正态分布和对数正态分布ppt课件
有关正态分布的解释ppt课件

8 6 4 2 0
身高(cm)
某地13岁女孩118人身高. (cm)频数分布图
正态分布图四
身高(cm)
频数分布逐渐接近正态分布示意图 .
正态分布的数理统计学概念:
如果随机变量(X)的概率密度函数为:
f x
1
x2
e 22
-∞<x<+∞
2
则该随机变量服从正态分布。
式中σ为总体标准差;μ为总体均数;π
.
u/2
U 2指 双 侧
U 界值,也称 U 的双侧α分位数。 其意义为:从
U 2到 +∞ 这 一
侧 的 面 积 为 α /2,
从 -U 2 到 -∞ 这
一侧的面积也为 α /2,两 侧 面 积 之 和 为 α 。即 在 随 机
变量 U 的所有取
值
中
, U有
100α
的
值比
大 ,有
1 0 0 (U 1 - α ) 的 值
知x , 只 知 来 自 该 总 体 的 样 本 的 身 高 均 数 = 1 4 4 . 2 9 ( c m ) 和 标 准 差 s = 5 . 4 1 ( c mx) , 由
于 样 本 含 量 n= 118 很 大 , 所 以 可 以 用 和 s估计μ和σ来计算 u值。
.
身 高 ( X) 小 于 135(cm)的 概 率 为 : P X x1 135 P U u1
155
144 .29 5.41
1.98
P X x 2 155 P U u 2 P U u 2 1.98 1 1.98 1 0.97615 0.02385
该地 13 岁正 常女孩身 高在 135 厘米以 下者占正 常女孩总 人数的 4.272%,身 高
正态分布知识点总结ppt

正态分布知识点总结ppt一、概念1. 正态分布,又称高斯分布,是一种连续概率分布2. 具有单峰对称的特点3. 由于其形状近似于钟形,因此也被称为钟形曲线二、特征1. 均值μ:描述分布的中心位置2. 标准差σ:描述数据点相对于均值的离散程度3. 标准差越大,曲线扁平度越高4. 标准差越小,曲线陡峭度越高5. 正态分布的均值、众数和中位数都相等三、标准正态分布1. 当均值μ=0,标准差σ=1时的正态分布2. 应用范围更广,便于做概率计算3. 可通过Z变换,将任意正态分布转化为标准正态分布四、性质1. 概率密度函数:f(x) = (1/σ√(2π)) * e^(-(x-μ)²/(2σ²))2. 总体均值、中位数、众数相等3. 68-95-99.7法则:在正态分布下,大约68%的数据落在均值±1个标准差内,大约95%的数据落在均值±2个标准差内,大约99.7%的数据落在均值±3个标准差内五、应用1. 统计学:用于研究样本数据的分布规律2. 自然科学:许多自然现象的分布都符合正态分布,如身高、体重等3. 工程学:用于分析质量控制、可靠性分析等六、假设检验1. 基于正态分布的概率性质,可对样本数据进行假设检验2. 通过计算样本均值和标准差,判断总体参数是否满足要求七、实际案例1. 身高分布:研究人群的身高分布规律,制定人体工程学标准2. 质量控制:监控产品的质量符合正态分布,及时发现异常情况3. 信用评分:应用正态分布评估个人信用等级八、常见问题1. 如何判断一组数据是否符合正态分布?- 绘制直方图或概率图查看数据分布形状- 进行正态性检验,如Shapiro-Wilk检验、K-S检验等2. 如果数据不符合正态分布,影响有哪些?- 在统计分析中应当选择非参数检验方法- 在数据建模和预测中需要考虑非线性因素的影响九、总结正态分布是统计学中的基础概率分布,具有广泛的应用价值。
正态分布ppt课件

1.已知某地区中学生的身高 X 近似服从正态分布 N 164, 2 ,若 P X 170 0.3 ,
则 P158 X 1706
D.0.8
解析: P158 X 170 2P164 X 170 2 0.5 P X 170 0.4 .
2. 已 知 随 机 变 量 X 服 从 正 态 分 布 N 1, 2 , 若 P(X 0) P(X 3) 11 , 则 10 P(2 X 3) ( )
A.0.1
B.0.2
C.0.3
D.0.4
解析:因为随机变量 X 服从正态分布 N 1, 2 ,
所以随机变量 X 的均值 1 ,
所以随机变量 X 的密度曲线关于 x 1 对称, 所以 P(X 0) P(X 2) , 又 P(X 0) P(X 3) 11 ,
10
所以 P(X 2) P X 2 P(2 X 3) 11 ,
为“可用产品”,则在这批产品中任取 1 件,抽到“可用产品”的概率约为 _____________.
参考数据:若 X N , 2 ,则 P X 0.6827 ,
P 2 X 2 0.9545, P 3 X 3 0.9973
解析:由题意知,该产品服从 X N(25,0.16) ,则 25, 0.4 ,
10
因为 P(X 2) P X 2 1,所以 P(2 X 3) 0.1
3.已知随机变量 X ~ N , 2 ,Y ~ B6, p ,且 P X 3 1 , E X E Y ,则 2
p ( )
1
1
1
1
A. 6
B. 4
C. 3
D. 2
解析:由于 X 服从正态分布 N , 2 ,且 P X 3 1 ,故其均值 E X 3 . 2
-正态分布及其性质精品PPT课件

该区域的面积表示?
A
又该如何计算呢
5.标准正态分布 (1) ~ N (0,1), 则的分布函数通常 用( x)表示, 且( x) = P( ≤ x) 对于x ≥0, ( x)的值可在标准正态
分布表中查到, 而x < 0的( x)的值
可用 : ( x) = 1 - ( x)
(2)若 ~ N (u, 2 ), 则的分布函数 用F ( x)表示, 且有P( ≤ x) = F ( x)
=
(
x-
u
)
7.标准正态分布与一般正态分布的关系:
(1).若 ~ N(, 2 ),则 ~ N(0,1).
(2). ~ N(, 2 ),
P(a b) (b ) (a ),
然后,通过查标准正态 分布表中
x
a
,x
b
的(x)值.(课本P58页)
从而,可计算服从 (, 2 )的正态分布
例3、若X~N(5,1),求P(6<X<7).
y
例4、如图,为某地成年男
1
性体重的正态曲线图,请写 10 2
出其正态分布密度函数,并
求P(|X-72|<20).
x
72(kg)
x (, )
例6.(2).设 ~ N (0,1), 借助于标准
正态分布的函数表计算 :
(1) p( > 1.24);
(2) p( < -1.24); (3) p( < 1).
曲线不断地降低,呈现 出“中 间高、两边低”的钟形 曲线.
并且当曲线向左、向右 两边无限延伸时,
以x轴为渐进线,向x轴无限的靠近 .
(5).当一定时,曲线的形状由 确定Y,f (x)
正态分布和对数正态分布

对数正态分布的峰度为$frac{e^{2sigma^2}1+6sigma^2}{sigma^2}$。
描述性统计量
偏度和峰度用于描述数据的形状,偏度表示数据分布的不对称性, 峰度表示数据分布的尖锐程度。
06
对数正态分布在实践中的 应用
数据建模
自然现象
医学研究
对数正态分布常用于描述自然现象,如地震、 火山喷发、降雨量等,因为这些现象的强度 或频率往往呈现对数增长的特点。
正态分布的应用领域
自然现象
01
许多自然现象的随机变量服从正态分布,如人类的身高、智商、
考试分数等。
金融领域
02
金融市场中的许多随机变量,如股票收益率、汇率波动等,也
呈现出正态分布的特征。
统计学与数据分析
03
在统计学中,正态分布被广泛应用于样本数据的统计分析,如
参数估计和假设检验。
正态分布在统计学中的重要性
正态分布和对数正态 分布
目录
• 正态分布概述 • 正态分布的性质 • 正态分布在实践中的应用 • 对数正态分布概述 • 对数正态分布的性质 • 对数正态分布在实践中的应用
01
正态分布概述
定义与特性
定义
正态分布是一种连续概率分布, 其特征是数据呈现钟形曲线,且 曲线关于均值对称。
特性
正态分布具有集中性、对称性和均 匀分散性的特点,其中标准正态分 布的均值为0,标准差为1。
中心极限定理在金融、生物、医学、工程等多个领域都有广泛应用。例如,在金融领域,我们经常使用正态分布 来描述股票价格的波动;在生物和医学领域,我们使用正态分布来描述人类身高、血压等生理指标的分布。
参数估计
参数估计
参数估计是统计学中的一种重要方法,其目的是通过样本数据来估计总体参数 的值。在正态分布的背景下,我们通常使用样本均值和样本标准差来估计总体 均值和总体标准差。
《正态分布》教学课件(32张PPT)

正态密度曲线的图像特征
方差相等、均数不等的正态分布图示
μ=0 μ= -1
μ= 1
σ=0.5
若 固定
, 随 值
的变化而
沿x轴平
移, 故
称为位置
参数;
3 1 2
正态密度曲线的图像特征
μ=0
均数相等、方差不等的正态分布图示
若 固定,
=0.5
大时, 曲线 矮而胖;
小时, 曲
在下列哪个区间内?( A)
A. (90,110] B. (95,125] C. (100,120] D.(105,115]
2、已知X~N (0,1),则X在区间 (, 2) 内取值的概率
等于( D ) A.0.9544 B.0.0456 C.0.9772 D.0.0228 3、设离散型随机变量X~N(0,1),则P(X 0)= 0.5 ,
120.68260.3413, P ( 6 x 7 ) P ( 5 x 7 ) P ( 5 x 6 )
0 . 4 7 7 2 0 . 3 4 1 3 0 . 1 3 5 9 .
5、把一个正态曲线a沿着横轴方向向右移动2个单位, 得到新的一条曲线b。下列说法中不正确的是( )
P(2X2)= 0.9544 .
4、若X~N(5,1),求P(6<X<7).
27
4、若X~N(5,1),求P(6<X<7).
解:因为X~N(5,1), 5,1.
又因为正态密度曲线关于直线 x=5 对称 ,P(5x7)1 2P(3x7)1 2P(521x521)
120.95440.4772, P(5x6)1 2P(4x6)
μ= -1
y σ=0.5
正态分布课件ppt
(2)f (x) 的值域为
(0,
1]
2 s
(3)f (x) 的图象关于 x =μ 对称.
x (-∞,μ] x (μ,+∞)
正态分布密度函数
当μ= 0,σ=1时 标准正态分布密度函数
y
μ=0 σ=1
-3 -2 -1 0 1 2 3 x
标准正态曲线
例1、下列函数是正态分布密度函数的是( B)
A.
f (x)
X~(100, 52 ),据此估计,大约应有57人的分数在
下列哪个区间内?(A )
A. (90,110] B. (95,125] C. (100,120] D.(105,115]
P(m s X m s ) 0.6826, P(m 2s X m 2s ) 0.9544, P(m 3s X m 3s ) 0.9974.
当 a 3s 时正态总体的取值几乎总取值于区间 (m 3s , m 3s ) 之内,其他区间取值几乎不可能.在实 际运用中就只考虑这个区间,称为 3s 原则.
例3、在某次数学考试中,考生的成绩 x 服从一个 正态分布,即 x ~N(90,100).
(1)试求考试成绩 x 位于区间(70,110)上的概率是
1
(xm )2
e 2s 2 , m,s (s 0)都是实数
2s
2 x2
B. f (x)
e2
2
1
( x1)2
C. f (x)
e4
2 2
D.
f (x)
1
x2
e2
2
练习:
2、如图,是一个正态曲线, 试根据图象写出其正态分布 的概率密度函数的解析式, 求出随机变量的期望和方差。
y
正态分布 ppt课件
21
例题1: 若随机变量X ~ N (0,1),查表,求 (1)P( X 1.52); (2)P( X 1.52); (3)P(0.57 X 2.3); (4)P( X 1.49)
解:(1)P( X 1.52) (1.52) 0.93574;
(2)P( X 1.52) 1 P( X 1.52) 1 0.93574;
2
(4)曲线与x轴之间的面积为 1;
正态曲线
PPT课件
13
4、探究与对函数图像的影响
(1)思考:
式子中有两个变化的参数,我们可以看 成两个变量,但是双变量会对我们的研究造 成一定的困难,同学们有什么好的办法吗?
针对解析式中含有两个参数,较难独立 分析参数对曲线的影响,这里通过固定一个 参数,讨论另一个参数对图象的影响,这样 的处理大大降低了难度
N(μ,σ23)(σ1,σ2,σ3>0)相应的曲线,
那么 σ1,σ2,σ3 的大小关系是( )
A.σ1>σ2>σ3
B.σ3>σ2>σ1
C.σ1>σ3>σ2
D.σ2>σ1>σ3
解析:由σ的意义可知,图象越瘦高,数据越集中,
σ2越小,故有σ1>σ2>σ3.
答案:A
PPT课件
31
[例2] 在某项测量中,测量结果服从正态分布N(1,4), 求正态总体X在(-1,1)内取值的概率.
[思路点拨] 解答本题可先求出X在(-1,3)内取值的概 率,然后由正态曲线关于x=1对称知,X在(-1,1)内取值 的概率就等于在(-1,3)内取值的概率的一半.
PPT课件
32
[精解详析] 由题意得 μ=1,σ=2,
正态分布 课件
;
• 特别地有:P(μ-σ<X≤μ+σ)= 0.6862 ;
• P(μ-2σ<X≤μ+2σ)= 0.9544 ;
• P(μ-3σ<X≤μ+3σ)= 0.9974 .
[答案] B
[解析] 仔细对照正态分布密度函数:f(x)= 21πσe-
(x-μ)2
2σ2 (x∈R),注意指数 σ 和系数的分母上的 σ 要一致,以及
正态分布
• 1.当样本容量无限增大时,它的频率分 布直方图 无限接近于 一条总体密度曲 线,在总体所在系统相对稳定的情况下, 总体密度曲线就是或近似地是以下函数的 图象:
• 其中μ和σ(σ>0)为参数.我们称φμ,σ(x)的图 象为 正态分布密度曲线,简称 正态曲线 .
• (4)曲线与x轴之间的面积为 1 ;
• (5) 当 σ 一 定 时 , 曲 线 随 μ 的 变 化而沿 x 轴 平移;
• (6)当μ一定时,曲线的形状由σ确定:σ越小,
曲线越“
瘦高”,表示总体的分布越
集中 ;σ越大,曲线越“
矮胖 ”,表示
总体的分布越 分散 .
• 4.若X~N(μ,σ2),则对任何实数a>0,概
率P(μ-a<X≤μ+a)=
称 性 得 P(3<X≤4) = P(6<X≤7) , 所 以
P(6<X≤7)=
=0.1359.
• [点评] 解此类题首先由题意求出μ及σ的
值,然后根据三个特殊区间上的概率值及
正态曲线的特点(如对称性,与x轴围成的 面积是1等)进行求解.
• [例5] 某年级的一次信息技术测验成绩近 似服从正态分布N(70,102),如果规定低于 60分为不及格,求:
人教B版选修2-3高中数学2.4《正态分布》ppt课件1
单侧95%正常值范围: X 1.64S (上限)
X 1.64S (下限)
12
2. 百分位数法
双侧95%正常值范围: P2.5~P97.5 单侧95%正常值范围: < P95(上限)
或 > P5(下限) 适用于偏态分布资料
13
第三节 计数资料的统计描述
一、计数资料的数据整理 二、常用相对数指标 三、应用注意事项
如:治愈率、病死率、阳性率、人群患病率等
17
2.构成比(proportion):
说明某一事物内部,各组成部分所占的 比重。也叫百分比。
构成比=(某部分观察单位数/各组成部分 观察单位总数)×100%
如:教研室16人高级职称有4人,占 25%;中级职称有8人,占50%;初级 职称有4人,占25%。
18
正态曲线(normal curve)
2
二、正态曲线( normal curve )
f(X)
图形特点:
1. 钟型 2. 中间高 3. 两头低 4. 左右对称 5. 最高处对应
于X轴的值 就是均数
X 6. 曲线下面积 为1
7. 标准差决定 曲线的形状
3
N (1,0.82 )
0.6 f (X )
0.5
22
编后语
老师上课都有一定的思路,抓住老师的思路就能取得良好的学习效果。在上一小节中已经提及听课中要跟随老师的思路,这里再进一步论述听课时如何 抓住老师的思路。
① 根据课堂提问抓住老师的思路。老师在讲课过程中往往会提出一些问题,有的要求回答,有的则是自问自答。一般来说,老师在课堂上提出的 问题都是学习中的关键,若能抓住老师提出的问题深入思考,就可以抓住老师的思路。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
E(x)
exp
2
2
对数正态分布的方差是:
x v) a e r 2 x ( 2 e p 2 - x 1 p
.
正态分布
& 对数正太分布
.
正态分布的概念和特征
变量的频数或频率呈中间最多,两端 逐渐对称地减少, 表现为钟形的一种概率分布。从理论上说,若随机变 量x的概率密度函数为:
f(x) 1 e(x)2/22
2
则称x服从均数为μ,方差为σ2的正态分布
.
标准正态分布
定义 X ~ N(0,1)分布称为标准正态分布
.
若 X 是一个随机变量, Y=ln(X)服从正态分布: Y=ln(X)~N(,2)
则称 X 服从对数正态分布。 对数正态概率密度函数是:
f(x)=
x12exp12lnx2
0
x0 x0
(3-9)
和 不是对数正态分布的均值和标准差,而分别称为它的对数均值和对数标 准差。
.
对数正态分布的均值是:
密度函数
(x)
1
x2
e2
2
分布函数
x
(x)
1
x2
e 2 dx
2
0 1
.
正态分布的密度函数的图形
y
1
2Hale Waihona Puke -+x
中间高 两边低
.
对数正态分布: 是对数为正态分布的任意随机变
量的概率分布。如果 X 是正态分布的 随机变量,则 exp(X) 为对数分布;同 样,如果 Y 是对数正态分布,则 ln(Y) 为正态分布。