28利用导数研究函数的单调性

合集下载

利用导数讨论函数的单调性

利用导数讨论函数的单调性

课题:导数在函数中的应用——利用导数讨论函数的单调性一.复习回顾1.导数与函数的单调性:一般地,在某个区间(ab)内:(1)如果f′(x)>0,函数f (x)在这个区间内单调递增;(2)如果f′(x)<0,函数f (x)在这个区间内单调递减;(3)如果f′(x)=0,函数f (x)在这个区间内是常数函数.------利用导数的正负研究函数的增减2.利用导数讨论函数单调性的方法(1)直接解不等式:f′(x)>0和f′(x)<0;(2)利用f′(x)的图像(示意图);(3)列表法;注:考虑f′(x)=0的根;二.新课讲解(一)讨论函数的单调性【例1】(2018年全国I卷)已知函数 f(x)=aex-ln x-1 (1)设x=2是f(x)的极值点.求a,并求f(x)的单调区间;(二)讨论含参数函数的单调性【解法技巧】考虑f′(x)=0的根1. 若f′(x)=0在区间D上无解,则f′(x)恒正或恒负,f(x)在D上单调;2. 根有没有,要不要,比大小。

【例2】求f(x)=ex-ax的单调区间;【例3】已知函数f(x)=12x2-(a+1)x+a ln x(1)当a<1时,讨论f(x)的单调性;【变式】已知函数f(x)=12x2-(a+1)x+a ln x,讨论f(x)的单调性;三.归纳总结----导数讨论含参数函数单调性的思路:1. 若f′(x)=0在区间D上无解,则f′(x)恒正或恒负,f(x)在D上单调;2. f′(x)=0根有没有,要不要,比大小;①若f′(x)=0在R上无解或在R上有解但明显解不在定义域D内则f(x)在D上单调;②若f′(x)=0在R上有解但解是否在定义域D内需讨论,ⅰ若解都不在定义域D内,则f(x)在D上单调;ⅱ若有解在定义域D内,则利用f′(x)的图像或列表分析;四.课后作业:1.(2018-2019潮州高三期末)已知函数f(x)=2( x-1) ln x+a (x2-x-1+1x).(1)当 a=0讨论f(x)的单调性2. (2017·全国卷Ⅲ) 已知函数f(x)=ln x+ax2+(2a+1)x. (1)讨论f(x)的单调性;3. (2016·全国卷Ⅰ) 已知函数f(x)=(x-2)ex-a (x-1)2 (1)讨论f(x)的单调性;。

判断函数单调性的方法

判断函数单调性的方法

判断函数单调性的方法判断函数的单调性是数学中常见的问题,对于函数的单调性,我们需要通过一定的方法进行判断,以便更好地理解和应用函数的性质。

下面,我们将介绍几种常用的方法来判断函数的单调性。

一、导数法。

判断函数的单调性最常用的方法之一就是利用导数。

对于函数f(x),如果在定义域内f'(x)≥0,那么函数f(x)在该区间上是单调不减的;如果在定义域内f'(x)≤0,那么函数f(x)在该区间上是单调不增的。

如果在定义域内f'(x)恒大于0(或恒小于0),那么函数f(x)在该区间上是严格单调不减的(或严格单调不增的)。

二、一阶导数和二阶导数法。

除了利用导数的正负来判断函数的单调性外,我们还可以通过一阶导数和二阶导数的关系来判断函数的单调性。

如果在定义域内f'(x)≥0且f''(x)≥0,那么函数f(x)在该区间上是单调不减的;如果在定义域内f'(x)≤0且f''(x)≥0,那么函数f(x)在该区间上是单调不增的。

三、零点法。

利用函数的零点也可以帮助我们判断函数的单调性。

对于函数f(x),如果在定义域内f'(x)在某一点x=a处为零,那么可以通过判断f'(x)在x=a点的左右性质来确定函数f(x)在该区间上的单调性。

四、拐点法。

函数的拐点也可以帮助我们判断函数的单调性。

如果在定义域内f''(x)在某一点x=a处为零,那么可以通过判断f''(x)在x=a点的左右性质来确定函数f(x)在该区间上的单调性。

五、特殊点法。

对于一些特殊的函数,我们也可以通过一些特殊点来判断函数的单调性。

比如对于一些周期函数,我们可以通过周期点来判断函数的单调性。

六、综合运用。

在实际应用中,我们往往需要综合运用以上方法来判断函数的单调性。

通过分析函数的导数、零点、拐点、特殊点等信息,结合函数图像,可以更准确地判断函数的单调性。

利用导数研究函数的单调性教案

利用导数研究函数的单调性教案

利用导数研究函数的单调性教案教案:利用导数研究函数的单调性一、教学目标1.了解函数的单调性概念,以及单调递增和单调递减的定义;2.掌握利用导数研究函数的单调性的方法;3.能够通过导数的正负性分析函数的单调区间,并作出相应的图像。

二、教学准备1.教师准备:书本、黑板、白板、彩色粉笔、计算器、实例练习题;2.学生准备:笔记本、课本。

三、教学过程1.引入导入(10分钟)导师通过提问等方式,引导学生回顾函数的增减性、最值点等概念,为接下来的学习做铺垫。

2.学习讲解(25分钟)1)导师先通过实例展示导数与函数单调性之间的关系,比如分别给出函数f(x)=x^2和函数g(x)=-x^2的导数,并解释导数大于零时函数单调递增,导数小于零时函数单调递减。

2)导师详细讲解如何利用导数分析函数的单调性:首先,对函数f(x)求导,得到它的导函数f'(x);其次,求出f'(x)的零点,即导数为零的点。

这些点将把函数f(x)的定义域划分为若干个开区间;然后,对每个开区间分别求取f'(x)的正负性,从而得到导数f'(x)在各开区间的取值范围;最后,结合导数f'(x)的正负性来分析函数f(x)的单调性。

3.实例训练(35分钟)导师通过多个实例进行讲解和学生训练,帮助学生熟悉和掌握利用导数研究函数单调性的方法。

4.小结提问(10分钟)导师通过提问进行小结,确保学生对函数的单调性及利用导数分析函数单调性的方法有一个深入的理解。

五、作业布置给定函数f(x)=2x^3+3x^2-12x+1,设置一个问题,让学生利用导数分析函数的单调性,并解决问题。

六、板书设计函数的单调性单调递增:导数大于零单调递减:导数小于零怎样利用导数研究函数的单调性?1.求导函数2.导函数的零点3.导函数的正负性导函数的正负性与函数的单调性的关系七、教学反思通过本堂课的教学,学生基本能够理解函数的单调性概念,知道如何利用导数研究函数的单调性。

利用导数研究函数单调性5种常见题型总结(原卷版)

利用导数研究函数单调性5种常见题型总结(原卷版)

第10讲 利用导数研究函数单调性5种常见题型总结【考点分析】考点一:利用导数判断函数单调性的方法 ①求函数的定义域(常见的0,ln >x x );①求函数的导数,如果是分式尽量通分,能分解因式要分解因式;①令()0='x f ,求出根 ,,,321x x x ,数轴标根,穿针引线,注意x 系数的正负;④判断()x f '的符号,如果()0f x '>,则()y f x =为增函数;如果()0f x '<,则()y f x =为减函数. 考点二:已知函数的单调性求参数问题①若()f x 在[]b a ,上单调递增,则()0f x '≥在[]b a ,恒成立(但不恒等于0); ①若()f x 在[]b a ,上单调递减,则()0f x '≤在[]b a ,恒成立(但不恒等于0).【题型目录】题型一:利用导数求函数的单调区间题型二:利用导函数与原函数的关系确定原函数图像 题型三:已知含量参函数在区间上单调性求参数范围 题型四:已知含量参函数在区间上不单调求参数范围 题型五:已知含量参函数存在单调区间求参数范围【典型例题】题型一:利用导数求函数的单调区间【例1】(2022·广东·雷州市白沙中学高二阶段练习)函数()()2e x f x x =+的单调递减区间是( )A .(),3-∞-B .()0,3C .()3,0-D .()3,-+∞【例2】(2022·北京市第三十五中学高二阶段练习)函数ln xy x=的单调递增区间是( ) A .1,e ⎛⎫-∞ ⎪⎝⎭B .()e,+∞C .10,e ⎛⎫⎪⎝⎭D .()0,e【例3】(2023·全国·高三专题练习)函数21()ln 2f x x x =-的单调递减区间为( ) A .(1,1)-B .(0,1)C .(1,)+∞D .(0,2)【例4】(2022·黑龙江·铁人中学高三开学考试)函数2()ln 1f x x x =--的单调增区间为_________.【例5】(2022·河南·安阳一中高三阶段练习(理))已知函数()()ln 1f x x x =+,则( ) A .()f x 在()1,-+∞单调递增 B .()f x 有两个零点C .曲线()y f x =在点11,22f⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭处切线的斜率为1ln2-- D .()f x 是偶函数【例6】(2022·江苏·盐城市第一中学高三阶段练习)若函数()312f x x x =-在区间()1,1k k -+上不是单调函数,则实数k 的取值范围是( ) A .3k ≤-或11k -≤≤或3k ≥ B .31k -<<-或13k << C .22k -<<D .不存在这样的实数【例7】(2022·全国·高二课时练习多选题)设函数()e ln x f x x =,则下列说法正确的是( )A .()f x 的定义域是()0,∞+B .当()0,1x ∈时,()f x 的图象位于x 轴下方C .()f x 存在单调递增区间D .()f x 有两个单调区间【例8】(2022·河北·石家庄二中模拟预测)已知函数f (x )满足()()()2212e 02x f x f f x x -'=-+,则f (x )的单调递减区间为( ) A .()0,∞- B .(1,+∞)C .()1,∞-D .(0,+∞)【例9】 (2022·全国·高二专题练习)已知函数()1xlnx f x e +=,(其中e =2.71828…是自然对数的底数).求()x f 的单调区间.【例10】【2020年新课标2卷理科】已知函数()x x x f 2sin sin 2=.(1)讨论()x f 在区间()π,0的单调性;【例11】(2022·黑龙江·哈尔滨市第六中学校高二期末)已知函数()ln f x x x x =-. (1)求()f x 的单调区间;【例12】(2022·陕西渭南·高二期末(文))函数()()2e x f x x ax b =++,若曲线()y f x =在点()()0,0f 处的切线方程为:450x y ++=. (1)求,a b 的值;(2)求函数()f x 的单调区间.【例13】【2020年新课标1卷理科】已知函数2()e x f x ax x =+-. (1)当1=a 时,讨论()x f 的单调性;【例14】【2019年新课标2卷理科】已知函数()11ln x f x x x -=-+.(1)讨论()x f 的单调性,并证明()x f 有且仅有两个零点;【题型专练】1.(2022湖南新邵县教研室高二期末(文))函数()4ln f x x x =-的单调递减区间为( ) A .()0,∞+ B .10,4⎛⎫⎪⎝⎭C .1,4⎛⎫-∞ ⎪⎝⎭D .1,4⎛⎫+∞ ⎪⎝⎭2.(2022·广东·东莞四中高三阶段练习)函数()()3e x f x x =-,则()f x 的单调增区间是( )A .(),2-∞B .()2,+∞C .(),3-∞D .()3,+∞3.(2022·四川绵阳·高二期末(文))函数()2ln 2x x x f -=的单调递增区间为( )A .()1,-∞-B .()+∞,1C .()1,1-D .()1,04.(2022·广西桂林·高二期末(文))函数()3213f x x x =-的单调递减区间为( )A .()02,B .()()02∞∞-+,,,C .()2+∞,D .()0-∞,5.(2022·重庆长寿·高二期末)函数()65ln f x x x x=--的单调递减区间为( )A .(0,2)B .(2,3)C .(1,3)D .(3,+∞)6.(2023·全国·高三专题练习)函数21()ln 3f x x x =-的单调减区间为__________.7.(2022·全国·高二专题练习)函数2()2x x f x =的单调递增区间为__________.8.(2022·全国·高二专题练习)函数cos y x x =+的单调增区间为_________.9.(2023·全国·高三专题练习)求下列函数的单调区间(1)()211x f x x +=-;(2)()21ln 2f x x x =-; (3)()3223361f x x x x =+-+;(4)()sin ,0f x x x x π=-<<;(5)()()22e xf x x x -=+;(6)()sin 2cos xf x x=+.10.(2022·全国·高二单元测试)已知函数()()321313x x x f x =-++,求()f x 的单调区间.11.函数()x e x x f -=2的递增区间是( ) A .()0,2B .(),0∞-C .(),0∞-,()2,+∞D .()(),02,-∞+∞12.【2022年新高考2卷】已知函数f(x)=x e ax −e x . (1)当a =1时,讨论f(x)的单调性;13.(2022·四川省绵阳南山中学高二期末(理))已知函数()29ln 3f x x x x =-+在其定义域内的一个子区间()1,1m m -+上不单调,则实数m 的取值范围是( )A .51,2⎡⎫⎪⎢⎣⎭B .31,2⎛⎫ ⎪⎝⎭C .51,2⎛⎫⎪⎝⎭D .31,2⎡⎫⎪⎢⎣⎭14.(2020·河北省石家庄二中高二月考)函数1()ln f x x x=的单调递减区间为____________. 15.(2022·全国·高三专题练习(文))函数(2)e ,0()2,0x x x f x x x ⎧-≥=⎨--<⎩的单调递减区间为__________.题型二:利用导函数与原函数的关系确定原函数图像【例1】(2022·河南·高三阶段练习(文))如图为函数()f x (其定义域为[],m m -)的图象,若()f x 的导函数为()f x ',则()y f x '=的图象可能是( )A .B .C .D .【例2】(2022·四川·遂宁中学外国语实验学校高三开学考试(理))设()f x '是函数()f x 的导函数,()y f x '=的图像如图所示,则()y f x =的图像最有可能的是( )A .B .C .D .【例3】(2022·全国·高二课时练习)已知函数()y f x =在定义域3,32⎛⎫- ⎪⎝⎭内可导,其图象如图所示.记()y f x =的导函数为()y f x '=,则不等式()0xf x '≤的解集为( )A .[][)31,0,12,323⎛⎤--⋃⋃ ⎥⎝⎦B .[]18,01,2,333⎡⎤⎡⎫-⋃⋃⎪⎢⎥⎢⎣⎦⎣⎭C .[)1,12,33⎡⎤-⎢⎥⎣⎦D .31148,,,323233⎛⎫⎡⎤⎡⎫--⋃⋃ ⎪⎪⎢⎥⎢⎝⎭⎣⎦⎣⎭【例4】(2022·全国·高二单元测试)已知函数()f x 的导函数()'f x 图像如图所示,则()f x 的图像是图四个图像中的( ).A .B .C .D .【例5】(2022·广东潮州·高二期末多选题)已知函数()f x 与()f x '的图象如图所示,则下列结论正确的为( )A .曲线m 是()f x 的图象,曲线n 是()f x '的图象B .曲线m 是()f x '的图象,曲线n 是()f x 的图象C .不等式组()()02f x f x x >⎧⎨<<'⎩的解集为()0,1D .不等式组()()02f x f x x >⎧⎨<<'⎩的解集为41,3⎛⎫⎪⎝⎭【题型专练】1.(2022·江苏常州·高三阶段练习)如图是()y f x '=的图像,则函数()y f x =的单调递减区间是( )A .()2,1-B .()()2,0,2,-+∞C .(),1-∞-D .()(),1,1,-∞-+∞2.(2022·吉林·东北师大附中高三开学考试)已知函数()y f x =的部分图象如图所示,且()f x '是()f x 的导函数,则( )A .()()()()12012f f f f ''''-=-<<<B .()()()()21012f f f f ''''<<<-=-C .()()()()02112f f f f ''''>>>-=-D .()()()()21021f f f f ''''<<<-<-3.(2022·福建莆田·高二期末)定义在()1,3-上的函数()y f x =,其导函数()y f x '=图像如图所示,则()y f x =的单调递减区间是( )A .()1,0-B .()1,1-C .()0,2D .()2,34.(2022·广东广州·高二期末)已知函数()y f x =的图象是下列四个图象之一,函数()y f x ='的图象如图所示,则函数()y f x =图象是( )A .B .C .D .5.(2022·北京·牛栏山一中高二阶段练习)设()f x '是函数()f x 的导函数,在同一个直角坐标系中,()y f x =和()y f x '=的图象不可能是( )A .B .C .D .6.(2022·福建宁德·高二期末多选题)设()f x 是定义域为R 的偶函数,其导函数为()f x ',若0x ≥时,()f x 图像如图所示,则可以使()()0f x f x '⋅<成立的x 的取值范围是( )A .(),3-∞-B .()1,0-C .()0,1D .()1,3题型三:已知含量参函数在区间上单调性求参数范围【例1】(2023·全国·高三专题练习)已知函数()ax x x x f ++=2ln 的单调递减区间为1,12⎛⎫ ⎪⎝⎭,则( ).A .(],3a ∈-∞-B .3a =-C .3a =D .(],3a ∈-∞【例2】(2022·全国·高三专题练习)已知函数()32391f x x mx mx =-++在()1,+∞上为单调递增函数,则实数m 的取值范围为( ) A .(),1-∞- B .[]1,1- C .[]1,3 D .[]1,3-【例3】(2022·浙江·高二开学考试)已知函数()sin cos f x x a x =+在区间ππ,42⎛⎫ ⎪⎝⎭上是减函数,则实数a 的取值范围为( )A .1a >B .1a ≥C .1a >D .1a ≥-【例4】(2022·全国·高二课时练习)若函数()2ln f x x ax x =-+在区间()1,e 上单调递增,则实数a 的取值范围是( ) A .[)3,+∞ B .(],3-∞C .23,e 1⎡⎤+⎣⎦ D .(2,e 1⎤-∞+⎦【例5】(2022·河南·荥阳市教育体育局教学研究室高二阶段练习)已知函数()321f x x x ax =+-+在R 上为单调递增函数,则实数a 的取值范围为( ) A .1,3⎛⎤-∞- ⎥⎝⎦B .1,3⎛⎫-∞- ⎪⎝⎭C .1,3⎛⎫-+∞ ⎪⎝⎭D .1,3⎡⎫-+∞⎪⎢⎣⎭【例6】(2023·全国·高三专题练习)若函数1()sin 2cos 2f x x a x =+在区间(0,)π上单调递增,则实数a 的取值范围是( ) A .(,1]-∞-B .[1,)-+∞C .(,1)-∞-D .[1,)+∞【例7】(2022·山东临沂·高二期末)若对任意的()12,,x x m ∈+∞,且当12x x <时,都有121212ln ln 3x x x x x x ->-,则m 的最小值是________.【例8】(2022·全国·高三专题练习(文))已知函数()()0ln 232>+-=a x x axx f ,若函数()x f 在[]2,1上为单调函数,则实数a 的取值范围是________.【题型专练】1.(2023·全国·高三专题练习)若函数2()ln 5f x x ax x =+-在区间11,32⎡⎤⎢⎥⎣⎦内单调递增,则实数a 的取值范围为( ) A .(,3]-∞ B .3,2⎛⎤-∞- ⎥⎝⎦C .253,8⎡⎤⎢⎥⎣⎦D .25,8⎡⎫+∞⎪⎢⎣⎭2.(2022·山西·平遥县第二中学校高三阶段练习)若函数()ln 1f x x x ax =-+在[e,)+∞上单调递增,则实数a 的取值范围是( ) A .(,2)-∞ B .(,2]-∞ C .(2,)+∞ D .[2,)+∞3.(2023·全国·高三专题练习)已知函数()sin 2cos f x a x x =+在ππ,34x ⎡⎤∈--⎢⎥⎣⎦上单调递增,则a 的取值范围为( ) A .0a ≥ B .22a -≤≤ C .2a ≥- D .0a ≥或2a ≤-4.(2022·全国·高三专题练习)若函数()d cx bx x x f +++=23的单调递减区间为()3,1-,则=+c b ( )A .-12B .-10C .8D .105.(2022·全国·高三专题练习)若函数()32236f x x mx x =-+在区间()1,+∞上为增函数,则实数m 的取值范围是_______. 6.函数321()3f x ax x a =-+在[1,2]上单调递增,则实数a 的取值范围是( ) A .1a >B .1a ≥C .2a >D .2a ≥7.对于任意1x ,2[1,)x ∈+∞,当21x x >时,恒有2211ln 2()x a x x x <-成立,则实数a 的取值范围是( ) A .(,0]-∞ B .(,1]-∞C .(,2]-∞D .(,3]-∞8.若函数2()ln f x x x x=++在区间[],2t t +上是单调函数,则t 的取值范围是( ) A .[1,2] B .[1,)+∞C .[2,)+∞D .(1,)+∞题型四:已知含量参函数在区间上不单调,求参数范围【例1】(2022·河南宋基信阳实验中学高三阶段练习(文))已知函数()3212132a g x x x x =-++.若()g x 在()2,1--内不单调,则实数a 的取值范围是______.【例2】(2021·河南·高三阶段练习(文))已知函数()()41xf x ax x e =+-在区间[]1,3上不是单调函数,则实数a 的取值范围是( )A .2,416e e ⎛⎫-- ⎪⎝⎭B .2,416e e ⎛⎤-- ⎥⎝⎦C .32,3616e e ⎛⎫-- ⎪⎝⎭D .3,416e e ⎛⎫-- ⎪⎝⎭【题型专练】 1.函数()()2244xf x e xx =--在区间()1,1k k -+上不单调,实数k 的范围是 .2.(2022·全国·高三专题练习)若函数()324132x a f x x x =-++在区间(1,4)上不单调,则实数a 的取值范围是___________.题型五:已知含量参函数存在单调区间,求参数范围【例1】(2023·全国·高三专题练习)若函数()21()ln 12g x x x b x =+--存在单调递减区间,则实数b 的取值范围是( ) A .[)3,+∞ B .()3,+∞ C .(),3-∞D .(],3-∞【例2】(2022·全国·高三专题练习)若函数()313f x x ax =-+有三个单调区间,则实数a 的取值范围是________.【例3】(2022·河北·高三阶段练习)若函数()2()e xf x x mx =+在1,12⎡⎤-⎢⎥⎣⎦上存在单调递减区间,则m 的取值范围是_________.【例4】(2023·全国·高三专题练习)已知()2ln ag x x x x=+-. (1)若函数()g x 在区间[]1,2内单调递增,求实数a 的取值范围; (2)若()g x 在区间[]1,2上存在单调递增区间,求实数a 的取值范围.【题型专练】1.(2022·全国·高三专题练习(文))若函数()()0221ln 2≠--=a x ax x x h 在[]4,1上存在单调递减区间”,则实数a 的取值范围为________.2.若函数()2ln f x ax x x =+-存在增区间,则实数a 的取值范围为 .3.故函已知函数32()3()f x ax x x x =+-∈R 恰有三个单调区间,则实数a 的取值范围为( ) A .()3,-+∞ B .()()3,00,-+∞C .()(),00,3-∞D .[)3,-+∞4.已知函数()()R a x ax x x f ∈+++=123在⎪⎭⎫⎝⎛--31,32内存在单调递减区间,则实数a 的取值范围是( ) A .(0,√3] B .(−∞,√3]C .(√3,+∞)D .(√3,3)。

“导数在研究函数单调性中的应用”的教学设计与反思

“导数在研究函数单调性中的应用”的教学设计与反思
发现 了什么 ?
用导 数研 究 函数 的单 调性 , 会 求 不超 过 三 次 的 多
项式 函数 的单 调 区间. ( 2 ) 通 过 实例 , 借 助 几 何 直 观探 索并 了解 函 数 的单调 性与 导数 的关 系 ; 通 过初 等 方 法 与 导数 方法 在研究 函数 性 质 过程 中 的 比较 , 体 会 导数 在 研究 函数性 质 中的一般 性 和有效 性.
若 在 区间 D上 f ( z) <0 , 则- 厂 ( ) 在 区间 D



上 是减 函数.

r |一


师: 很好, 你 能 用 函 数单 调 性 的 定 义 给 出证
明吗 ?
图 2
图 1
老 师先 让 学生 在 草稿 纸 上试 证 , 然 后 在学 生
的关 系.
对 于 函数 , ( z) = = = l o g  ̄ x, V z∈ ( 0 , +C x 3 ) ,
, ( z)一 一 < 0 ・
3 教 学过 程
3 . 1 问 题 导 入
问题 1 作 出下 列 函数 的图象 :
( 1 ) f ( x) 一z 。 ; ( 2 ) f ( x ) 一l o g  ̄ X .
生: 图 1中的切线 斜率 为正 , 图 2中的切线斜
率为 负. 师: 回顾 导数 的几何 意义 , 说 明了什 么?
生: 函数 , ( ) 一z 在 区 间( 一。 。 , +。 。 ) 上 的 导数 为正 ; 函数 f ( x) -l o g  ̄ z在 区间 ( 0 , +c × 。 ) 上

( 1 ) f( x)一z+ ; ( 2 ) f( x)一 - z 。 e .

利用导数判断函数的单调性-课件

利用导数判断函数的单调性-课件
∴f(x)=sixnx在区间(0,π)上是减函数.
•已知函数的单调性,确定参数的 取值范围
已知向量 a=(x2,x+1),b=(1-x,t),若函数 f(x)=a·b 在区间(-1,1)上是增函数,求 t 的取值范围.
[解析] 解法一:f(x)=a·b=x2(1-x)+t(x+1)=-x3+x2+ tx+t.
• [点评] 实质上就是证明不等式f′(x)>0在(0,2) 上恒成立.
试证明函数 f(x)=sixnx在区间(0,π)上单调递减. [证明] f′(x)=xcosxx-2 sinx, 令 g(x)=xcosx-sinx. 则 g′(x)=cosx-xsinx-cosx=-xsinx. ∵x∈(0,π),∴g′(x)<0,故 g(x)是减函数. ∴g(x)<g(0)=0. ∴x∈(0,π)时,f′(x)<0.
[点评] 解答本题容易得到增区间为(- 33,0)和( 33,+ ∞),减区间为(-∞,- 33)和(0, 33),产生错误的原因是忽视 了函数定义域为(0,+∞),而在(-∞,+∞)上求单调区间.
求下列函数的单调区间: (1)f(x)=x3-3x+1; (2)f(x)=x-1x.
[解析] (1)函数 f(x)的定义域为 R, f′(x)=3x2-3,令 f′(x)>0,则 3x2-3>0. 即 3(x+1)(x-1)>0,解得 x>1 或 x<-1. ∴函数 f(x)的单调递增区间为(-∞,-1)和(1,+∞) 令 f′(x)<0,则 3(x+1)(x-1)<0,解得-1<x<1. ∴函数 f(x)的单调递减区间为(-1,1). (2)函数 f(x)的定义域为(-∞,0)∪(0,+∞), f′(x)=1+x12>0, ∴函数的单调递增区间为(-∞,0)和(0,+∞).

利用导数研究函数的单调性-高中数学知识点讲解

利用导数研究函数的单调性1.利用导数研究函数的单调性【知识点的知识】1、导数和函数的单调性的关系:(1)若f′(x)>0 在(a,b)上恒成立,则f(x)在(a,b)上是增函数,f′(x)>0 的解集与定义域的交集的对应区间为增区间;(2)若f′(x)<0 在(a,b)上恒成立,则f(x)在(a,b)上是减函数,f′(x)<0 的解集与定义域的交集的对应区间为减区间.2、利用导数求解多项式函数单调性的一般步骤:(1)确定f(x)的定义域;(2)计算导数f′(x);(3)求出f′(x)=0 的根;(4)用f′(x)=0 的根将f(x)的定义域分成若干个区间,列表考察这若干个区间内f′(x)的符号,进而确定f(x)的单调区间:f′(x)>0,则f(x)在对应区间上是增函数,对应区间为增区间;f′(x)<0,则f(x)在对应区间上是减函数,对应区间为减区间.【典型例题分析】题型一:导数和函数单调性的关系典例 1:已知函数f(x)的定义域为R,f(﹣1)=2,对任意x∈R,f′(x)>2,则f(x)>2x+4 的解集为()A.(﹣1,1)B.(﹣1,+∞)C.(﹣∞,﹣1)D.(﹣∞,+∞)解:f(x)>2x+4,即f(x)﹣2x﹣4>0,设g(x)=f(x)﹣2x﹣4,则g′(x)=f′(x)﹣2,∵对任意x∈R,f′(x)>2,1/ 3∴对任意x∈R,g′(x)>0,即函数g(x)单调递增,∵f(﹣1)=2,∴g(﹣1)=f(﹣1)+2﹣4=4﹣4=0,则由g(x)>g(﹣1)=0 得x>﹣1,即f(x)>2x+4 的解集为(﹣1,+∞),故选:B题型二:导数和函数单调性的综合应用典例 2:已知函数f(x)=alnx﹣ax﹣3(a∈R).(Ⅰ)求函数f(x)的单调区间;(Ⅱ)若函数y=f(x)的图象在点(2,f(2))处的切线的倾斜角为 45°,对于任意的t∈[1,2],函数푔(푥)=푥3+푥2[푓′(푥) +푚2]在区间(t,3)上总不是单调函数,求m 的取值范围;푙푛2(Ⅲ)求证:2×푙푛33×푙푛44×⋯×푙푛푛1푛(푛≥2,푛∈푁∗).<푛解:(Ⅰ)푓′(푥) =푎(1―푥)푥(푥>0)(2 分)当a>0 时,f(x)的单调增区间为(0,1],减区间为[1,+∞);当a<0 时,f(x)的单调增区间为[1,+∞),减区间为(0,1];当a=0 时,f(x)不是单调函数(4 分)(Ⅱ)푓′(2) =―푎2=1得a=﹣2,f(x)=﹣2lnx+2x﹣3 푚∴푔(푥)=푥3+(2―2푥,2+2)푥∴g'(x)=3x2+(m+4)x﹣2(6 分)∵g(x)在区间(t,3)上总不是单调函数,且g′(0)=﹣22/ 3∴{푔′(푡3))<0>0(8 分)由题意知:对于任意的 t ∈[1,2],g ′(t )<0 恒成立,푔′(1)<0所以有:{푔′(2)<0,∴― 푔′(3)>0 37 3 <푚< ― 9(10 分)(Ⅲ)令 a =﹣1 此时 f (x )=﹣lnx +x ﹣3,所以 f (1)=﹣2,由(Ⅰ)知 f (x )=﹣lnx +x ﹣3 在(1,+∞)上单调递增,∴当 x ∈(1,+∞)时 f (x )>f (1),即﹣lnx +x ﹣1>0,∴lnx <x ﹣1 对一切 x ∈(1,+∞)成立,(12 分)∵n ≥2,n ∈N *,则有 0<lnn <n ﹣1,푙푛푛 푛 ― 1∴0<<푛 푛푙푛2∴ 2 ⋅ 푙푛33 ⋅ 푙푛44 ⋅⋅ 푙푛푛 1 2 ⋅ < 푛2 3 ⋅ 3 4 ⋅⋅ 푛 ― 1 푛 = 1 푛(푛 ≥ 2,푛 ∈ 푁 ∗) 【解题方法点拨】若在某区间上有有限个点使 f ′(x )=0,在其余的点恒有 f ′(x )>0,则 f (x )仍为增函数(减函数的情形完 全类似).即在区间内 f ′(x )>0 是 f (x )在此区间上为增函数的充分条件,而不是必要条件.3/ 3。

高二数学利用导数研究函数的单调性试题答案及解析

高二数学利用导数研究函数的单调性试题答案及解析1.已知(1)如果函数的单调递减区间为,求函数的解析式;(2)对一切的,恒成立,求实数的取值范围.【答案】(1);(2).【解析】(1)三个二次间的关系,其实质是抓住二次函数的图像与横坐标的交点、二次不等式解集的端点值、二次方程的根是同一个问题.解决与之相关的问题时,可利用函数与方程的思想、化归的思想将问题转化,结合二次函数的图象来解决;(2)若可导函数在指定的区间上单调递增(减),求参数问题,可转化为恒成立,从而构建不等式,要注意“=”是否可以取到;(3)(3)对于恒成立的问题,常用到两个结论:(1)(2)试题解析:解:(1)由题意的解集是即的两根分别是.将或代入方程得..……4分(2)由题意:在上恒成立即可得设,则令,得(舍)当时,;当时,当时,取得最大值, =-2.的取值范围是.【考点】(1)利用函数的单调性求函数解析式;(2)利用导数解决横成立的问题.2.函数的单调递增区间是().A.B.C.D.【答案】C【解析】,;令,得,即函数的单调递增区间是.【考点】利用导数研究函数的单调性.3.已知为定义在(0,+∞)上的可导函数,且恒成立,则不等式的解集为.【答案】【解析】因为为定义在(0,+∞)上的可导函数,且恒成立,所以在上恒成立,即在上为减函数;可化为,所以,解得.【考点】解抽象不等式.4.已知函数f(x)是偶函数,在上导数>0恒成立,则下列不等式成立的是( ).A.f(-3)<f(-1)<f(2)B.f(-1)<f(2)<f(-3)C.f(2)<f(-3)<f(-1)D.f(2)<f(-1)<f(-3)【答案】B【解析】因为函数在上,所以函数在上为增函数;又因为为偶函数,所以,,所以,即.【考点】函数的奇偶性.5.函数有极值点,则的取值范围是()A.B.C.D.【答案】D【解析】∵函数有极值点,∴f(x)的导数 f′(x)=x2-2x+a=0有两个实数根,∴,故选D.【考点】函数存在极值的条件.6.若定义在R上的函数f(x)的导函数为,且满足,则与的大小关系为().A.<B.=C.>D.不能确定【答案】C【解析】构造函数,则,因为,所以;即函数在上为增函数,则,即.【考点】利用导数研究函数的单调性.7.函数是定义在上的奇函数,且.(1)求函数的解析式;(2)证明函数在上是增函数;(3)解不等式:.【答案】(1)(2)证明见解析(3)【解析】(1)(由是定义在上的奇函数,利用可求得,再由可求得,即可求得;(2)由(1)可得,即得函数在上是增函数;(3)由,再利用为奇函数,可得,即可求得结果.试题解析:(1)是定义在上的奇函数,;又,,;(2),,即,∴函数在上是增函数.(3),又是奇函数,,在上是增函数,,解得,即不等式的解集为.【考点】函数的奇偶性;利用导数判断函数单调性.8.已知定义域为R的函数,且对任意实数x,总有/(x)<3则不等式<3x-15的解集为()A.(﹣∞,4)B.(﹣∞,﹣4)C.(﹣∞,﹣4)∪(4,﹢∞)D.(4,﹢∞)【答案】【解析】设,则所求的不等式解集可理解为使的解集.的导函数为,根据题意可知对任意实数恒成立,所以在上单调递减.则,令,则根据单调递减可知:.【考点】导数法判断单调性;根据单调性解不等式.9.在区间内不是增函数的是()A.B.C.D.【答案】D【解析】选项中,时都有,所以在上为单调递增函数,所以在是增函数;选项在,而在上为增函数,所以在是增函数;选项,令得或,所以在为增函数,而,所以在上增函数;选项,令,得。

利用导数判断函数单调性

利用导数判断函数单调性函数的单调性是数学中一个重要的概念,它描述了函数在指定区间上是递增还是递减的特性。

通过判断函数的导数的正负性,我们可以确定函数在不同区间上的单调性。

本文将介绍通过导数判断函数单调性的方法,并提供一些实例来帮助读者更好地理解。

导数的定义在介绍如何利用导数判断函数单调性之前,让我们先复习一下导数的定义。

给定函数y = f(x),如果在某个点x处导数存在,那么该导数表示函数在该点的变化率。

导数可以通过以下公式表示:f'(x) = lim({f(x + h) - f(x)}/{h}) as h approaches 0其中,f’(x)表示函数f(x)的导数。

可以看出,导数的定义是通过求函数在某个点附近的斜率来描述函数的变化率。

利用导数判断函数单调性的方法函数在某个区间上的单调性可以通过导数的正负来判断。

具体而言,如果在区间[a, b]上,函数的导数大于0,则函数在该区间上是递增的;如果导数小于0,则函数在该区间上是递减的。

这可以用以下定理来描述:定理 1:如果函数f(x)在一个区间(a, b)上连续,并且在该区间上处处可导,则有:1.如果f’(x) > 0在(a, b)上成立,则f(x)在(a, b)上递增。

2.如果f’(x) < 0在(a, b)上成立,则f(x)在(a, b)上递减。

基于这一定理,我们可以通过以下步骤来判断函数在指定区间上的单调性:1.求出函数的导数f’(x)。

2.找出导数f’(x)的所有零点,这些点被称为函数f(x)的临界点。

3.根据临界点将区间分为一系列子区间。

4.检查每个子区间内的导数的正负性。

5.根据导数的正负性判断函数在每个子区间内的单调性。

值得注意的是,我们还需要考虑函数在临界点和区间的端点上的单调性。

对于区间端点,我们可以采用类似的方式判断端点处的单调性。

接下来,我们将通过一些实例来帮助读者理解如何利用导数判断函数单调性。

实例 1考虑函数f(x) = x^2 - 2x + 1在区间(-∞, +∞)上的单调性。

利用导数判断函数的单调性的方法

利用导数判断函数的单调性的方法利用导数判断函数的单调性,其理论依据如下:设函数)(x f y =在某个区间内可导,如果0)(>'x f ,则)(x f 为增函数;如果0)(<'x f ,则)(x f 为减函数。

如果0)(='x f ,则)(x f 为常数。

要用导数判断好函数的单调性除掌握以上依据外还须把握好以下两点: 一. 导数与函数的单调性的三个关系我们在应用导数判断函数的单调性时一定要搞清以下三个关系,才能准确无误地判断函数的单调性。

以下以增函数为例作简单的分析,前提条件都是函数)(x f y =在某个区间内可导。

1.0)(>'x f 与)(x f 为增函数的关系。

由前知,0)(>'x f 能推出)(x f 为增函数,但反之不一定。

如函数3)(x x f =在),(+∞-∞上单调递增,但0)(≥'x f ,∴0)(>'x f 是)(x f 为增函数的充分不必要条件。

2.0)(≠'x f 时,0)(>'x f 与)(x f 为增函数的关系。

若将0)(='x f 的根作为分界点,因为规定0)(≠'x f ,即抠去了分界点,此时)(x f 为增函数,就一定有0)(>'x f 。

∴当0)(≠'x f 时,0)(>'x f 是)(x f 为增函数的充分必要条件。

3.0)(≥'x f 与)(x f 为增函数的关系。

由前分析,)(x f 为增函数,一定可以推出0)(≥'x f ,但反之不一定,因为0)(≥'x f ,即为0)(>'x f 或0)(='x f 。

当函数在某个区间内恒有0)(='x f ,则)(x f 为常数,函数不具有单调性。

∴0)(≥'x f 是)(x f 为增函数的必要不充分条件。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章 函数与导数
3.3.1 函数的单调性与导数
编审 周龙 毛百会
课时目标
1. 会熟练求导,求函数单调区间,证明单调性。

2. 会从导数的角度解释增减及增减快慢的情况
知识梳理
1、函数的导数与函数的单调性的关系:
在某个区间),(b a 内,如果()0f x '>,那么函数)(x f y = 在这个区间内 ;如果()0f x '<,那么函数)(x f y =在这个区间内 ;如果恒有()0f x '=,那么函数)(x f y = 在这个区间内 .
2、用导数求函数单调区间的步骤:
3、如果函数)(x f y =在某个区间),(b a 内单调递增,那么在区间),(b a 内 ____________;如果函数)(x f y =在某个区间),(b a 内单调递减,那么在区间),(b a 内 ______________.
思考探究
如果0x >'∈)(时有f D x 成立,则f(x)在区间D 上一定是______,那么反之若
f(x)在区间D 上是增函数,那么一定有()0f x '>成立吗?
自主测评
1、在区间),(b a 内()0f x '>是()f x 在),(b a 内单调递增的 ( ).
(A)充分而不必要条件 (B)必要但不充分条件 (C)充要条件 (D)既不充分也不必要条件
2、 函数33x x y -=的单调增区间为( ).
A. (0,)+∞
B. (,1)-∞-
C. (1,1)-
D.
(1,)+∞
3、若函数)(x f 在[]b a ,上的图像是连续不断的,[]b a x ,∈时,/f (x )<0,又
0)(<a f ,则( ).(A ))(x f 在[]b a ,上单调递增,且0)(>b f
(B ))(x f 在[]b a ,上单调递减,且0)(>b f
(C ))(x f 在[]b a ,上单调递增,且0)(<b f (D ))(x f 在[]b a ,上单调递减,且0)(<b f
4、函数)(x f 的定义域为),0(+∞,且0)(>x f ,0)(/>x f ,那么函数)(x xf y =( ).
(A)不单调 (B)无法确定 (C)是减函数 (D)是增函数
典例分析
例1、判断下列函数的单调性,并求出单调区间:
(1)x x x f 3)(3+=; (2)32)(2--=x x x f ;
(3)),0(,sin )(π∈-=x x x x f ;
变式练习1:判断下列函数的单调性,并求出单调区间:
(1)42)(2+-=x x x f ; (2)x e x f x -=)(; (3)x x x x f --=23)(.
例2、如图,水以常速(即单位时间内注入水的体积相同)注入下面四种底面积相同的容器中,请分别找出与各容器对应的水的高度h 与时间t 的函数关系图像.
变式练习2:
如图,函数()f x 的图象是折线段ABC ,其中A B
C ,,的坐标分别为(04)(20)(64),,,,,,则((0))f f =________;函数()f x 在1x =处的导数(1)f '=
_____.
小结: ①知识总结:1、函数的导数与函数的单调性的关系;2、用导数
求函数单调区间的步骤
②数学思想方法: 当堂练习
1、设)(),0(2
)(x f x x
x x f 则<+
=的单调递增区间为( )
. A.(,2)-∞- B. (2,0)- C.
(,-∞ D.
( 2、函数x x y 33-=的单调增区间为 .
3、求函数x x x x f 23)(23+-=的单调区间,并画出函数的大致图像.
课时作业
1、判断下列函数的单调性:
(1)12)(+-=x x f ; (2))2
,0(,cos )(π
∈+=x x x x f ;
2、函数),在区间(10ln x x y =上是( ).
A.单调增函数
B.单调减函数
C.在1(0,)e 上是减函数,在1(,1)e
上是增函数 D.在1(0,)e 上是增函数,在1(,1)e
上是减函数 3、函数x x y ln 2
12
-=
的单调减区间为( )
. (A)(0,1)(B)(0,1)(,1)-∞- (C)(0,1)(1,)+∞ (D)),0(+∞ 4、若函数)(x f 在),(b a 上的图像是连续不断的,[]b a x ,∈时,/f (x )>0,又
0)(≥a f ,则在),(b a 内有( ).
(A)0)(>x f (B)0)(=x f (C)0)(<x f (D))(x f 的正负不确定
5、x
x x f 3
)(3+
=的单调递增区间为 . 6、求证: 函数 在(0,2)内是减函数.
762)(2
3+-=x x x f。

相关文档
最新文档