下列四式中正确的是( )①AC BD BC AD +=+ ②AC BD DC AB -=+ ③AB AC DB DC --=④AB BC AD DC +-=A .1B .2C .3D .45.设a 表示“向东走10km ”,b 表示“5km ”,c 表示“向北走10km ”,d 表示“向南走5km ”.说明下列向量的意义.(1)a b +;(2)b d +;(3)d a d ++.6.在图7-11的正六边形ABCDEF 中,AB a =,AF b =,求AC ,AD ,AE .FC图7117.3 实数与向量的乘法如图7-12,已知非零向量a ,可以作出a a a ++和()()()a a a -+-+-.P Q M N aaa-a图712aOC OA AB BC a a a =++=++,简记3OC a =;同理有()()()3PN PQ QM MN a a a a =++=-+-+-=-.观察得:3a 与a 方向相反相反且33a a -=.一般地,实数λ与向量a 的积是一个向量,记作:a λ.a λ的模与方向规定如下:(1)a a λλ=;(2)a λ的方向定义为:0λ>时a λ与a i 方向相同;0λ<时a λ与a i 方向相反;0λ=或0a =时规定:0a λ=.以上规定的实数与向量求积的运算叫作实数与向量的乘法(简称向量的数乘).向量数乘的几何意义就是:把向量a 沿向量a 的方向或反方向放大或缩小,a λ与a 是互相平行的向量.对于任意的非零向量a ,与它同方向的单位向量叫做向量a 的单位向量,记作0a .易知01a a a =.向量共线定理:如果有一个实数λ,使()0b a a λ=≠,那么b 与a 是共线向量;反之,如果b 与()0a b ≠是共线向量,那么有且只有一个实数λ,使得b a λ=.通过作图,可以验证向量数乘满足以下运算定律:当m 、n ∈R 时,有 1.第一分配律()m n a ma na +=+. 2.第二分配律()m a b ma mb +=+. 3.结合律()()m na mn a =. 例1.计算:(1)()()63292a b a b -+-+;(2)原式12711332236227a a b b a a b ⎛⎫⎛⎫=-+--++ ⎪ ⎪⎝⎭⎝⎭;(3)()()()64222a b c a b c a c -+--+--+. 解:(1)原式18121893a b a b b =---+=-. (2)原式12711332236227a a b b a a b ⎛⎫⎛⎫=-+--++ ⎪ ⎪⎝⎭⎝⎭17732367a b a b ⎛⎫⎛⎫=+-+ ⎪ ⎪⎝⎭⎝⎭ 77106262b a a b =+--=. (3)原式66648442a bc a b c a c =-+-+-+-()()()64468642a a a b b c c c =-++-++-- 62a b =+.例2.已知O 为原点,A ,B ,C 为平面内三点,求证A ,B ,C 三点在一条直线上的充要条件是OC OA OB αβ=+,且αβ∈R ,,1αβ+=.分析:证明三点共线可从三点构成的其中两个向量存在数乘关系.证明必要条件也是从向量共线时向量的数乘关系入手.证明:必要性.设A B C ,,三点共线,则AC 与AB 共线.于是存在实数λ,使AC AB λ=. 而AC OC OA =-,AB OB OA =-,()OC OA OB OA λ∴-=-.()1OC OB OA λλ∴=+-. 令λβ=,1λα-=,有()11αβλλ+=-+=, OC OA OB αβ∴=+,且1αβ+=.充分性.若OC OA OB αβ=+,且1αβ+=,则()1OC OA OB ββ=-+,()OC OA OB OA β=+-,()OC OA OB OC β-=-,AC AB β∴=,β∈R . AC ∴与AB 共线,而A 为AC 与AB 的公共端点,A B C ∴,,三点在一条直线上.在证明必要性时,A B C ,,三点共线还可用AB kBC =,AC kBC =表示.本题的结论还可有更一般的形式:A B C 、、三点在一条直线上的充要条件是存在实数h ,k ,l ,使0hOA kOB lOC ++=,且1h k l ++=,l k h ,,中至少有一个不为0.例3.如图7-13,设O 为ABC △内一点,PQ BC ∥,且PQt BC=,,OB b =,OC c =,试求OP ,OQ . 解:由平面几何知,APQ ABC ⨯△∽△,且对应边之比为t ,图713故AP AQ PQt AB AC BC===, 又A P B 、、与A Q C 、、分别共线,即知 AP t AB =,AQ t AC =.()()OP OA AP OA t AB OA t OB OA a t b a ∴=+=+=+-=+-,即()1OP t a tb =-+,()()OQ OA AQ OA t AC OA t OC OA a t c a =+=+=+-=+-, 即()1OQ t a c =-+.例4.设两非零向量1e 和2e 不共线,(1)如果12AB e e =+,1228BC e e =+,()123CD e e =-,求证A B D ,,三点共线. (2)试确定实数k ,使12ke ke +共线. (1)证明12AB e e =+,()121212283355BD BC CD e e e e e e AB =+=++-=+=,AB BD ∴,共线,又有公共点B A B D ∴,,三点共线.(2)解12ke e +与12e ke +共线,∴存在λ使()1212ke e e ke λ+=+, 则()()121k e k e λλ-=-,由于1e 与2e 不共线, 只能有010k k λλ-=⎧⎨-=⎩则1k =±.例5.在ABC △中,F 是BC 中点,直线l 分别交AB AF AC ,,于点D ,G ,E (见图7-14).如果AD AB λ=,AE AC μ=,λ,μ∈R .证明:G 为ABC △重心的充分必要条件是113λμ+=.l GF E DCB A图714解:若G 为ABC △重心,则()221332AG AF AB AC ==⋅+=13AD AE λμ⎛⎫+ ⎪ ⎪⎝⎭. 又因点D G E ,,共线,所以,()113AD AE AG t AD t AE λμ⎛⎫=+-=+ ⎪ ⎪⎝⎭, 因AD ,AE 不共线,所以,13t λ=且113t μ=-,两式相加即得113λμ+=. 反之,若113λμ+=,则()2xAG xAF AB AC ==+()12x AD AE t AD t AE λμ⎛⎫=+=+- ⎪ ⎪⎝⎭, 所以,2x t λ=且12x t μ=-,相加即得23x =,即G 为ABC △重心. 基础练习1.已知向量a 、b 是两非零向量,在下列四个条件中,能使a 、b 共线的条件是( ) ①234a b e -=且23a b e +=-;②存在相异实数λ、u ,使0a ub λ+=; ③0xa yb +=(其中实数x y 、满足0x y +=); ④已知梯形ABCD 中,其中AB a =、CD b =. A .①② B .①③C .②④D .③④2.判断下列命题的真假:(1)若AB 与CD 是共线向量,则A B C D ,,,四点共线. (2)若AB BC CA ++=0,则A B C ,,三点共线. (3)λ∈R ,则a a λ>.(4)平面内任意三个向量中的每一个向量都可以用另外两个向量的线性组合表示. 3.已知在ABC △中,D 是BC 上的一点,且BDDCλ=,试求证:1AB AC AD λλ+=+. 4.已知3AD AB =,3DE BC =.试判断AC 与AE 是否共线.5.已知在四边形ABCD 中,2AB a b =+,4BC a b =--,53CD a b =--,求证:四边形ABCD 是梯形.6.已知()2cos A αα,()2cos B ββ,()10C -,是平面上三个不同的点,且满足关系式CA BC λ=,求实数λ的取值范围.7.已知梯形ABCD 中,2AB DC =,M N ,分别是DC AB 、的中点,若1AB e =,2AD e =,用1e ,2e 表示DC BC MN 、、.8.四边形ABCD 是一个梯形,AB CD ∥且2AB CD =,M N 、分别是DC 和AB 的中点,已知AB a =,AD b =,试用a ,b 表示BC 和MN .9.已知a b 、是不共线的非零向量,11c a b λμ=+,22d a b λμ=+,其中1122λμλμ、、、为常数,若c d ma nb +=+,求m n 、的值.10.设a 、b 是不共线的两个非零向量,OM ma =,ON nb =,OP a b αβ=+,其中m n αβ、、、均为实数,0m ≠,0n ≠,若M P N 、、三点共线,求证:1mnαβ+=.11.在ABC △中,BE 是CD 交点为P .设AB a =,AC b =,AP c =,AD a λ=,(01λ<<),()01AE b μμ=<<,试用向量a ,b 表示c .12.在平面直角坐标系中,O 为坐标原点,设向量()12OA =,,()21OB =-,若OP xOA yOB =+且12x y ≤≤≤,则求出点P 所有可能的位置所构成的区域面积.7.4 向量的数量积数量积定义:一般地.如果两个非零向量a 与b 的夹角为α.我们把数量cos a b α⋅叫做a 与b 的数量积(或内积),记作:a b ⋅,即:cos a b a b α⋅=⋅,其中记法“a b ⋅”中间的“⋅”不可以省略,也不可以用“×”代替.特别地,a b ⋅可记作2a .规定:0与任何向量的数量积为0.非零向量夹角的范围:0≤口≤Ⅱ.投影的定义:如果两个非零向量a 与b 的夹角为α,则数量cos b θ称为向量b 在a 方向上的投影.注意:投影是一个数量.数量积的几何意义:如图7-15,我们把cos b α<叫做向量b 在a 方向上的投影,即有向线段1OB 的数量.图715当π02α<≤时,1OB 的数量等于向量1OB 的模1OB ; 当ππ2α<≤时,1OB 的数量等于向量1OB 的模-1OB ; 当π2α=时,1OB 的数量等于零. 当然,cos a α即为a 在b 方向上的投影.综上,数量积的几何意义:a b ⋅等于其中一个向量a 的模a 与另一个向量b 在a 的方向上的投影cos b α的乘积.向量的数量积的运算律: ①a b b a ⋅=⋅②()()()a b b a b λλλ⋅⋅=⋅(λ为实数)③()a b c a c b c +⋅=⋅+⋅ 鉴于篇幅这里仅证明性质②:证明:(1)若0λ>,()cos a b a b λλθ⋅=,()cos a b a b λλθ⋅=,()cos a b a b λλθ⋅=,(2)若0λ<,()()()cos πcos cos a b a b a b a b λλθλθλθ⋅=-=--=,()cos a b a b a b λλλθ⋅=⋅=,()()()cos πcos a b a b a b λλθλθ⋅=-=--=cos a b λθ. (3)若0λ=,则()()()0a b a b a b λλλ⋅=⋅=⋅=. 综合(1)、(2)、(3),即有()()()a b a b a b λλλ⋅=⋅=⋅.例1.已知4a =,5b =,当(1)a b ∥,(2)a b ⊥,(3)a 与b 的夹角为30︒时,分别求a 与b 的数量积.解:(1)a b ∥,若a 与b 同向,则0θ=︒,cos04520a b a b ∴⋅=⋅︒=⨯=; 若a 与b 反向,则180θ=︒,()cos18045120a b a b ∴⋅=⋅︒⨯⨯⨯-=-. (2)当a b ⊥时,90θ=︒,cos900a b a b ∴⋅=⋅︒=.(3)当a 与b 的夹角为30︒时,cos3045a b a b ⋅=⋅︒=⨯= 例2.空间四点A B C D 、、、满足3AB =,7BC =,11CD =,9DA =,则AC BD ⋅的取值有多少个?解:注意到2222311113079+==+,由于0AB BC CD DA +++=, 则()()2222222DA DA AB BC CDAB BC CD AB BC BC CD CD AB ==++=+++⋅+⋅+⋅()()2222AB BC CD AB BC BC CD =-+++⋅+,即222220AC BD AD BC AB CD ⋅=+--=,AC BD ∴⋅只有一个值0.例3.已知a b 、都是非零向量,且3a b +与75a b -垂直,4a b -与72a b -垂直,求a b 、的夹角. 解:由()()223750716150a b a b a a b b +⋅-=⇒+⋅-= ①()()22472073080a b a b a a b b -⋅-=⇒-⋅+=②两式相减:22a b b ⋅=代入①或②得:22a b =. 不妨设a b 、的夹角为θ,则221cos 22a b ba bbθ⋅===,又因为0πθ≤≤,60θ∴=︒.例4.在凸四边形ABCD 中,P 和Q 分别为对角线BD 和AC 的中点,求证:2222224AB BC CD DA AC BD PQ +++=++.证明:联结BQ ,QD ,因为BP PQ BQ +=,DP PQ DQ +=, 所以()()2222BQ DQ BP PQ DP PQ +=+++ 222222BP DP PQ BP PQ DP PQ =+++⋅+⋅()22222BP DP PQ BP DP PQ =++++⋅ 2222BP DP PQ =++①又因为BQ QC BC +=,BQ QA BA +=,0QA QC +=, 同理222222BA BC QA QC BQ +=++② 222222CD DA QA QC QD +=++③由①、②、③可得()()2222222224222BA BC CD QA BQ QD AC BP PQ ++=++=++= 2224AC BD PQ ++.得证.例5.平面四边形ABCD 中,AB a =,BC b =,CD c =,DA d =,且a b b c c d d a ⋅=⋅=⋅=⋅,判断四边形ABCD 的形状.证明:由四边形ABCD 可知,0a b c d +++=(首尾相接)()a b c d ∴+=-+,即()()22a bc d +=+展开得222222aa b b c c d d +⋅+=+⋅+a b c d ⋅=⋅,222a b c d ∴+=+①同理可得2222a dbc +=+② ①-②得2222b a ac =⇒=,b d ∴=,ac =,即AB CD =,BC DA =, 故四边形ABCD 是平行四边形.由此a c =-,bd =-.又a b b c ⋅=⋅,即()0b a c -=()20b a ∴⋅=即a b AB BC ⊥⇒⊥, 故四边形ABCD 是矩形.例6.已知非零向量a 和b 夹角为60︒,且()()375a b a b +⊥-,求证:()()472a b a b -⊥-.证明:因为a 和b 夹角为60︒,所以1cos602a b a b a b ⋅=⋅⋅︒=⋅;又因为()()375a b a b +⊥-,所以,即()()3750a b a b +⋅-=.22222217161571615781502a ab b a a b b a a b b +⋅-=+⨯⋅-=+⋅-=. ()()7150a b a b ∴+⋅-=,0a b ∴-=,即a b =.因为()()22222214727308730871582a b a b a a b b a a b b a a b b -⋅-=-⋅+=-⨯+=-+,把a b =代入上式消去b 得()()2247271580a b a b a a a a -⋅-=-+=.所以()()472a b a b -⊥-.基础练习1.已知a b c 、、是三个非零向量,则下列命题中真命题的个数为( ) ①a b a b a b ⋅=⋅⇔∥; ②a b 、反向a b a b ⇔⋅=-⋅; ③a b a b a b ⊥⇔+=-; ④a b a c b c =⇔⋅=⋅. A .1B .2C .3D .42.已知向量i j ,为相互垂直的单位向量,28a b i j +=-,816a b i j -=-+,求a b ⋅.3.如图7-16所示,已知平行四边形ABCD ,AB a =,AD b =,4a=,2b =,求:OA OB ⋅.C图7164.设6a =,10b =,46a b -=,求a 和b 的夹角θ的余弦值. 5.已知a b ⊥,2a =,3b =,当()()32a b a b λ-⊥+时,求实数λ的值.6.已知不共线向量a ,b ,3a =,2b =,且向量a b +与2a b -垂直.求:a 与b 的夹角θ的余弦值. 7.已知3a =,4b =,且a 与b 不共线,k 为何值时,向量a kb +与a kb -互相垂直? 8.在ABC △中,已知4AB AC ⋅=,12AB BC ⋅=-,求AB .9.在ABC △中,AB a =,BC b =,且0a b ⋅>,则ABC △的形状是__________. 10.已知向量()24a =,,()11b =,.若向量()b a b λ⊥+,则实数λ的值是__________.11.如图7-17,在四边形ABCD 中,4AB BD DC ++=,0AB BD BD DC ⋅=⋅=,4AB BD BD DC ⋅+⋅=,求()AB DC AC +⋅的值.图717DCBA能力提高12.如图7-18,在Rt ABC △中,已知BC a =,若长为2a 的线段PQ 以点A 为中点.问PQ 与BC 的夹角θ为何值时,BP CQ ⋅的值最大?并求出这个最大值.PQ图71813.已知ABC △中满足()2ABAB AC BA BC CA CB =⋅+⋅+⋅,a b c 、、分别是ABC △的三边.试判断ABC △的形状并求sin sin A B +的取值范围.14.设边长为1的正ABC △的边BC 上有n 等分点,沿点B 到点C 的方向,依次为121n P P P -,,,,若1121n n S AB AP AP AP AP AC -=⋅+⋅++⋅,求证:21126n n S n-=.15.在ABC △中,AB a =,BC c =,CA b =,又()()()123c b b a a c ⋅⋅⋅=∶∶∶∶,则ABC △三边长之比a b c =∶∶__________.16.在向量a b c ,,之间,该等式()()())132a b c a b b c c a ⎧++=⎪⎨⋅⋅⋅=-⎪⎩∶∶∶成立,当1a =时,求b 和c 的值.17.若a b c ,,中每两个向量的夹角均为60︒,且4a =,6b =,2c =,求a b c ++的值. 7.5 向量的坐标表示及其运算向量的坐标表示在平面直角坐标系中,每一个点都可用一对实数()x y ,来表示,那么,每一个向量可否也用一对实数来表示?前面的平面向量分解告诉我们,只要选定一组基底,就有唯一确定的有序实数对与之一一对应. 我们分别选取与x 轴、y 轴方向相同的单位向量i ,j 作为基底,由平面向量的基本定理.对于任一向量a ,存在唯一确定的实数对()x y ,使得()a xi y j x y =+∈R ,,我们称实数对()x y ,叫向量a 的坐标,记作()a x y =,.其中x 叫向量a 在x 轴上的坐标,y 叫向量a 在y 轴上的坐标,见图7-19.图719注意:(1)与a 相等的向量的坐标也是()x y ,.(2)所有相等的向量坐标相同;坐标相同的向量是相等的向量. 平面向量的坐标运算(1)设()11a x y =,,()22b x y =,,则()1212a b x x y y +=++,. (2)设()11a x y =,,()22b x y =,,则()1212a b x x y y -=--,. (3)设()11A x y ,,()22B x y ,,则()2121AB OB OA x x y y =-=--,. (4)设()11a x y =,,λ∈R ,则()a x y λλλ=,.(5)设()11a x y =,,()22b x y =,,则()1212a b x x y y ⋅=+. 向量平行的坐标表示设()11a x y =,,()22b x y =,,且0b ≠,则()1212a b x x y y =+∥. 向量的平行与垂直的充要条件设()11a x y =,,()22b x y =,,且0b ≠,0a ≠则 12210a b b a x y x y λ⇔=⇔-=∥. 121200a b a b x x y y ⊥⇔⋅=⇔+=.重要的公式(1)长度公式:2221a a a x y ===+()()11a x y =,(2)夹角公式:()())1122cos a x y b x y θ===,,,.(3)平面两点间的距离公式: (()())1122A B d AB AB AB x A x y B xy ==⋅=,,,,.(4)不等式:cos a b a b a b θ⋅=≥.例1.已知()12a a a =,,()12b b b =,,且12210a b a b -≠,求证:(1)对平面内任一向量()12c c c ,,都可以表示为()xa yb x y +∈R ,的形式; (2)若0xa yb +=,则0x y ==.证明:(1)设c xa yb =+,即()()()()1212121122c c x a a y b b a x b y a x b y =+=++,,,,, 111222.a xb yc a x b y c +=⎧∴⎨+=⎩,12210a b a b -≠,∴上述关于x y ,的方程组有唯一解.1221122112211221.c b c b x a b a b a c a c y a b a b -⎧=⎪-⎪⎨-⎪=⎪-⎩,1221122112211221c b c b a c a c c a b a b a b a b a b --∴=+--. (2)由(1)的结论,0c =,即120c c ==,则 122112210c b c b x a b a b -==-,122112210a c a c y a b a b -==-,0x y ∴==. 小结:证明(1)的过程就是求实数x ,y 的过程,而12210a b a b -≠是上面二元一次方程组有唯一解的不可缺少的条件.另外,本题实际上是用向量的坐标形式表述平面向量基本定理.其中1x λ=,2y λ=,这里给出了一个具体的求12λλ,的计算方法.例2.向量()10OA =,,()11OB =,,O 为坐标原点,动点()P x y ,满足0102OP OA OP OB ⎧⋅⎪⎨⋅⎪⎩≤≤≤≤,求点()Q x y y +,构成图形的面积.解:由题意得点()P x y ,满足0102x x y ⎧⎨+⎩≤≤≤≤,令x y uy v +=⎧⎨=⎩,则点()Q u v ,满足0102u v u -⎧⎨⎩≤≤≤≤,在uOv 平面内画出点()Q u v ,构成图形如图7-20所示,∴其面积等于122⨯=.图720例3.在直角坐标系中,已知两点()11A x y ,,()22B x y ,;1x ,2x 是一元二次方程222240x ax a -+-=两个不等实根,且A B 、两点都在直线y x a =-+上. (1)求OA OB ⋅;(2)a 为何值时OA 与OB 夹角为π3. 解:(1)12x x 、是方程222240x ax a -+-=两个不等实根,()224840a a ∴∆=-->解之a -<()212142x x a =-,12x x a +=又A B 、两点都在直线y x a =-+上,()()()()2212121212142y y x a x a x x a x x a a ∴=-+-+=-++=- 121224OA OB x x y y a ∴⋅=+=-(2)由题意设1x =,2x =112y x a x ∴=-+==,同理21y x =(()22212121224OA OB xx x x x x x ∴==+=+-=当OA 与OB夹角为π3时,π1cos 4232OA OBOA OB ⋅==⨯= 242a ∴-=解之(a =- a ∴=即为所求. 例4.已知()10a =,,()21b =,. ①求3a b +;②当k 为何实数时,ka b -与3a b +平行,平行时它们是同向还是反向?解:①()()()31032173a b +=+=,,,,2373a b ∴+=+ ②()()()102121ka b k k -=-=--,,,. 设()3ka b a b λ-=+,即()()2173k λ--=,,, 12731313k k λλλ⎧=-⎪-=⎧⎪∴⇒⎨⎨-=⎩⎪=-⎪⎩.故13k =-时,它们反向平行.例5.对于向量的集合(){}221A v x y x y ==+,≤中的任意两个向量12v v 、与两个非负实数αβ、;求证:向量12v v αβ+的大小不超过αβ+.证明:设()111v x y =,,()222v x y =,,根据已知条件有:22111x y +≤,22221x y +≤, 又因为(12v v αβα+==其中12121x x y y +所以12v v αβααβαβ+=+=+≤. 基础练习1.已知()21a =,,()34b =-,,求a b +,a b -,34a b +的坐标. 2.设O 点在ABC △内部,且有230OA OB OC ++=,求ABC △的面积与AOC △的面积的比. 3.已知平行四边形ABCD 的三个顶点A B C ,,的坐标分别为(-2,1),(-1,3),(3,4),求顶点D 的坐标.4.已知向量i ,j 为相互垂直的单位向量,设()12a m i j =+-,()1b i m j =+-,()()a b a b +⊥-,求m 的值.5.已知等腰梯形ABCD ,其中AB CD ∥,且2DC AB =,三个顶点()12A ,,()21B ,,()42C ,,求D 点的坐标.6.如图7-21所示,已知()20OA =,,(1OB =,将BA 绕着B 点逆时针方向旋转60︒,且模伸长到BA 模的2倍,得到向量BC .求四边形AOBC 的面积S .图7217.如图7-22所示,已知四边形ABCD 是梯形,AD BC ∥,2BC AD =,其中()12A ,,()31B ,,()24D ,,求C 点坐标及AC 的坐标.图7228.已知向量()2334a x x x =+--,与AB 相等,其中()12A ,,()32B ,,求x . 9.平面内有三个已知点()12A -,,()70B ,,()56C -,,求 (1)AB ,AC ;(2)AB AC +,AB AC -;(3)122AB AC +,3AB AC -. 10.已知向量()12a =,,()1b x =,,2u a b =+,2v a b =-,且u v ∥,求x . 11.已知()23a =,,()14b =-,,()56c =,,求()a b c ⋅,和()a b c ⋅⋅.12.已知两个非零向量a 和b 满足()28a b +=-,,()64a b -=--,,求a 与b 的夹角的余弦值. 能力提高13.已知平面上三个向量a ,b ,c 均为单位向量,且两两的夹角均为120︒,若()1ka b c k ++>∈R ,求k 的取值范围.14.已知OA ,OB 不共线,点C 分AB 所成的比为2,OC OA OB λμ=+,求λμ-. 7.6 线段的定比分点公式与向量的应用线段的定比分点公式设点P 是直线12P P 上异于1P 、2P 的任意一点,若存在一个实数()1λλ≠-,使12PP PP λ=,则λ叫做点P 分有向线段12P P 所成的比,P 点叫做有向线段12P P 的以定比为λ的定比分点.当P 点在线段12P P 上时0λ⇔≥;当P 点在线段12P P 的延长线上时1λ⇔<-; 当P 点在线段21P P 的延长线上时10λ⇔-<<;设()111P x y ,,()222P x y ,,()P x y ,是线段12P P 的分点,λ是实数且12P P PP λ=,则121211x x x OP y y y λλλλ+⎧=⎪⎪+⇔=⎨+⎪=⎪+⎩()12121111OP OP OP tOP t OP t λλλ+⎛⎫⇔=+-= ⎪++⎝⎭.()1λ≠-由线段的定比分点公式得:中点坐标公式设()111P x y ,,()222P x y ,,()P x y ,为12P P 的中点,(当1λ=时) 得121222x x x y y y +⎧=⎪⎪⎨+⎪=⎪⎩三角形的重心坐标公式ABC △三个顶点的坐标分别为()11A x y ,、()22B x y ,、()33C x y ,,则ABC △的重心的坐标是12312233x x x y y y G ++++⎛⎫ ⎪⎝⎭,. 利用向量可以解决许多与长度、距离及夹角有关的问题.向量兼具几何特性和代数特性,成为沟通代数、三角与几何的重要工具,同时在数学、物理以及实际生活中都有着广泛的应用. 三角形五“心”向量形式的充要条件设O 为ABC △所在平面上一点,角A ,B ,C 所对边长分别为a ,b ,c 则(1)O 为ABC △的外心222OA OB OC ⇔==. (2)O 为ABC △的重心0OA OB OC ⇔++=.(3)O 为ABC △的垂心OA OB OB OC OC OA ⇔⋅=⋅=⋅. (4)O 为ABC △的内心0aOA bOB cOC ⇔++=. (5)O 为ABC △的A ∠的旁心()aOA b OB cOC ⇔=+.例1.如图7-23所示,已知矩形ABCD 中,()21A ,,()54B ,,()36C ,,E 点是CD 边的中点,联结BE 与矩形的对角线AC 交于F 点,求F 点坐标.图723解:四边形ABCD 是矩形,E 是CD 边的中点,ABF CEF ∴△∽△,且2AB CE =2AF CF ∴=即点F 分AC 所成的比2λ=.设()F x y ,.由(21)A ,,(36)C ,,根据定比分点坐标公式得2238123x +⨯==+,12613123y +⨯==+ F ∴点坐标是81333⎛⎫⎪⎝⎭,. 例2.证明:()cos cos cos sin sin αβαβαβ-=+.证明:在单位圆O 上任取两点A ,B ,以Ox 为始边,以OA ,OB 为终边的角分别为β,α,见图7-24.β,sin β)B (cos α图724则A 点坐标为()cos sin ββ,,B 点坐标为()cos sin αα,;则向量()cos sin OA ββ=,,()cos sin OB αα=,,它们的夹角为αβ-,1OA OB ==,cos cos sin sin OA OB αβαβ⋅=+, 由向量夹角公式得:()cos cos cos sin sin OA OB OA OBαβαβαβ⋅-==+,从而得证.注意:用同样的方法可证明()cos cos cos sin sin αβαβαβ+=-.例3.证明柯西不等式()()()2222211221212x y x y x x y y +⋅++≥.证明:令()11a x y =,,()22b x y =,(1)当0a =或0b =时,12120a b x x y y ⋅=+=,结论显然成立; (2)当当0a ≠且0b ≠时,令θ为a ,b 的夹角,则[]0πθ∈,1212cos a b x x y y a b θ⋅=+=.又cos 1θ≤,a b a b ∴⋅≤(当且仅当ab ∥时等号成立). 1212x x y y ∴+()()()2222211221212x y x y x x y y ∴+⋅++≥(当且仅当1212x x y y =时等号成立). 例4.给定ABC △,求证:G 是ABC △重心的充要条件是0GA GB GC ++=.证明:必要性 设各边中点分别为D E ,,F ,延长AD 至P ,使DP GD =,则2AG GD =GP =. 又因为BC 与GP 互相平分,所以BPCG 为平行四边形,所以BG PC ∥,所以GB CP =. 所以0GA GB GC GC CP PG ++=++=.充分性 若0GA GB GC ++=,延长AG 交BC 于D ,使GP AG =,联结CP ,则GA PG =. 因为0GC PG PC ++=,则GB PC =,所以GB CP ∥,所以AG 平分BC .同理BG 平分CA .所以G 为重心. 例5 ABC △外心为O ,垂心为H ,重心为G .求证:O G H ,,为共线,且12OG GH =∶∶. 证明:首先()()2112333OG OA AG OA AM OA AB AC OA AO OB OC =+=+=++=+++= ()13OA OB OC ++. 其次设BO 交外接圆于另一点E ,则联结CE 后得CE BC ⊥. 又AH BC ⊥,所以AH CE ∥.又EA AB ⊥,CH AB ⊥,所以AHCE 为平行四边形.所以AH EC =. 所以OH OA AH OA EC OA EO OC OA OB OC =+=+=++=++, 即3OH OG =,所以OG 与OH 共线,所以O G H ,,共线. 即12OG GH =∶∶. 注意:O G H ,,所在的直线称为欧拉线.例6.已知ABC △,AD 为中线,求证()2222122BC AD AB AC ⎛⎫=+- ⎪⎝⎭(中线长公式). 证明:以B 为坐标原点,以BC 所在的直线为x 轴建立如图7-25所示的直角坐标系,图725设()A a b ,,()0C c ,,02c D ⎛⎫⎪⎝⎭,,则()22222024c c AD a b ac a b ⎛⎫=-+-=-++ ⎪⎝⎭,()()22222222221122244BC c c AB AC a b c a b a b ac ⎛⎫⎡⎤⎪+-=++-+-=+-+⎢⎥ ⎪⎣⎦⎝⎭, 从而()2222122BC AD AB AC ⎛⎫ ⎪=+- ⎪⎝⎭,()2222122BC AD AB AC ⎛⎫=+- ⎪⎝⎭. 例7.是否存在4个两两不共线的平面向量,其中任两个向量之和均与其余两个向量之和垂直?解:如图7-26所示,在正ABC △中,O 为其内心,P 为圆周上一点,满足PA ,PB ,PC ,PO 两两不共线,有POCBA图726()()PA PB PC PO +⋅+=()()PO OA PO OB PO OC PO +++⋅++()()22PO OA OB PO OC =++⋅+ ()()22PO OC PO OC =-⋅+ 2240PO OC =-=有()PA PB +与()PC PO +垂直. 同理可证其他情况.从而PA ,PB ,PC ,PO 满足题意、故存在这样四个平面向量.例8.已知向量1OP ,2OP ,3OP 满足条件1230OP OP OP ++=,1231OP OP OP ===,求证:123PP P △是正三角形.解:令O 为坐标原点,可设()111cos sin P θθ,,()222cos sin P θθ,,()333cos sin P θθ, 由123OP OP OP +=-,即()()()112233cos sin cos sin cos sin θθθθθθ+=--,,, 123123cos cos cos sin sin sin θθθθθθ+=-⎧⎪⎨+=-⎪⎩①② 两式平方和()1212cos 11θθ+-+=,()121cos 2θθ-=-,由此可知12θθ-的最小正角为120︒,即1OP 与2OP 的夹角为120︒, 同理可得1OP 与3OP 的夹角为120︒,2OP 与3OP 的夹角为120︒, 这说明123P P P ,,三点均匀分布在一个单位圆上, 所以123PP P △为等腰三角形. 基础练习1.在ABC △中,若321AB BC BC CA AB CA⋅⋅⋅==,则tan A =__________. 2.已知P 为ABC △内一点,且满足3450PA PB PC ++=,那么PAB PBC PCA S S S =△△△∶∶__________. 3.如图7-27,设P 为ABC △内一点,且2155AP AB AC =+,求ABP △的面积与ABC △的面积之比. PCA图7274.已知ABC △的三顶点坐标分别为()11A ,,()53B ,,()45C ,,直线l AB ∥,交AC 于D ,且直线l 平分ABC △的面积,求D 点坐标. 5.已知()23A ,,()15B -,,且13AC AB =,3AD AB =,求点C D 、的坐标. 6.点O 是平面上一定点,A B C ,,是此平面上不共线的三个点,动点P 满足AC AB OP OA AB AC λ⎛⎫ ⎪=++ ⎪⎝⎭,[)0λ∈+∞,.则点P 的轨迹一定通过ABC △的__________心.能力提高7.设x y ∈R ,,i j 、为直角坐标系内x y 、轴正方向上的单位向量,若()2a xi y j =++,()62b xi y j =+-且2216a b +=.(1)求点()M x y ,的轨迹C 的方程;(2)过定点()03,作直线l 与曲线C 交于A B 、两点,设OP OA OB =+,是否存在直线l 使四边形OAPB 为正方形?若存在,求出l 的方程,或不存在说明理由.8.(1)已知4a =,3b =,()()23261a b a b -⋅+=,求a 与b 的夹角θ;(2)设()25OA =,,()31OB =,,()63OC =,,在OC 上是否存在点M ,使MA MB ⊥,若存在,求出点M 的坐标,若不存在,请说明理由. 9.设a b 、是两个不共线的非零向量()t ∈R (1)记OA a =,OB tb =,()13OC a b =+,那么当实数t 为何值时,A B C 、、三点共线? (2)若1a b ==且a 与b 夹角为120︒,那么实数x 为何值时a xb -的值最小?10.设平面内的向量()17OA =,,()51OB =,,()21OM =,,点P 是直线OM 上的一个动点,求当PA PB ⋅取最小值时,OP 的坐标及APB ∠的余弦值.11.已知向量()11m =,,向量n 与向量m 夹角为3π4,且1m n ⋅=-. (1)求向量n ;(2)若向量n 与向量()10q =,的夹角为π2,向量22sin 4cos 2A p A ⎛⎫= ⎪⎝⎭,,求2n p +的值.12.已知定点()01A ,,()01B -,,()10C ,.动点P 满足:2AP BP k PC ⋅=. (1)求动点P 的轨迹方程;(2)当0k =时,求2AP BP +的最大值和最小值.13.在平行四边形ABCD 中,()11A ,,()60AB =,,点M 是线段AB 的中点,线段CM 与BD 交于点P .(1)若()35AD =,,求点C 的坐标; (2)当AB AD =时,求点P 的轨迹.14.已知向量()22a =,,向量b 与向量a 的夹角为3π4,且2a b ⋅=-, (1)求向量b ;(2)若()10t =,且b t ⊥,2cos 2cos 2C c A ⎛⎫= ⎪⎝⎭,,其中A C 、是ABC △的内角,若三角形的三内角A B C 、、依次成等差数列,试求b c +的取值范围.。

高等数学第八章空间解析几何与向量代数


|
c
|
102 52 5 5,
c0
|
c c
|
2
j
5
1 5
k
.
k
4 10 j 5k, 2
作业 P23习题8-2
1(1)、(3),3,4,9
第三节 平面及其方程
一、平面的点法式方程
z
如果一非零向量垂直于一
平面,这向量就叫做该平
面的法线向量.
o
y
x
法线向量的特征: 垂直于平面内的任一向量.
定的平面, 指向符合右手系。
定义
向量
a

b
的向量积为
c
a
b
(其中
为a
与b
的夹角)
c 的方向既垂直于a,又垂直于b ,
指向符合右手系。
向量积也称为“叉积”、“外积”。
1、关于向量积的说明:
(1)
a
a
0.
( 0 sin 0)
(2) a//b
a b 0.
(a
0,
b
,
ab .
()
ab,
,
2
cos 0,
ab
|
a
|| b
2
| cos
0.
2、数量积符合下列运算规律:
(1) 交换律:
a
b
b
a
(2) 分配律:
(a b) c a c b c
(3) 若 为常数:
若 、 为常数:
(a)
b
a
(b)
(a
(a)
( b )
(a
b ).
3、向量积的坐标表达式

a
axi
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

知识点三:向量加法法则的应用
例3:设O 是ABC ∆内任一点,F E D 、、分别为CA BC AB 、、的中点. 证明:OF OE OD OC OB OA ++=++.
变式训练3:如图,已知任意四边形ABCD ,E 为AD 的中点,F 为BC 的中点.
求证:DC AB EF +=2
知识点四:用向量的方法证明几何问题
例4:用向量的方法证明:对角线互相平分的四边形是平行四边形.
变式训练4:如下图所示:Q P 、是ABC ∆的边BC 上两点,且QC BP =,
求证:AQ AP AC AB +=+
四:大展宏图
1.已知菱形的两邻边a OA =,b OB =,其对角线交点为D ,则OD 等于( ) A.b a +21 B.b a 21+ C.)(2
1b a + D.
2.、为非零向量,且,则( )
A.,且与方向相同
B.、是方向相反的向量
C. D.、无论什么关系均可
3.在菱形中,下列等式中不成立的是( )
A. B. C. D.
4.若非零向量、互为相反向量,则下列说法中错误的是(

A. B. C. D.
5.下列结论中,正确的是( )
A. B.对于任意向量、,
C.对于任意向量、,
D.若,且,,则
6.在中,,,则等于()
A. B. C. D.
7.若、共线且成立,则与的关系为
8.在五边形中,设,,,,用表示
9.设平面内有四边形和点,,,,,若,则四边形的形状是
10.如图,设,,则等于()
A. B.
C. D.
11.已知的三个顶点及平面内一点满足,则点与的关系为()
A.在内部
B.在外部
C.在所在直线上
D.是边的一个三等分点
12.、为非零向量,且,求与的夹角.
13.在边长为1的正方形中,设,,,求.
14.已知是不共线的三点,是内的一点,若求证:是的重心.
15.设是内的一点,且,则
16.已知为的外心,为垂心.求证:.
2.1.4 数乘向量
课标要求:(1)掌握实数与向量积的定义,理解实数与向量积的几何意义(2)掌握实数与向量的积的运算律
重点:数乘向量的定义、运算律
难点:正确运用法则、运算律进行向量的线性运算
一:内功心法
数乘向量
(1)定义:实数和向量的乘积是一个向量,记作,的长.
的方向:当时,与的方向相同;当时,与的方向相反.
当或时,或.中的实数,叫做向量的系数.
(2)向量数乘的运算
设,为实数,则①;②;③
二:小试牛刀
1.设,,下面等式或叙述不正确的是()
A. B.
C. D.与的方向相同
2.等于()
A. B. C. D.
A. B. C. D.
4.是平面上一定点,是平面上不共线的三个点,动点满足,
,则的轨迹一定通过的()
A.外心
B.垂心
C.内心
D.重心。

相关文档
最新文档