平面向量的概念、运算及平面向量基本定理

合集下载

平面向量的运算法则

平面向量的运算法则

平面向量的运算法则平面向量是解决平面几何问题的重要工具,通过向量的运算可以简化平面几何问题的处理过程。

本文将介绍平面向量的基本概念和运算法则,以及其在几何问题中的应用。

一、平面向量的表示平面向量用有序数对表示,常用形式为A(x₁, y₁)和B(x₂, y₂),其中A和B分别表示向量的起点和终点,(x₁, y₁)和(x₂, y₂)表示向量的坐标。

二、平面向量的加法平面向量的加法指的是将两个向量按照特定的法则相加,得到一个新的向量。

设有向量A(x₁, y₁)和B(x₂, y₂),则向量A与向量B的和C可以表示为C(x₁ + x₂, y₁ + y₂)。

三、平面向量的减法平面向量的减法指的是计算出一个新的向量,使得用该向量加上被减向量等于另一个向量。

设有向量A(x₁, y₁)和B(x₂, y₂),则向量A 与向量B的差D可以表示为D(x₁ - x₂, y₁ - y₂)。

四、平面向量的数量乘法平面向量的数量乘法指的是将一个向量乘以一个实数,得到一个新的向量。

设有向量A(x, y)和实数k,kA可以表示为kA(kx, ky)。

五、平面向量的点乘平面向量的点乘指的是两个向量的对应坐标相乘后相加的运算。

设有向量A(x₁, y₁)和向量B(x₂, y₂),则向量A与向量B的点乘可以表示为A·B = x₁x₂ + y₁y₂。

六、平面向量的叉乘平面向量的叉乘指的是两个向量按照一定的法则相乘,得到一个新的向量。

设有向量A(x₁, y₁)和向量B(x₂, y₂),则向量A与向量B的叉乘可以表示为A×B = x₁y₂ - x₂y₁。

七、平面向量的模长平面向量的模长指的是一个向量的长度,可以通过勾股定理求得。

设有向量A(x, y),则向量A的模长可以表示为|A| = √(x² + y²)。

八、平面向量的单位向量平面向量的单位向量指的是模长为1的向量,可以通过将向量除以其模长得到。

设有向量A(x, y),则向量A的单位向量可以表示为Â = (x/|A|, y/|A|)。

平面向量的概念与平面向量基本定理

平面向量的概念与平面向量基本定理

倒 3 已 知 AA B C (  ̄
例 5 如 图3 , 已知 A O AB,
点P 是在 线 段O 及A B的延 长 线 所 围
1 2 , 腥 △AB C 所在 平 面上 的一点 , 满
a・ b= 0, b・ c = 0, 则 口・ c = O ; 命题 q : 若
足蔚 + 亩+ 2 : 3 . 则A A B P  ̄
理 将条 件 和结 论 表 示 成基 底 的线 性
这 一 利 器 ,注 意 平 面 向 量 的 三 角 形 法 则 和 平 行 四 边 形 法 则 适 用 的 条 件 :运 用 平 行 四边 形 法 则 时 两 个 向
组合 。 再 通过 向量 的 运算 来 证 明. 在 基 底 未 给 出 的情 况 下 。合 理 地选 取
组 基底 .并 运 用 平 面 向 量 的基 本 定
数 缺 形 时 少 直 观 ,形 少 数 时 难
入 微 .在 求 解 平 面 向量 的线 性 运 算
过 程 中要 善 于 把 握 “ 向量 几 何 意 义 ”
只有一个实数A 使b = A a ” ) 得 到关 于
相 关 参 数 的 方程 组 .通 过 待 定 系 数 这 一桥 梁 ,使 得 这 类 难 题变 得 平 凡. 注意 : 向量共 线也 称 向量 平 行 , 它 与 直 线 平 行 有 区 别.直 线 平 行 不 包 括
基底 会 给解 题 带来 方 便.
共线 ( 即重合 ) 的情况 。 而 向量平行
基 础 夯 实
1 .平 面 向量 的有 关 概念
运 算 的关 系
5 .平 面 向 量 定 理

例1 ( 2 0 1 4 年 高 考辽 宁 卷 )

平面向量知识点归纳

平面向量知识点归纳

平面向量一.向量有关概念:1.向量的概念:既有大小又有方向的量,注意向量与数量的区别。

向量常用有向线段来表示,注意不能说向量就就是有向线段,为什么?(向量可以平移)。

如:2.零向量:长度为0的向量叫零向量,记作:,注意零向量的方向就是任意的;3.单位向量:长度为一个单位长度的向量叫做单位向量(与AB u u u r共线的单位向量就是||AB AB ±u u u r u u u r);4.相等向量:长度相等且方向相同的两个向量叫相等向量,相等向量有传递性;5.平行向量(也叫共线向量):方向相同或相反的非零向量、叫做平行向量,记作:∥,规定零向量与任何向量平行。

提醒:①相等向量一定就是共线向量,但共线向量不一定相等;②两个向量平行与与两条直线平行就是不同的两个概念:两个向量平行包含两个向量共线, 但两条直线平行不包含两条直线重合;③平行向量无传递性!(因为有0r);④三点A B C 、、共线⇔ AB AC u u u r u u u r、共线; 6.相反向量:长度相等方向相反的向量叫做相反向量。

的相反向量就是-。

如下列命题:(1)若a b =r r,则a b =r r 。

(2)两个向量相等的充要条件就是它们的起点相同,终点相同。

(3)若AB DC =u u u r u u u r ,则ABCD 就是平行四边形。

(4)若ABCD 就是平行四边形,则AB DC =u u u r u u u r 。

(5)若,a b b c ==r r r r ,则a c =r r。

(6)若//,//a b b c r r r r ,则//a c r r。

其中正确的就是_______(答:(4)(5))二.向量的表示方法:1.几何表示法:用带箭头的有向线段表示,如,注意起点在前,终点在后;2.符号表示法:用一个小写的英文字母来表示,如,,等;3.坐标表示法:在平面内建立直角坐标系,以与x 轴、y 轴方向相同的两个单位向量,j 为基底,则平面内的任一向量可表示为(),a xi y j x y =+=r r r,称(),x y 为向量的坐标,=(),x y 叫做向量的坐标表示。

平面向量基本定理

平面向量基本定理

平面向量基本定理
平面向量基本定理:
1、定义:平面向量基本定理是一种数学定理,它将向量的矢量乘积和其他数学定理结合在一起。

2、证明:平面向量基本定理可以由叉积定理和等价矢量乘积定理来证明:
A×B = C×A+B , 其中A和B是两个向量,C是其叉积。

同时有:A⋅(B×C) = B⋅(C×A) + C⋅(A×B)
将C×A替换成A×B,得到A⋅B×C= B⋅C×A + A⋅A×B,再将A⋅A×B 替换成C×A,即得到A⋅B×C = B⋅C×A + C⋅A×B。

故A×B=C×A+B,即平面向量基本定理得证。

3、应用:平面向量基本定理主要应用于平面向量运算。

它可以用于求解三角形和圆的关系,计算叉积和点面积,求解抛物线的中心,解决线性方程组的特殊解,以及证明连续多边形的属性等。

4、例题:
(1)已知AB、BC、CD是相互垂直的向量,若AB=2,BC=3,则
AC⋅CD的值为?
(2)A、B、C、D四点不共线,且AB⋅BC=2,BC⋅CD=3,若AC=4,求CD的值?
解:(1)由题意可知,ABCD四点不共线,AB、BC、CD相互垂直,由矢量乘积的叉积定理可得,AB×BC=AC×CD,故
AC⋅CD=AB⋅BC=2×3=6。

(2)由题意可知,AB⋅BC=2,BC⋅CD=3,且AC=4,因为AB、BC、CD相互垂直,所以有:AB×BC=AC×CD,由于有AB⋅BC=2,AC=4,故CD=2/4=1/2。

高考数学 平面向量的概念及线性运算、平面向量基本定理及坐标表示 高考真题

高考数学    平面向量的概念及线性运算、平面向量基本定理及坐标表示    高考真题

专题六 平面向量6.1 平面向量的概念及线性运算、平面向量基本定理及坐标表示考点一 平面向量的概念及线性运算1.(2022全国乙文,3,5分)已知向量a =(2,1),b =(-2,4),则|a -b |= ( )A.2B.3C.4D.5答案D 由题意知a -b =(4,-3),所以|a -b |=√42+(−3)2=5,故选D .2.(2022新高考Ⅰ,3,5分)在△ABC 中,点D 在边AB 上,BD =2DA.记CA ⃗⃗⃗⃗⃗ =m ,CD ⃗⃗⃗⃗⃗ =n ,则CB ⃗⃗⃗⃗⃗ = ( )A.3m -2nB.-2m +3nC.3m +2nD.2m +3n答案B 由题意可知,DA ⃗⃗⃗⃗⃗ =CA ⃗⃗⃗⃗⃗ −CD ⃗⃗⃗⃗⃗ =m -n ,又BD =2DA ,所以BD ⃗⃗⃗⃗⃗⃗ =2DA ⃗⃗⃗⃗⃗ =2(m -n ),所以CB ⃗⃗⃗⃗⃗ =CD ⃗⃗⃗⃗⃗ +DB⃗⃗⃗⃗⃗⃗ =n -2(m -n )=3n -2m ,故选B .3.(2015课标Ⅰ理,7,5分)设D 为△ABC 所在平面内一点,BC ⃗⃗⃗⃗ =3CD ⃗⃗⃗⃗ ,则( ) A.AD ⃗⃗⃗⃗ =-13AB ⃗⃗⃗⃗ +43AC ⃗⃗⃗⃗ B.AD ⃗⃗⃗⃗ =13AB ⃗⃗⃗⃗ -43AC ⃗⃗⃗⃗ C.AD⃗⃗⃗⃗ =43AB ⃗⃗⃗⃗ +13AC ⃗⃗⃗⃗ D.AD ⃗⃗⃗⃗ =43AB ⃗⃗⃗⃗ -13AC ⃗⃗⃗⃗ 答案 A AD⃗⃗⃗⃗ =AB ⃗⃗⃗⃗ +BD ⃗⃗⃗⃗ =AB ⃗⃗⃗⃗ +BC ⃗⃗⃗⃗ +CD ⃗⃗⃗⃗ =AB ⃗⃗⃗⃗ +43BC ⃗⃗⃗⃗ =AB ⃗⃗⃗⃗ +43(AC ⃗⃗⃗⃗ -AB ⃗⃗⃗⃗ )=-13AB ⃗⃗⃗⃗ +43AC ⃗⃗⃗⃗ .故选A. 4.(2014课标Ⅰ文,6,5分)设D,E,F 分别为△ABC 的三边BC,CA,AB 的中点,则EB ⃗⃗⃗⃗ +FC ⃗⃗⃗⃗ =( ) A.AD ⃗⃗⃗⃗ B.12AD ⃗⃗⃗⃗ C.BC ⃗⃗⃗⃗ D.12BC⃗⃗⃗⃗ 答案 A 设AB⃗⃗⃗⃗ =a,AC ⃗⃗⃗⃗ =b,则EB ⃗⃗⃗⃗ =-12b+a,FC ⃗⃗⃗⃗ =-12a+b,从而EB ⃗⃗⃗⃗ +FC ⃗⃗⃗⃗ =(−12b +a )+(−12a +b )=12(a+b)=AD ⃗⃗⃗⃗ ,故选A.5.(2015课标Ⅱ理,13,5分)设向量a ,b 不平行,向量λa +b 与a +2b 平行,则实数λ= . 答案12解析 由于a ,b 不平行,所以可以以a ,b 作为一组基底,于是λa +b 与a +2b 平行等价于λ1=12,即λ=12.6.(2015北京理,13,5分)在△ABC 中,点M,N 满足AM⃗⃗⃗⃗⃗ =2MC ⃗⃗⃗⃗⃗ ,BN ⃗⃗⃗⃗ =NC ⃗⃗⃗⃗ .若MN ⃗⃗⃗⃗⃗ =x AB ⃗⃗⃗⃗ +y AC ⃗⃗⃗⃗ ,则x = ,y = .答案12;-16解析 由AM⃗⃗⃗⃗⃗ =2MC ⃗⃗⃗⃗⃗ 知M 为AC 上靠近C 的三等分点,由BN ⃗⃗⃗⃗ =NC ⃗⃗⃗⃗ 知N 为BC 的中点,作出草图如下:则有AN⃗⃗⃗⃗ =12(AB ⃗⃗⃗⃗ +AC ⃗⃗⃗⃗ ),所以MN ⃗⃗⃗⃗⃗ =AN ⃗⃗⃗⃗ -AM ⃗⃗⃗⃗⃗ =12(AB ⃗⃗⃗⃗ +AC ⃗⃗⃗⃗ )-23·AC ⃗⃗⃗⃗ =12AB ⃗⃗⃗⃗ -16AC ⃗⃗⃗⃗ , 又因为MN ⃗⃗⃗⃗⃗ =x AB ⃗⃗⃗⃗ +y AC⃗⃗⃗⃗ ,所以x=12,y=-16. 7.(2013江苏,10,5分)设D,E 分别是△ABC 的边AB,BC 上的点,AD=12AB,BE=23BC.若DE⃗⃗⃗⃗ =λ1AB ⃗⃗⃗⃗ +λ2AC ⃗⃗⃗⃗ (λ1,λ2为实数),则λ1+λ2的值为 . 答案12解析 DE ⃗⃗⃗⃗ =DB ⃗⃗⃗⃗ +BE ⃗⃗⃗⃗ =12AB ⃗⃗⃗⃗ +23BC ⃗⃗⃗⃗ =12AB ⃗⃗⃗⃗ +23(AC ⃗⃗⃗⃗ -AB ⃗⃗⃗⃗ )=-16AB ⃗⃗⃗⃗ +23AC ⃗⃗⃗⃗ , ∵DE⃗⃗⃗⃗ =λ1AB ⃗⃗⃗⃗ +λ2AC ⃗⃗⃗⃗ ,∴λ1=-16,λ2=23,故λ1+λ2=12. 考点二 平面向量的基本定理及坐标运算1.(2015课标Ⅰ文,2,5分)已知点A(0,1),B(3,2),向量AC⃗⃗⃗⃗ =(-4,-3),则向量BC ⃗⃗⃗⃗ =( ) A.(-7,-4) B.(7,4) C.(-1,4) D.(1,4)答案 A 根据题意得AB ⃗⃗⃗⃗ =(3,1),∴BC ⃗⃗⃗⃗ =AC ⃗⃗⃗⃗ -AB⃗⃗⃗⃗ =(-4,-3)-(3,1)=(-7,-4).故选A. 2.(2014北京文,3,5分)已知向量a =(2,4),b =(-1,1),则2a -b =( ) A.(5,7) B.(5,9) C.(3,7) D.(3,9)答案 A 由a =(2,4)知2a =(4,8),所以2a -b =(4,8)-(-1,1)=(5,7).故选A. 3.(2014广东文,3,5分)已知向量a =(1,2),b =(3,1),则b -a =( ) A.(-2,1) B.(2,-1) C.(2,0) D.(4,3) 答案 B b -a =(3,1)-(1,2)=(2,-1).故答案为B.4.(2014福建理,8,5分)在下列向量组中,可以把向量a =(3,2)表示出来的是( )A.e 1=(0,0),e 2=(1,2)B.e 1=(-1,2),e 2=(5,-2)C.e 1=(3,5),e 2=(6,10)D.e 1=(2,-3),e 2=(-2,3) 答案 B 设a=k 1e 1+k 2e 2,A 选项,∵(3,2)=(k 2,2k 2),∴{k 2=3,2k 2=2,无解.B 选项,∵(3,2)=(-k 1+5k 2,2k 1-2k 2), ∴{−k 1+5k 2=3,2k 1−2k 2=2,解之得{k 1=2,k 2=1. 故B 中的e 1,e 2可把a 表示出来. 同理,C 、D 选项同A 选项,无解.5.(2021全国乙文,13,5分)已知向量a =(2,5),b =(λ,4),若a ∥b ,则λ= .答案85解题指导:利用“若a =(x 1,y 1),b =(x 2,y 2),则a ∥b ⇔x 1y 2=x 2y 1”解题.解析由已知a ∥b 得2×4=5λ,∴λ=85.解题关键:记准两平面向量共线的充要条件是解这类问题的关键.6.(2017山东文,11,5分)已知向量a =(2,6),b =(-1,λ).若a ∥b ,则λ= . 答案 -3解析 本题考查向量平行的条件. ∵a=(2,6),b =(-1,λ),a ∥b , ∴2λ-6×(-1)=0,∴λ=-3.7.(2016课标Ⅱ文,13,5分)已知向量a =(m,4),b =(3,-2),且a ∥b ,则m= . 答案 -6解析 因为a ∥b ,所以m 3=4−2,解得m=-6. 易错警示 容易把两个向量平行与垂直的条件混淆. 评析 本题考查了两个向量平行的充要条件.8.(2014陕西,13,5分)设0<θ<π2,向量a =(sin 2θ,cos θ),b =(cos θ,1),若a ∥b ,则tan θ= . 答案12解析∵a∥b,∴sin 2θ×1-cos2θ=0,∴2sin θcos θ-cos2θ=0,∵0<θ<π2,∴cos θ>0,∴2sin θ=cos θ,∴tan θ=1 2 .。

(完整版)平面向量全部讲义

(完整版)平面向量全部讲义

第一节平面向量的概念及其线性运算1.向量的有关概念(1)向量:既有大小,又有方向的量叫向量;向量的大小叫做向量的模.(2)零向量:长度为0的向量,其方向是任意的.(3)单位向量:长度等于1个单位的向量.(4)平行向量:方向相同或相反的非零向量,又叫共线向量,规定:0与任一向量共线.(5)相等向量:长度相等且方向相同的向量.(6)相反向量:长度相等且方向相反的向量.例1.若向量a与b不相等,则a与b一定()A.有不相等的模B.不共线C.不可能都是零向量D.不可能都是单位向量例2..给出下列命题:①若|a|=|b|,则a=b;②若A,B,C,D是不共线的四点,则AB=DC等价于四边形ABCD为平行四边形;③若a=b,b=c,则a=c;④a=b等价于|a|=|b|且a∥b;⑤若a∥b,b∥c,则a∥c.其中正确命题的序号是()A.②③B.①②C.③④D.④⑤CA2.向量的线性运算向量运算定义法则(或几何意义)运算律加法求两个向量和的运算三角形法则平行四边形法则(1)交换律:a+b=b+a;(2)结合律:(a+b)+c=a+(b+c)减法求a与b的相反向量-b的和的运算叫做a与b的差三角形法则a-b=a+(-b)数乘求实数λ与向量a的积的运算(1)|λa|=|λ||a|;(2)当λ>0时,λa的方向与a的方向相同;当λ<0时,λa的方向与a的方向相反;λ(μa)=(λμ)a;(λ+μ)a=λa+μa;λ(a+b)=λa+λb例3:化简AC→-BD→+CD→-AB→得() A.AB→B.DA→C.BC→D.0例4:(1)如图,在正六边形ABCDEF中,BA+CD+EF=()A.0B.BE C.AD D.CF(2)设D,E分别是△ABC的边AB,BC上的点,AD=12AB,BE=23BC.若DE=λ1AB+λ2AC(λ1,λ2为实数),则λ1+λ2的值为________.巩固练习:1.将4(3a+2b)-2(b-2a)化简成最简式为______________.2.若|OA→+OB→|=|OA→-OB→|,则非零向量OA→,OB→的关系是() A.平行B.重合C.垂直D.不确定3.若菱形ABCD的边长为2,则|AB-CB+CD|=________4.D是△ABC的边AB上的中点,则向量CD等于()A.-BC+12BA B.-BC-12BA C.BC-12BA D.BC+12BA5.若A,B,C,D是平面内任意四点,给出下列式子:①AB+CD=BC+DA;②AC+BD=BC+AD;③AC-BD=DC+AB.其中正确的有()A.0个B.1个C.2个D.3个6.如图,在△ABC中,D,E为边AB的两个三等分点,CA→=3a,CB→=2b,求CD→,CE→.DD12巩固练习1。

平面向量的运算

平面向量的运算

平面向量的运算在数学中,平面向量是由大小和方向确定的量,常用于表示物体在平面上的位移或力的作用方向。

平面向量的运算是指对平面向量进行加法、减法、数乘和点乘等操作。

本文将介绍平面向量的基本概念和运算规则。

一、平面向量的表示方法平面向量通常用有向线段表示,由两个点确定,例如AB表示从点A到点B的平面向量。

可以用字母加箭头(如→)表示平面向量,如:AB →其中A为向量的起点,B为终点。

二、平面向量的加法对于两个平面向量AB → 和CD →,它们的和可以通过平行四边形法则得到。

具体步骤如下:1. 将向量CD → 的起点与向量AB → 的终点相重合,得到新的向量AC →;2. 连接向量AB → 的起点和向量CD → 的终点,得到新的向量AD →;3. 新的向量AD → 就是原始向量AB → 和CD → 的和,即AD → = AB → + CD →。

三、平面向量的减法向量的减法可以通过向量加法的逆运算得到。

对于向量AB → 和CD →,它们的差可以表示为AB → - CD →,具体步骤如下:1. 取向量CD → 的终点B为新向量的起点,向量AB → 的起点A为新向量的终点,得到新的向量BA →;2. 新的向量BA → 就是原始向量AB → 和CD → 的差,即BA → = AB → - CD →。

四、平面向量的数乘平面向量的数乘是指将向量的长度乘以一个实数,从而改变向量的大小。

设有向量AB → 和实数k,它们的数乘表示为kAB →,其具体步骤如下:1. 将向量AB → 的长度乘以实数k,得到新向量AC →;2. 新的向量AC → 的方向与原来向量AB → 相同,而长度为原来的k倍,即AC → = kAB →。

五、平面向量的点乘平面向量的点乘(内积)运算可以得到两个向量的乘积,结果为一个实数。

设有向量AB → 和CD →,它们的点乘表示为AB → · CD →,具体计算方法如下:1. 将向量AB → 和CD → 的长度相乘,得到实数AC;2. 计算向量AB → 与向量CD → 之间夹角的余弦值,得到实数cosθ;3. 点乘的结果为AB → · CD → = ACcosθ。

平面向量的基本定理及坐标运算

平面向量的基本定理及坐标运算

一、平面向量的基本定理(1)平面向量基本定理:如果1e 和2e 是一平面内的两个不平行的向量,那么该平面内的任一向量a ,存在唯一的一对实数1a ,2a ,使a =1122a e a e +.(2) 基底:我们把不共线向量1e ,2e 叫做表示这一平面内所有向量的一组基底,记作{}12,e e .1122a e a e +叫做向量a 关于基底{}12,e e 的分解式. 注:①定理中1e ,2e 是两个不共线向量;②a 是平面内的任一向量,且实数对1a ,2a 是惟一的; ③平面的任意两个不共线向量都可作为一组基底.(3)平面向量基本定理的证明:在平面内任取一点O ,作11OE e =,22OE e =,OA a =.由于1e 与2e 不平行,可以进行如下作图:过点A 作2OE 的平行(或重合)直线,交直线1OE 于点M ,过点A 作1OE 的平行(或重合)直线,交直线2OE 于点N ,于是依据平行向量基本定理,存在两个唯一的实数1a 和2a 分别有11OM a e =,22ON a e =,所以1122a OA OM ON a e a e ==+=+证明表示的唯一性:如果存在另对实数x ,y 使12OA xe ye =+,则112212a e a e xe ye +=+,即1122()()0x a e y a e -+-=,由于1e 与2e 不平行,如果1x a -与2y a -中有一个不等于0,不妨设20y a -≠,则1212x a e e y a -=--,由平行向量基本定理,得1e 与2e 平行,这与假设矛盾,因此10x a -=,20y a -=,即1x a =,2y a =.二、向量的正交分解与向量的直角坐标运算:(1)向量的直角坐标:如果基底的两个基向量1e ,2e 互相垂直,则称这个基底为正交基底.在正交基底下分解向量,叫做正交分解.(2)向量的坐标表示:在直角坐标系中,一点A 的位置被点A 的位置向量OA 所唯一确定.设点A 的坐标为(,)x y ,由平面向量基本定理,有12(,)OA xe ye x y =+=,即点A 的位置向量OA 的坐标(,)x y ,也就是点A 的坐标;反之,点A 的坐标也是点A 相对于坐标原点的位置向量OA 的坐标.E 2E 1e 2e 1O ANMae1e 2axyO O yxae 2e 1平面向量的基本定理及坐标运算(3)向量的直角坐标运算:设12(,)a a a =,12(,)b b b =,则 ①1122(,)a b a b a b +=++;②1122(,)a b a b a b -=--;③1212(,)(,)a a a a a λλλλ==注:①两个向量的和与差的坐标等于两个向量相应坐标的和与差;②数乘向量的积的坐标等于数乘以向量相应坐标的积.(4)若11(,)A x y ,22(,)B x y ,则向量2121(,)AB OB OA x x y y =-=--;即:一个向量的坐标等于向量的终点的坐标减去始点的坐标.(5)用平面向量坐标表示向量共线条件:设12(,)a a a =,12(,)b b b =,则12210a b a b -=就是两个向量平行的条件.若向量b 不平行于坐标轴,即10b ≠,20b ≠,则两个向量平行的条件是,相应坐标成比例.题型一、平面向量的基本定理【例1】 若已知1e 、2e 是平面上的一组基底,则下列各组向量中不能作为基底的一组是( )A .1e 与2e -B .31e 与22eC .1e +2e 与1e —2eD .1e 与21e【例2】 线段与互相平分,则可以表示为( )A .B .C .D . 【例3】 已知ABCD □的两条对角线交于点O ,设AB a =,AD b =,用向量a 和b 表示向量BD ,AO .【例4】 如图,平行四边形ABCD 中,E F 、分别是BC DC 、的中点,G 为DE BF 、的交点,若AB =a ,AD =b ,试以a ,b 为基底表示DE 、BF 、CG .AB CD BD AB CD -1122AB CD -+1()2AB CD -()AB CD --GFE DCBA【例5】 设P 是正六边形OABCDE 的中心,若OA a =,OE b =,试用向量a ,b 表示OB 、OC 、OD【例6】 已知向量a ,b 不共线,()R c ka b k =+∈,d a b =-,如果c d ∥,那么( )A .1k =且c 与d 同向B .1k =且c 与d 反向C .1k =-且c 与d 同向D .1k =-且c 与d 反向【例7】 已知四边形ABCD 是菱形,点P 在对角线AC 上(不包括端点A ,C ),则AP 等于( )A .()AB AD λ+,(01)λ∈, B .()AB BC λ+,202λ⎛⎫∈ ⎪ ⎪⎝⎭, C .()AB AD λ+,202λ⎛⎫∈ ⎪ ⎪⎝⎭,D .()AB BC λ-,202λ⎛⎫∈ ⎪ ⎪⎝⎭, 【例8】 已知向量a b ,不共线,m n ,为实数,则当0ma nb +=时,有m n += 【例9】 在平行四边形ABCD 中,E 和F 分别是边CD 和BC 的中点.若AC AE AF λμ=+,其中λ,R μ∈,则λμ+= .【例10】证明:若向量,,OA OB OC 的终点A B C 、、共线,当且仅当存在实数,λμ满足等式1λμ+=,使得OC OB OA λμ=+.POE DCBAFEDCBAOCBA题型二、平面向量的坐标表示与运算【例11】设向量(23),AB =,且点A 的坐标为(12),,则点B 的坐标为 . 【例12】若(21),a =,(34),b =-则34a b +的坐标为_________. 【例13】设平面向量()()3,5,2,1a b ==-,则2a b -=( )A .()6,3B .()7,3C .()2,1D .()7,2【例14】已知(2,3),(1,2)a x b y =-=+,若a b =,则x = ,y = . 【例15】若()0,1A ,()1,2B ,()3,4C ,则AB -2BC = 【例16】若()3,2M -,()5,1N --且12MP =MN ,求P 点的坐标.【例17】已知向量()1,0a =,()0,1b =,()R c ka b k =+∈,d a b =-,如果那么( )A .且与同向B .且与反向C .且与同向D .且与反向【例18】已知向量()11a =,,()2b x =,若a b +与42b a -平行,则实数的值是( ) A .2- B .0 C .1 D .2【例19】在平面直角坐标系xoy 中,四边形ABCD 的边AB DC ∥,AD BC ∥,已知点()2,0A -,()6,8B ,()8,6C ,则D 点的坐标为___________.【例20】已知向量()3,1a =,()1,3b =,(),7c k =,若()a c -∥b ,则= . 【例21】已知()12a =,,()32b =-,,当ka b +与3a b -平行,k 为何值( )A .14 B .-14 C .-13 D .13【例22】已知(1,2),(3,2)a b ==-,当实数k 取何值时,k a +2b 与2a -4b 平行?//c d 1k =c d 1k =c d 1k =-c d 1k =-c d x k【例23】点(23),A 、(54),B 、(710),C ,若()R AP AB AC λλ=+∈,试求λ为何值时,点P 在一、三象限角平分线上.【练1】 在ABC △中,AB c =,AC b =.若点D 满足2BD DC =,则AD =( )A .2133b c +B .5233c b -C .2133b c -D .1233b c +【练2】 如图,在ABC △中,点O 是BC 的中点,过点O 的直线分别交直线AB ,AC 于不同的两点M N ,,若AB mAM =,AC nAN =,则m n +的值为.【练3】 已知两个向量()()121a b x ==,,,,若a b ∥,则x 的值等于( ) A .12-B .12C .2-D .2【练4】 若平面向量a ,b 满足1a b +=,a b +平行于轴,()21b =-,,则a = .DCBAONMCBAx 随堂练习【题1】 若向量()1,1a =,()1,1b =-,()4,2c =,则c = ( )A .3a +bB . 3a -bC .-a +3bD .a +3b【题2】 已知a =(4,2),b =(x ,3),且a ∥b ,则x 等于( )A .9B .6C .5D .3【题3】 已知平面向量a =(x ,1),b =(-x ,x 2),则向量a +b ( )A .平行于x 轴B .平行于第一、三象限的角平分线C .平行于y 轴D .平行于第一、四象限的角平分线【题4】 已知向量e 1与e 2不共线,实数x ,y 满足(3x -4y )e 1+(2x -3y )e 2=6e 1+3e 2,则x -y 等于( )A .3B .-3C .0D .2【题5】 已知向量(1,2)a =,(0,1)b =,设u a kb =+,2v a b =-,若u ∥v ,则实数k 的值为( )A .-1B .-12C .12D .1【题6】 设点A (2,0),B (4,2),若点P 在直线AB 上,且|AB |=2|AP |,则点P 的坐标为( )A .(3,1)B .(1,-1)C .(3,1)或(1,-1)D .无数多个【题7】 设(1,2),(2,3),a b ==若向量a b λ+与向量(4,7)c =--共线,则λ=.【题8】 已知向量a =(2,-1),b =(-1,m ),c =(-1,2),若(a +b )∥c ,则m =________.【题9】 已知A (-2,4),B (3,-1),C (-3,-4).设AB →=a ,BC →=b ,CA →=c ,且CM →=3c ,CN→=-2b .(1)求:3a +b -3c ;(2)求满足a =m b +n c 的实数m ,n .【题10】 在平行四边形ABCD 中,AC 与BD 交于点O ,E 是线段OD 的中点,AE 的延长线与CD 交于点F .若AC →=a ,BD →=b ,则AF →=( ) A .14a +12b B .23a +13b C .12a +14bD .13a +23b课后作业。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角形或平行四边形中,充分利用相等向量、相反向量、三角形的中位线等性质,把未知向量用已知向量表示岀来求解.
2•利用平面向量的线性运算求参数的一般思路:(1)没有图形的准确作出图形,确定每一个点的位置.(2)利用平行四
边形法则或三角形法贝U进行转化丄转化为要求的向量形式.__ (3)比较,观察可知所求.__________
突破点(二)平面向量的线性运算
1.向量的线性运算:加法、减法、数乘
2. 平面向量共线定理:向量b与a(a^o)共线的充要条件是有且只有一个实数人使得b=
1
[答案](1)D⑵1
—…_[方法技巧丄—――――_—_ _―_—_ _―_……__―_…_ _―_…_ _―_…_ _―_…「
i1.平面向量的线性运算技巧: ⑴不含图形的情况:可直接运用相应运算法则求解.⑵含图形的情况:将它们转化到]
向量的坐标.(2)解题过程中,常利用向量相等则其坐标相同这一原则,通过列方程(组)来进行求解.
考点二平面向量共线定理的应用
[例2Lu设两个非零向Ja和b不共鈿
(1)若AB=a+b,BC=2a+8b,CD=3(a—b).求证:A,B,D三点共线.
⑵试确定实数k,使ka+b和a+kjbU共线.uuiu
[解]⑴证明:因为AB=a+b,BC=2a+8b,CD=3(a—b),
uuir uuir uuuuuuruuirUULT
1="k
_[方法技巧」__________________________
-…-…----…""平面向量共线定理的三个应用…—-…—-…—]
!uUU证明[向量共线:对于非U向量a,b,若存在实数 入使a="b则a与b共线.⑵证明三点共线:若存在实数入j
使AB=入AC,AB与AC有公共点a,则A,B,C三点共线.⑶求参数的值:利用向量共线定理及向量相等的条件
|a| |2b||b||a| |b|
(2)向量是既有大小又有方向的量,a与|a|ao的模相同,但方向不一定相同,故①是假命题;若a与ao
平行,则a与ao的方向有两种情况:一是同向,二是反向,反向时a=-|a|ao,故②③也是假命题.综上
所述,假命题的个数是3.
[答案](1)C(2)D
__[易错提醒」_____________ _____________ 厂7i)两个向量不能比较大小,只可以判断它们是否相等,但它们的模可以比较大小[…(2)大小与方向是向量的两个要素?j分别是向量的代数特征与几何特征;(3)向量可以自由平移,任意一组平行向量都可以移到同一直线上.
—6m+n=5,m=—1,
⑵,.mb+nc=(—6m+n,—n=一1.
即所求实数m的值为一1,n的值为一1.
uuuu uuuuuuiruuuuujit
⑶设O为坐标原点,TCM=OM—OC=3c,—OM=3c+OC=(3,24)+(—3,—4)=(0,20),即
a=|a|ao;③若a与ao平行且|a|=1,则a=ao.假命题的个数是()
A.oB.1C.2D.3
[解析]⑴因为向量合的方向与向量a相同,向量£的方向与向量b相同,且£,所以向量a与
|a| |b| |a| |b|
向量b方向相同,故可排除选项A,B,D.当a=2b时,a=警=b,故a=2b是耳=g成立的充分条件.
uuiruuur uttruuuruuir
M (0,20).又•/CN=ON—OC=—2b,—ON=—2b+OC=(12,6)+(—3,—4)=(9,2),
uuuu
即N(9,2). —MN=(9,—18).
[方法技巧]
厂-一—…--一---耳面向量坐标运算的技巧—…—-! (1)向量的坐标运算主要是利用向量加、减、数乘运算的法则来进行求解的,若已知有向线段两端点的坐标,则应先求
=—2b,(1)求3a+b—3c;(2)求满足a=mb+nc的实数m,n;(3)求M,N的坐标及向量MN的坐标.
[解]由已知得a=(5, —5),b=(—6, —3),c=(1,8).
(1)3a+b—3c=3(5,—5)+(—6,—3)—3(1,8)=(15—6—3, —15—3—24)=(6, —42).
列方程(组)求参数的值.[提醒]证明三点共线时,需说明共线的两向量有公共点.
突破点(三)平面向量基本定理
如果ei,e2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a,
乃,尼,使a=力ei+尼e2.其中,不共线的向量ei,e?叫做表示这一平面内所有向量的一
基底的概念
是共线向量,
___[易错提醒丄_—___―_—___―_—___―_—___―_ 葆平面内所有向量的一组基底必须是两个不共线的向量,不能含有零向量
1.平面向量的坐标运算:(1)向量加法、减法、数乘的坐标运算及向量的模;(2)向量坐标的求法
2.平面向量共线的坐标表示
考点一平面向量的坐标运算
uutruttruuuuuuuuuu
[例1]已知A(—2,4),B(3, —1),C(—3,—4).设AB=a,BC=b,CA=c,且CM=3c,CN
uuuu
平面向量基本定理的实质及解题思路
(1)应用平面向量基本定理表示向量的实质是利用平行四边形法则或三角形法则进行向量的加、减或数乘运算.(2)用向量基
本定理解决问题的一般思路是先选择一组基底,并运用该基底将条件和结论表示成向量的形式,再通过向量的运算来解决.
」一一一一一一-—一突破点7四亍…平面向量的」
05
突破点(一)平面向量的有关概念
知识点:向量、零向量、单位向量、平行向量、相等向量、相反向量
考点
平面向量的有关概念
a b
[典例]⑴设a,b都是非零向量,下列四个条件中,使向=而成立的充分条件是()
A.a=-bB.a//b C.a=2b D.a//b且|a|=|b|
⑵设ao为单位向量,下列命题中:①若a为平面内的某个向量,贝Ua=|a| ao;②若a与ao平行,则
所以BD=BC+CD=2a+8b+3(a—b)=5(a+b)=5AB,所以AB,BD共线.
uuur uuir
又AB与BD有公共点B,所以A,B,D三点共线.
(2)因为ka+b与a+kb共线,所以存在实数人使ka+b= "a+kb),
k=人
即解得k= ±1.即卩k=1或一1时,ka+b与a+kb共线.
相关文档
最新文档