均值不等式在解三角形中的应用
三项均值不等式公式

三项均值不等式公式三项均值不等式公式是初中数学学习中比较重要的一个概念,也是比较常用的一个公式。
它是一种基于数学统计学原理的不等式,可以用来描述一组数字的大小关系。
三项均值不等式公式的应用非常广泛,可以用来证明各种数学问题,也可以应用到经济学、物理学等其他领域。
三项均值不等式公式的原理非常简单,它是基于算术平均数、几何平均数和谐平均数的大小关系推导而来的。
其中,算术平均数是指一组数字的和除以数字的个数,几何平均数是指一组数字的乘积开根号,谐平均数是指一组数字的倒数的平均数的倒数。
三项均值不等式公式的表达式为:(a+b+c)/3 ≥ (abc)^(1/3) ≥ 3/(1/a+1/b+1/c)。
三项均值不等式公式的应用非常广泛,可以用来解决各种数学问题。
例如,在三角形中,三角形的三条边的长度分别为a、b、c,那么根据三项均值不等式公式可得:a+b+c/3 ≥ (a bc)^(1/3),即(a+b+c)^3 ≥ 27abc,这个不等式被称为三角形的海涅不等式。
这个不等式可以用来证明很多与三角形相关的问题。
三项均值不等式公式还可以应用到经济学中。
例如,在投资组合中,如果一笔投资的收益率为r1,另外一笔投资的收益率为r2,那么这两笔投资的平均收益率为(r1+r2)/2。
如果这两笔投资的风险分别为s1和s2,那么这两笔投资的平均风险为(1/s1+1/s2)/2的倒数。
根据三项均值不等式公式可得:(r1+r2)/2 ≥ (r1r2)^(1/2) ≥ 2/(1/s1+1/s2),即(r1+r2)^2 ≥ 4r1r2,这个不等式可以用来指导投资组合的选择。
三项均值不等式公式还可以应用到物理学中。
例如,在电路中,电阻的并联和串联是两种常见的电路连接方式。
根据三项均值不等式公式可得,对于两个电阻值分别为r1和r2的电阻,它们并联后的电阻值为(r1r2)/(r1+r2),它们串联后的电阻值为r1+r2。
因此,如果要使得并联电路的电阻最小或者串联电路的电阻最小,就需要根据三项均值不等式公式来进行计算。
均值不等式在解三角形问题中的应用

321ax a +−>+,(去分母,每一项同乘以2) 132ax a >−++,(移项,注意移项要变号) ax a >.(算到这边,大家发现了什么?) 生:如果a 是正数,那就有1x >;如果a 是负数,那就有1x <.哈哈,我知道了!师:是的,这个不等式的解集取决于a 与0的关系.知道了这个诀窍,哪怕你给的数再大,我们都能轻松地知道解集了.所以啊,数学是一门神秘又有趣的学科,值得我们用心去研究.生成性资源在课堂教学中时时处处存在,我们教师要有强烈的资源意识,珍惜真正的、有价值的资源,使教学活动真正为学生的学习和发展服务.同时我们教师一定要增强教育理念,构建动态课堂,善用生成资源,使我们的课堂焕发出无穷的生命活力和魅力.参考文献[1]华应龙.我就是数学[M].上海:华东师范大学出版社,2009[2]毛鸿翔等.数学学习心理学[M].南宁:广西师范大学出版社,1992均值不等式在解三角形问题中的应用廖可媛1童其林21福建省龙岩市永定一中(364100) 2福建省龙岩市永定区城关中学(364100)均值不等式作为中学数学的一个重要定理,常在各级各类的考试中得到考查,不仅在纯数学问题中考查,也在各个章节的内容中考查.本文主要介绍它在余弦定理以及两角和差正切公式中的应用.1 余弦定理中均值不等式的应用解三角形问题是高考三角函数考查的常见题目,在解答本类题目的时候,主要是利用三个基础知识(正余弦定理,三角形面积公式,三角形内角和定理)和两种转化方式(角化边和边化角),解题时应仔细体会,灵活运用.另外,还要注意余弦定理中均值不等式的应用.例1 在ABC ∆中,角A B C ,,对边分别为a b c ,,,设ABC ∆的面积为S,若22213b c a +−,则角A 的值为( ). A .π4 B .π3 C .2π3D .5π6解析由22213b c a +−,可得22211sin 32b c a bc A +−=,22223()(2sin )sin b c b c bc A A ∴+−+−,222()2cos )b c bc A A ∴+=−,22π2sin()6b c bc A ∴+=−,222b c bc +≥ ,πsin()16A ∴−≥,又πsin()16A −≤,则πsin()16A −=, 所以ππ62A −=,2π3A =,选C . 点评常见的题型是:已知222b c a +−,求A ,这样的问题我们容易求解,但已知条件变成222133b c a S +−=后,按已有的套路走不通了.这里需要通过“等导不等”,再由“不等导等”(夹逼法)求得结果,其中的均值不等式和正弦函数的值域,帮我们实现了这一愿望.例2 已知ABC ∆中,a b c ,,分别是内角A B C ,,所对的边,且222334a b c ab +−=,则下列结论正确的是( ).A .sin cos AB ≥ B .sin cos A B ≤C .cos cos A B ≤D .sin sin A B ≥ 解析 由222334a b c ab +−=, 得222334a b c ab +=+222cos 4a b ab C ab =+−+, 22(2cos )a b ab C ∴+=−.222a b ab +≥ ,(2cos )2ab C ab ∴−≥,即2cos 2C −≥,即cos 0C ≤.又π()C A B =−+, cos cos()C A B =−+, cos()0A B +≥,又0πA B <+<,π02A B ∴<+≤,ππ022A B <≤−<, 又sin y x =在π(0)2,是增函数,所以πsin sin()cos 2A B B ≤−=,选B .点评 问题的结论是A B ,的正弦或余弦的大小关系,没有C ,但π()C A B =−+,所以变形的时候要把2c 化成222cos a b ab C +−,再由均值不等式,及三角形内角关系,正弦函数的单调性,便得出结果.例3 在ABC ∆中,已知cos sin sin cos a b cC B B C=+,b =,当ABC ∆的面积最大时,则ABC ∆的周长为_______.解析 由cos sin sin cos a b cC B B C =+, 得sin sin sin cos sin sin cos A B C C B B C =+sin sin cos sin sin A B C B C ⇒=+,又sin sin()sin cos cos sin A B C B C B C =+=+, 所以cos sin sin sin B C B C = πtan 14B B ⇒=⇒=.1sin 2S ac B ==,2222cos b a c ac B =+−,所以222(2a c ac =+≥,2ac ≤当且仅当a c ==时等号成立,此时ABC ∆的周长为. 例4 设ABC ∆的内角A B C ,,所对的边分别为a , b c ,,且1cos 2a C cb −=. (1)求角A 的大小;(2)若1a =,求ABC ∆的周长的取值范围. 解析 (1) 由1cos 2a C cb −=, 得1sin cos sin sin 2A C CB −=,又sin sin()B A C =+ sin cos cos sin A C A C +,1sin cos sin 2C A C ∴=−. sin 0C ≠ ,1cos 2A ∴=−, 又0πA <<,2π3A ∴=.(2)解法1 由正弦定理得:sin sin a B bC A =,c C =, l a b c =++1sin )B C +1sin()]B A B ++11sin )2B B =π1)3B +.2π3A = , π(0)3B ∴∈,,ππ2π()333B +∈,,πsin()1]3B ∴+∈. 故ABC ∆的周长的取值范围是(21]. 解法2 因为2π3A =,1a =, 由余弦定理得222π2cos 13b c bc +−=, 即221b c bc ++=,22()11()2b c b c bc +∴+=+≤+,即24()3b c +≤,所以b c +≤当且仅当b c =时等号成立,故b c +. 1b c a +>= ,1b c ∴<+≤,21a b c ∴<++≤. 故ABC ∆的周长的取值范围是(21]3+,. 2 两角和或差的的正切公式中均值不等式的应用例5 已知ABC ∆中,三个内角A B C ,,对应的三边长分别为a b c ,,,且有24cos cos 9sin b A B a B =. (Ⅰ)求tan tan A B ⋅的值;(Ⅱ)求tan C 的最大值,并判断此时ABC ∆的形状.解析 (Ⅰ)24cos cos 9sin b A B a B = , 4cos cos 9sin sin A B A B ∴=, 显然cos cos 0A B ≠,4tan tan 9A B ∴⋅=. (Ⅱ)由(Ⅰ)知4tan tan 09A B ⋅=>, 故有tan 0A >,tan 0B >,4tan tan 3A B ∴+≥=, tan tan[π()]C A B =−+ tan()A B =−+tan tan 1tan tan A B A B+=−−9(tan tan )5A B =−+91255≤−×=−. 当且仅当tan tan A B =,即A B =时,tan C 取得最大值125−,此时ABC ∆为等腰三角形.例6 (2010年高考江苏卷·理14)某兴趣小组测量电视塔AE 的高度H (单位m ),如示意图1,垂直放置的标杆BC 的高度4m h =,仰角ABE α∠=,ADE β∠=.(1)该小组已经测得一组αβ,的值,tan α= 1.24,tan 1.20β=,请据此算出H 的值;(2)该小组分析若干测得的数据后,发现适当调整标杆到电视塔的距离d (单位m ),使α与β之差较大,可以提高测量精确度,若电视塔实际高度为125m ,问d 为多少时,αβ−最大.图1解析 此题关键要找出C 点的位置,清楚αβ−最大时tan()αβ−也最大.(1)因为tan AEBAα=, tan AE BC DA DBβ==,AE H =, 则tan HBA α=,tan H DA β=,4tan DB β=. 因为DA DB BA =+,所以4tan tan tan H Hββα=+, 代入tan 1.24α=,tan 1.20β=, 得41.20 1.20 1.24H H=+, 所以124m H =.(2)由题意知125tan dα=,4tan DB β=,因为BC DB DBAE DA DB BA ==+, 所以4125DB DB d=+, 则4121d DB =121tan dβ⇒=. 125121tan tan tan()1251211tan tan 1d d d dαβαβαβ−−−==++ 4125121d d =×+≤0)d >,当且仅当125121d d×=时,即d =时,tan()αβ−最大,因为π02αβ<−<,所以αβ−也取最大值.所以,d =时,αβ−取最大值.点评 这里正是利用正切函数的定义来解决实际问题的.主要考察学生对直角三角形角边关系的应用,第二问还考察学生对两角差的正切公式和基本不等式的熟练运用.在应用均值不等式解决三角形问题时,要注意以下几点:αd EβC B A D一是在使用公式2a b ab≥+和2a b+≥时,要注意这两者成立的条件是不相同的,前者只要求a b,都是实数,而后者要求a b,都是正数.二是在使用二元均值定理求最值时,必须具备三个条件:①在所求最值的代数式中,各变数均应是正数(如不是,则进行变号转换);②各变数的和或积必须为常数,以确保不等式一边为定值(如不是,则进行拆项或分解,务必使不等式的一端的和或积为常数);③各变数有相等的可能.三是在使用均值定理证明问题时,要注意它们反复使用后,再相加相乘时字母应满足的条件及多次使用后等号成立的条件是否一致,若不一致,则不等式中的等号不能成立.善用一题多解优化知识认知固化方法运用洪金坚福建省南安第三中学(362305)1 问题提出就终极目标的实现而言,解决问题的方法一个就够了.数学解题也是这样.那么,在数学解题活动中,为什么还要关注“一题多解”呢?对于这个问题,罗增儒教授曾指出,一题多解至少有两个功能:其一,多角度审视有助于接近问题的深层结构;其二,一个问题沟通不同的知识,有助于形成优化的认知结构.这表明,在平时的解题活动中,只用一种解法印证参考答案,是缺乏深度思考的表现,往往会导致解题“不到位”.换言之,这样的解题等于入宝山而空返.前不久,笔者所在学校高一年级第一次月考中有一道涉及“初高中衔接”的函数问题,学生的完成情况并不理想.阅卷表明,最为集中的问题是:多数学生因为求解思路单一与运算能力不强这两个因素的叠加作用,致使求解不能顺利完成.笔者在讲评时,引领学生多角度审视问题,进而发掘出不同的求解方法,在完成问题的“一题多解”的同时,优化了学生对相关知识的认知,固化了学生对相关方法的运用.2 案例呈现2.1 问题再现若二次函数()f x满足:函数(1)f x+为偶函数,()f x的最小值为4−,函数()f x的图象与x轴的两个交点为A B,,且||4AB=,则()f x的解析式为.2.2 解法探究思路1基于二次函数的一般式,运用待定系数法求解.解法1设2()(0)f x ax bx c a++≠,1(0)A x,,2(0)B x,,由||4AB=,得222116||()AB x x==−21212()4x x x x=+−2224()4b c b aca a a−=−−⋅=①;由()f x的最小值为4−可得2444ac ba−=−②;由(1)f x+为偶函数,即函数2()(2)g x ax a b x a b c=+++++为偶函数,可得20a b+=③.由①②两式相除得44a−=−,所以1a=.进而由③得2b=−.将1a=,2b=−代入②,可得3c=−.综上,2()23f x x x=−−.解法回观一般来说,求解二次函数的解析式,借助二次函数的一般式、运用待定系数法是通法.但以二次函数的一般式作为待定系数法的出发点,往往需要较强的运算求解能力.比如,在上述求解过程中,学生如果不能敏锐地发现①②两式在形式上的异同,而是基于代入消元法(借助2b a=−消去b,或12a b=−消去a),则容易因为运算能力的欠缺而导致运算错误或求解难以为继.考试的实测结果给出了佐证.。
正弦余弦均值不等式及其应用

正余弦均值不等式及其应用石嘴山市一中 刘先看个例子:在 △ABC 中,分别判断满足下列条件的三角形形状 ?⑴ sin A + sin B + sin C =332⑵ sin A·sin B·sin C = 338⑶ cos A + cos B + cos C = 32⑷ cos A·cos B·cos C = 18⑸ sin A 2+ sin B 2+ sin C 2= 32 ⑹2sin A +2sin B +2sin C = 94⑺2cos A + 2cos B + 2cos C = 32 答案:以上各题的三角形均仅为正三角!对于这样的题目,往往首先想到用三角恒等变形或正余弦定理直接导出 A = B = C 或 a = b = c 。
实践证明,这种方法根本行不通! 这些题目一般思路是灵活借用判别式法、不等式法、数形结合法等进行所谓“巧妙变换”来解之。
其“巧妙”程度因题而异,没有固定模式,不易掌握。
实际上,这些题目属于同一类问题,应有统一解法,本文就此问题进行探讨。
定理1:对于任意角α、β,令 γ = 2αβ+ ,则│sinα+ sinβ│≤ 2│sinγ│ ①sinα·sinβ ≤ 2sin γ ②│cosα+ cosβ│≤ 2│cosγ│ ③cosα·cosβ ≤ 2cos γ ④当且仅当 α=β + 2 kπ( k ∈Z )时,取“=”号。
定理1 仅是本文的特例,我们可以称:① 为 正弦和中值最大不等式;② 为 正弦积中值最大不等式;③ 为 余弦和中值最大不等式;④ 为 余弦积中值最大不等式,也可把它们统称为 正余弦中值定理 或 正余弦中值不等式。
证明:① ∵│sinα+ sinβ│=│2 sin 2αβ+·cos 2αβ-│≤│2 sin 2αβ+│∴│sinα+ sinβ│≤ 2│sinγ│当且仅当 α=β + 2 kπ( k ∈Z )时,取“=”号。
均值不等式在高中物理解题中的应用

均值不等式在高中物理解题中的应用
李钟琦
【期刊名称】《高中数理化》
【年(卷),期】2024()11
【摘要】在高中物理中常考一类极值问题,有些极值问题,能从物理的角度直接分析,而有些问题要把物理问题转化为数学问题,然后运用均值不等式求极值,方法简单,求解方便.1在运动学解题中的应用.直线运动和曲线运动中,求解时间或位移、路程时,常常涉及极大值和极小值问题,均值不等式是求解这类问题的重要方法.
【总页数】2页(P36-37)
【作者】李钟琦
【作者单位】长春外国语学校
【正文语种】中文
【中图分类】G63
【相关文献】
1.“定”,“动”相宜——二次函数在闭区间上的最值问题
2.均值不等式在高中物理解题中的应用
3.高中物理解题中的均值不等式运用策略
4.均值不等式在解三角形问题中的应用
因版权原因,仅展示原文概要,查看原文内容请购买。
一题多解——解三角形

一题多解——解三角形摘要:通过一道解三角形的题目,探索一题多解,分析解题方法,结合美国数学家波利亚的解题策略,阐述从边的角度入手以及从角入手的差异,揭示遇到问题具体分析,选择合适的解题方法.培养学生的数学核心素养,与时俱进,紧跟时代的步伐,增强创新意识和应用能力.关键词:三角形;解题策略;核心素养时代的变迁与社会的高速发展,对当代学生的能力提出更高层次的要求,21世纪中学生需具备良好的数学核心素养,从而相应提高自己的素养,分析问题,专研问题,寻找解决的路径,深化创新意识和应用能力.普通高中数学课程标准已于2018年在福建省全面铺开,发展学生的数学核心素养则是其中的重中之重,一题多解有助于提高学生数学学习的兴趣.方法的探索,严谨的解题过程推导,促进学生实践能力的提升以及创新意识的发展.从一道解三角形出发,根据常规解题思路分别为从角从边入手,寻求解决问题的方法,解题过程中遇到的困难以及困难的突破,一题多解扩充解题思路,加强应用数学知识解决问题的能力,发展学生创新意识.结合美国数学家波利亚的解题策略“弄清问题”、“拟定计划”、“实现计划”和“回顾反思”,在解决问题的过程中面临的问题,以及应用隐藏的辅助条件,达成通往解题的桥梁.最后回顾反思,寻找最优解,以及这一类问题的分析方法,总结提升,提高学生的能力.一、问题的提出已知,D为BC上的点,,,求当BD最大值时,AC的边长.二、分析问题波利亚解题策略的第一步为弄清楚题目,需弄清楚已知数据,画出题目所需图像,找出已知数据与所需要求解的未知数的关系,引入适当的符号,帮助充分理解题意.数学核心素养中数学抽象表明用数学语言阐述问题,充分理解题目的本身,同时形成理性思维,体现数学的本质,使学生能提高相应的关键能力.从题目可知这是一道解三角问题,因此需要画出相应的图形帮助理解问题(图一),从图形中可知∠ABC=∠ABD+∠CBD=150°,根据已知解题经验,可从边或角入手解决问题.三、解决问题波利亚在拟定计划中提出“你以前见过它吗?回顾之前的类型题,从以往经验出发,根据解三角形的解题经验,先从边的方面进行解决问题,核心素养中逻辑推理也阐明逻辑思考问题,把握事物之间的联系,探索解题过程.在分析问题中得到,, ,令,,则,可得(如图2) .因为求BD最大值,从边入手,需找到之间的关联,找到所得数据与BD的关系. BD在和上,,,通过图形与已知条件,可得,即,,,此时可通过计算的最小值,从而得到BD的最大值.方法一:,求的最小值,即的最小值为,,当且仅当时等号成立,可得,,.在求最值时运用化归转化的数学思想方法,用均值不等式来求最值.方法二:,,令,此函数为打勾函数,当时,即有最小值,此时,,.构造函数,应用函数与方程思想,转化求函数最值,最终的到结果.方法三:假设一个角度,将所有的已知量转化用此角度表示.假设,则,,,,即得,将AB与BC用含的式子表示在中,,得.在中,,.因为,可得此时需要应用三角函数公式进行化简,从而求出BD的值,求出AC的长.,此时根据解题经验转化为同名三角函数,即上下同除,,,,转化为函数,令,,,令,则,( 0,)(, ),,,即,,,,即,,,.可见此种方法思路清晰,但计算量大,如果换角度设为参数则可简化计算量.方法四:令,则,,可得,,,将齐次的三角函数转化为同名三角函数,即上下同除,,,,观察等式,巧设换元,化为二次函数求最值,从而得出BD的最大值.,,,即,,,此方法的关键是发现与互为补角,根据诱导公式可简化计算过程,并最终求解答案.方法五:以B为原点,AB为轴,过B做AB的垂线为轴,建立直角坐标系.设,,,得,易知,,直线AC:,直线BD:.联立直线AC与直线BD可得,,当且仅当等式成立,,,,,此方法是将几何问题转化为代数问题,用解析几何的方法求解平面几何问题.四、回顾提升波利亚的解题策略中执行计划时需要检验每步的正确性,方法一与方法二执行计划中的难点是不易想到边长AB、BC、BD之间的关系,三个未知数的关系不知如何建立,因此无法执行下去,此时需回归条件题目本身,找寻关系,应用已知经验以及解题信心寻找突破口,建立等式关系后,运用均值不等式或者转化函数求值思想即可得到答案.当学生能用此种方法得出结果表明其数学核心素养中的数学抽象达到水平二,能用数学语言进行表达,将文字图形转化为数学语言并且进行相应的数学推理和论证.方法三与方法四思维过程简单,但需要较强的数学计算功底,特别是方法三,学生需化简,换元,转化函数,应用倒数求极值从而得出相应的最值,其数学核心素养能力的数学运算达到水平三.面对计算问题,能找寻计算方向,明确计算程序,最终求解答案.方法四说明角度的适时选取可简化计算过程.这其中需要观察图形的特点,深知三角函数诱导公式的特点巧设参数.结合以往计算经验,构造二次函数,得出结果.方法五是用解析几何方法解决平面图形问题,方法需要学生建立合适的坐标系,并求解各个点的坐标,思路方法也较简单,但需要学生有较强的计算能力,能将所需结果计算出来.波利亚的解题策略的第四步为回顾反思,解三角形的题目从边或角方面入手,求边的最值常用均值不等式,提升思维能力,能简化计算过程,提升解题速度.从角方面入手,思维过程较易,但需要复杂的计算才能得到所需结果.对这一类解三角形问题分析总结能提升解题能力,并提升相应的数学素养.参考文献[1]普通高中数学课程标准[M].北京:人民教育出版社,2017.[2]波利亚.怎样解题:数学思维的新方法[M].上海科技教育出版社出版,2011.[3]波利亚.数学与猜想:合情推理摸式[M].科学出版社出版,2001.1。
专题24-解三角形中的最值、范围问题(解析版)

专题24 解三角形中的最值、范围问题解三角形问题是高考高频考点,命题大多放在解答题的第一题,主要利用三角形的内角和定理,正、余弦定理、三角形面积公式等知识解题,解题时要灵活利用三角形的边角关系进行“边转角”“角转边”,另外要注意22,,a c ac a c ++三者的关系. 高考中经常将三角变换及解三角形知识综合起来命题,如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果遇到的式子中含有角的正弦或边的一次式时,则考虑用正弦定理实现边角互化;以上特征都不明显时,则要考虑两个定理都有可能用到.而三角变换中主要是“变角、变函数名和变运算形式”,其中的核心是“变角”,即注意角之间的结构差异,弥补这种结构差异的依据就是三角公式. 1、正弦定理:2sin sin sin a b cR A B C===,其中R 为ABC 外接圆的半径 正弦定理的主要作用是方程和分式中的边角互化.其原则为关于边,或是角的正弦值是否具备齐次的特征.如果齐次则可直接进行边化角或是角化边,否则不可行 学/科-+网例如:(1)222222sin sin sin sin sin A B A B C a b ab c +-=⇔+-=(2)cos cos sin cos sin cos sin b C c B a B C C B A +=⇒+=(恒等式) (3)22sin sin sin bc B Ca A= 2、余弦定理:2222cos a b c bc A =+-变式:()()2221cos a b c bc A =+-+ 此公式在已知,a A 的情况下,配合均值不等式可得到b c +和bc 的最值 4、三角形中的不等关系(1)任意两边之和大于第三边:在判定是否构成三角形时,只需验证较小的两边之和是否比第三边大即可.由于不存在等号成立的条件,在求最值时使用较少(2)在三角形中,边角以及角的三角函数值存在等价关系:其中由cos cos>⇔>仅在A B A B>⇔<利用的是余弦函数单调性,而sin sinA B A B一个三角形内有效.5、解三角形中处理不等关系的几种方法(1)转变为一个变量的函数:通过边角互化和代入消元,将多变量表达式转变为函数,从而将问题转化为求函数的值域(最值)(2)利用均值不等式求得最值【经典例题】例1.【2018届百校联盟TOP20高三四月联考全国一卷】已知四边形中,,设及面积分别为,则的最大值为_____.【答案】【解析】分析:利用余弦定理推,求出的表达式,利用二次函数以及余弦函数的值的范围,求的最大值即可.点睛:求解三角函数的最值(或值域)时一定要注意自变量的取值范围,由于三角函数的周期性,正弦函数、余弦函数的最大值和最小值可能不在自变量区间的端点处取得.例2.【2018届普通高等学校招生全国统一考试高三下学期第二次调研】在中,角A,B,C所对的边分别为,则实数a 的取值范围是____________.【答案】.【解析】由,得,所以,则由余弦定理,得,解得,又,所以的范围是.例3.【2018届浙江省杭州市高三第二次检测】在△ABC 中,角A,B,C 所对的边分别为a,b,c.若对任意λ∈R,不等式恒成立,则的最大值为_____.【答案】2例4.【衡水金卷信息卷三】已知的三边分别为,,,所对的角分别为,,,且满足,且的外接圆的面积为,则的最大值的取值范围为__________.【答案】【解析】由的三边分别为,,可得:可知:,例5.【2018届湖南省株洲市高三检测(二)】已知中,角所对的边分别是,且.(1)求角的大小;(2)设向量,边长,当取最大值时,求边的长.【答案】(1)(2).【解析】分析:(1)由题意,根据正弦定理可得,再由余弦定理可得,由此可求角的大小;(2)因为由此可求当取最大值时,求边的长.(2)因为所以当时, 取最大值,此时, 由正弦定理得,例6.【2018届四川省攀枝花市高三第三次(4月)统考】已知的内角的对边分别为其面积为,且.学/科/*网(Ⅰ)求角;(II )若,当有且只有一解时,求实数的范围及的最大值. 【答案】(Ⅰ).(Ⅱ).【解析】分析:(Ⅰ)利用余弦定理和三角形的面积公式化简得到,再解这个三角方程即得A 的值. (II )先根据有且只有一解利用正弦定理和三角函数的图像得到m 的取值范围,再写出S 的函数表达式求其最大值. 详解:(Ⅰ)由己知(Ⅱ)由己知,当有且只有一解时,或,所以;当时,为直角三角形,当 时,由正弦定理 , 所以,当时,综上所述,.例7.【2018届四川省资阳市高三4月(三诊)】在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c ,且()()sin sin a b A B +- ()sin sin c C B =-.(1)求A .(2)若4a =,求22b c +的取值范围.【答案】(1)3A π=;(2)(]16,32.221616b c bc +=+>,进而可得结果.试题解析:(1)根据正弦定理得()()a b a b +- ()c c b =-,即222a b c bc -=-,则222122b c a bc +-=,即1cos 2A =,由于0πA <<, 【方法点睛】本题主要考查正弦定理及余弦定理的应用,属于中档题.在解及三角形有关的问题时,正弦定理、余弦定理是两个主要依据. 除了直接利用两定理求边和角以外,恒等变形过程中,一般来说 ,当条件中同时出现ab 及2b 、2a 时,往往用余弦定理,而题设中如果边和正弦、余弦函数交叉出现时,往往运用正弦定理将边化为正弦函数再结合和、差、倍角的正余弦公式进行解答.例8.【2018届甘肃省张掖市高三三诊】已知3cos ,cos 44x x m ⎛⎫=⎪⎝⎭,sin ,cos 44x x n ⎛⎫= ⎪⎝⎭,设函数()f x m n =⋅.(1)求函数()f x 的单调增区间;(2)设ABC ∆的内角A , B , C 所对的边分别为a , b , c ,且a , b , c 成等比数列,求()f B 的取值范围.【答案】(1) 424,433k k ππππ⎡⎤-+⎢⎥⎣⎦, k Z ∈.(2) ⎛ ⎝⎦. 【解析】试题分析:(1)由题()13cos ,cos sin ,cos sin 4444262x x x x x f x m n π⎛⎫⎛⎫⎛⎫=⋅=⋅=++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,根据正弦函数的性质222262x k k πππππ-≤+≤+可求其单调增区间;(2)由题2b ac =可知2222221cos 2222a cb ac ac ac ac B ac ac ac +-+--==≥=, (当且仅当a c =时取等号),所以03B π<≤, 6263B πππ<+≤,由此可求 ()f B 的取值范围.(当且仅当a c =时取等号),所以03B π<≤, 6263B πππ<+≤, ()311f B +<≤,综上, ()f B 的取值范围为311,2⎛⎤⎥⎝⎦. 例9.【2018届吉林省吉林市高三第三次调研】锐角ABC ∆中, ,,A B C 对边为,,a b c , ()()()222sin 3cos b a c B C ac A C --+=+(1)求A 的大小; (2)求代数式b c a+的取值范围.【答案】(1)3π(2)32b ca+≤ 【解析】试题分析:(1)由()()()222sin 3cos b a c B C ac A C --+=+及余弦定理的变形可得2cos sin 3cos B A B -=,因为cos 0B ≠,故得3sin 2A =,从而可得锐角ABC∆中3A π=.(2)利用正弦定理将所求变形为2sin sin 32sin sin 6B B b c B a A ππ⎛⎫++ ⎪+⎛⎫⎝⎭==+ ⎪⎝⎭,然后根据6B π+的取值范围求出代数式b c a+的取值范围即可.试题解析:(1)∵2222cos b a c ac B --=-, ()()()222sin 3cos b a c B C ac A C --+=+, ∵ABC ∆为锐角三角形,且3A π= ∴02{02B C ππ<<<<,即02{ 2032B B πππ<<<-<, 解得62B ππ<<,∴2,363B πππ<+<sin 16B π⎛⎫<+≤ ⎪⎝⎭.2b c a +<≤.故代数式b c a +的取值范围2⎤⎦.点睛:(1)求b c a+的取值范围时,可根据正弦定理将问题转化为形如()sin y A x ωϕ=+的函数的取值范围的问题解决,这是在解三角形问题中常用的一种方法,但在解题中要注意确定角x ωϕ+的范围.(2)解答本题时要注意“锐角三角形”这一条件的运用,根据此条件可的求得6B π+的范围,然后结合函数的图象可得sin 6B π⎛⎫+ ⎪⎝⎭的范围,以达到求解的目的.例10.【2018届衡水金卷信息卷(一)】已知ABC ∆的内角,,A B C 的对边分别为,,a b c ,若向量()()2,cos ,,cos m b c B n a A =-=-,且//m n .(1)求角A 的值;(2)已知ABC ∆的外接圆半径为3,求ABC ∆周长的取值范围.【答案】(1) 3A π= (2) (]4,6【解析】试题分析:(1)由//m n ,得62)0c cosA acosB -+=(,利用正弦定理统一到角上易得1cos 2A =;(2)根据题意,得2sin 2a R A ==,由余弦定理,得()223a b c bc =+-,结合均值不等式可得()216b c +≤,所以b c +的最大值为4,又2b c a +>=,从而得到ABC ∆周长的取值范围.得1cos 2A =.又()0,A π∈,所以3A π=.(2)根据题意,得4332sin 232a R A ==⨯=.由余弦定理,得()22222cos 3a b c bc A b c bc =+-=+-,即()223432b c bc b c +⎛⎫=+-≤ ⎪⎝⎭,整理得()216b c +≤,当且仅当2b c ==时,取等号,所以b c +的最大值为4.又2b c a +>=,所以24b c <+≤,所以46a b c <++≤. 所以ABC ∆的周长的取值范围为(]4,6.【精选精练】1.【2018届东莞市高三第二次考试】在中,若,则的取值范围为( ) A.B.C.D. 【答案】D【解析】因为,所以,即,即,2.【2018届湖南省衡阳市高三二模】在中,已知为的面积),若,则的取值范围是( )A. B.C.D. 【答案】C【解析】,,,,又,,,,故选C.3.【2018届四川省绵阳市高三三诊】四边形ABCD 中, 2AB =,1BC CD DA ===,设ABD ∆、BCD ∆的面积分别为1S 、2S ,则当2212S S +取最大值时, BD =__________.【答案】102【点睛】本小题主要考查三角形的面积公式的应用,考查同角三角函数关系,考查利用余弦定理解三角形,考查二次函数最值的求法.首先根据题目所求,利用三角形面积公式,写出面积的表达式,利用同角三角函数关系转化为余弦值,利用余弦定理化简,再利用配方法求得面积的最值,并求得取得最值时BD 的值.4.【2018届广东省肇庆市高三第三次模拟】已知的角对边分别为,若,且的面积为,则的最小值为________.【答案】5.【2018届辽宁省辽南协作校高三下学期一模】设的内角所对的边分别为且+,则的范围是__________.【答案】【解析】由+得,所以,即,再由余弦定理得,即,解得,又,所以的范围是.点睛:在解三角形问题中,一般需要利用余弦定理结合均值不等式,来求两边和的取值范围或者是三角形的面积的最值,只需运用余弦定理,并变形为两边和及两边积的等式,在利用均值不等式转化为关于两边和或两边积的不等式,解不等式即可求出范围.6.【2018届四川省攀枝花市高三第三次(4月)统考】已知锐角ABC ∆的内角A B C 、、的对边分别为a b c 、、,且2cos 2,2a C c b a +==,则ABC ∆的最大值为__________.即4bc ≤,所以ABC ∆的最大值为max 11sin 422S bc A ==⨯=. 点睛:本题主要考查了利用正弦定理和三角函数的恒等变换求解三角形问题,对于解三角形问题,通常利用正弦定理进行“边转角”寻求角的关系,利用“角转边”寻求边的关系,利用余弦定理借助三边关系求角,利用两角和差公式及二倍角公式求三角函数值. 利用正、余弦定理解三角形问题是高考高频考点,经常利用三角形内角和定理,三角形面积公式,结合正、余弦定理解题.7.【2018届宁夏石嘴山市高三4月适应性测试(一模)】已知,,a b c 分别为ABC ∆内角,,A B C 的对边,且sin cos b A B =.(1)求角B ;(2)若b =,求ABC ∆面积的最大值.【答案】(1)3B π=;(2).【解析】试题分析:(1)由正弦定理边化角得到tan B =,从而得解;(2)由余弦定理得2222cos b a c ac B =+-, 2212a c ac =+-结合222a c ac +≥即可得最值. 试题解析: (1)∵sin cos b A B =,∴由正弦定理可得sin sin cos B A A B =,即ABC面积的最大值为33. 8.【2018届四川省攀枝花市高三第三次(4月)统考】已知的内角的对边分别为其面积为,且.(Ⅰ)求角;(II)若,当有且只有一解时,求实数的范围及的最大值.【答案】(Ⅰ).(Ⅱ).【解析】分析:(Ⅰ)利用余弦定理和三角形的面积公式化简得到,再解这个三角方程即得A的值. (II)先根据有且只有一解利用正弦定理和三角函数的图像得到m的取值范围,再写出S的函数表达式求其最大值.详解:(Ⅰ)由己知由余弦定理得,所以,即,,所以.由正弦定理,,所以,当时,综上所述,.点睛:本题在转化有且只有一解时,容易漏掉m=2这一种情况.此时要通过正弦定理和正弦函数的图像分析,不能死记硬背.先由正弦定理得再画正弦函数的图像得到或.9.【衡水金卷信息卷(二)】在ABC ∆中,内角,,A B C 所对的边分别为,,a b c ,已知sin 3cos a C c A =.(1)求角A 的大小;(2)若2b =,且43B ππ≤≤,求边c 的取值范围.【答案】(1) 3A π=;(2) 31⎡⎤⎣⎦. 在ABC ∆中,由正弦定理,得sin sin b cB C=,∴22sin 2sin 3cos 3311sin sin B C B c B B π⎛⎫- ⎪⎝⎭===+=,∵43B ππ≤≤,∴1tan 3B ≤≤231c ≤≤,即c 的取值范围为31⎡⎤⎣⎦.10.【2018届辽宁省沈阳市东北育才学校高三三模】已知ABC ∆三个内角,,A B C 的对边分别为,,a b c , ABC ∆的面积S 满足2223a b c =+-. (1)求角C 的值;(2)求()cos2cos A A B +-的取值范围. 【答案】(1)23π;(2)(3tan 3C =-,又0C π<<, 23C π∴=.(2)()33cos2cos =cos2cos 2cos2322A A B A A A A π⎛⎫+-+-=+ ⎪⎝⎭=3sin 23A π⎛⎫+ ⎪⎝⎭11.【2018届江苏省姜堰、溧阳、前黄中学高三4月联考】在ABC ∆中,内角,,A B C 的对边分别为,,a b c ,已知222a c b -=,且sin cos 3cos sin A C A C =.(1)求b 的值;(2)若4B π=, S 为ABC ∆的面积,求82cos cos S A C +的取值范围.【答案】(1) 4b =(2) (【解析】试题分析:(1)利用正余弦定理, sin cos 3cos sin A C A C =可转化为2222b ac -=,又222a c b -=,从而得到b 的值;(2)由正弦定理1sin sin 2S bc A A C ==,故324S AcosC A π⎛⎫+=-⎪⎝⎭限制角A的范围,求出cos S A C +的取值范围. (2)由正弦定理sin sin b c B C=得114sin 4sin sin sin 22sin4S bc A A C A C π==⋅⋅=在ABC ∆中,由3040{202A A C A Cπππ<<<<<<> 得3,82A ππ⎛⎫∈ ⎪⎝⎭320,44A ππ⎛⎫∴-∈ ⎪⎝⎭,3cos 2,142A π⎛⎫⎛⎫∴-∈ ⎪ ⎪⎪⎝⎭⎝⎭12.【衡水金卷信息卷 (五)】在锐角ABC ∆中,内角A , B , C 的对边分别为a , b , c ,且25sin 2sin 224B C A π+⎛⎫+-=- ⎪⎝⎭. (1)求角A ;(2)若a =ABC ∆周长的取值范围.【答案】(1) 3A π=(2) (3试题解析:(1)∵252224B C sin A sin π+⎛⎫+-=- ⎪⎝⎭,∴()15224cos B C cos A -+-=-, ∴2152124cosA cos A +--=-,整理,得28210cos A cosA --=,∴14cosA =-或12cosA =,∵02A π<<,∴12cosA =,即3A π=.(2)设ABC ∆的外接圆半径为r,则22a r sinA===,∴1r =.∴ABC ∆周长的取值范围是(3+.。
高中数学专题讲义:三角形中的范围问题你处理好了吗
高中数学专题讲义:三角形中的范围问题你处理好了吗考纲要求:1.与平面向量结合的三角形问题,常利用平面向量的知识将向量条件或问题化为三角形的边角条件或问题,再利用正余弦定理化为纯边或纯角条件或问题求解,如在ABC ∆中,由222222cos cos 22a b c a b c CA CB CA CB C ab C ab ab +-+-⋅====. 2.与数列结合的三角形问题,常利用数列的相关知识将条件或问题转化为三角形的边角条件或问题,再利用正余弦定理化为纯边或纯角条件或问题求解.3.三角形中的取值范围问题或最值问题,常常利用正余弦定理化成纯边问题,利用基本不等式或重要求最值,或者化成纯角问题,利用三角公式化成一个角的三角函数,利用三角函数的图像与性质求最值,要注意角的范围. 基础知识回顾: 1、正弦定理:2sin sin sin a b cR A B C===,其中R 为ABC 外接圆的半径 正弦定理的主要作用是方程和分式中的边角互化.其原则为关于边,或是角的正弦值是否具备齐次的特征.如果齐次则可直接进行边化角或是角化边,否则不可行 例如:(1)222222sin sin sin sin sin A B A B C a b ab c +-=⇔+-=(2)cos cos sin cos sin cos sin b C c B a B C C B A +=⇒+=(恒等式) (3)22sin sin sin bc B Ca A= 2、余弦定理:2222cos a b c bc A =+-变式:()()2221cos a b c bc A =+-+ 此公式在已知,a A 的情况下,配合均值不等式可得到b c +和bc 的最值3、三角形面积公式:(1)12S a h =⋅ (a 为三角形的底,h 为对应的高)(2)111sin sin sin 222S ab C bc A ac B ===(3)211sin 2sin 2sin sin 2sin sin sin 22S ab C R A R B C R A B C ==⋅⋅=(其中R 为外接圆半径)4、三角形内角和:A B C π++=,从而可得到:(1)正余弦关系式:()()sin sin sin A B C B C π=-+=+⎡⎤⎣⎦ ()()cos cos cos A B C B C π=-+=-+⎡⎤⎣⎦(2)在已知一角的情况下,可用另一个角表示第三个角,达到消元的目的 5、两角和差的正余弦公式:()sin sin cos sin cos A B A B B A ±=±()cos cos cos sin sin A B A B A B ±=6、辅助角公式:()22sin cos sin a A b B a b A ϕ+=++,其中tan baϕ= 应用举例:类型一、与边长有关的范围问题【例1】【海南省海南中学高三第五次月考】设锐角三角形ABC 的内角A,B,C 的对边分别为a,b,c,(Ⅰ)求B 的大小; (Ⅱ)若,求的取值范围. 【答案】(1)(2)即:即:又的取值范围为【点睛】本题主要考查正弦定理,余弦定理的应用,基本不等式的应用,属于基础题.【例2】【黑龙江省普通高等学校招生全国统一考试仿真模拟(二)】在中,角,,的对边分别为,,,已知.(1)求的值;(2))若角是钝角,且,求的取值范围.【答案】(1) .(2) .∴,①∵,∴,∴,②由①②得的范围是.【点睛】解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化边和角之间的关系,从而达到解决问题的目的.其基本步骤是:第一步:定条件,即确定三角形中的已知和所求,在图形中标出来,然后确定转化的方向. 第二步:定工具,即根据条件和所求合理选择转化的工具,实施边角之间的互化.第三步:求结果.类型二、与周长有关的范围问题【例3】【重庆市西南大学附中高2018级第四次月考】已知函数.(1)求的对称轴所在直线方程及其对称中心;(2)在中,内角、、所对的边分别是、、,且,,求周长的取值范围.【答案】(1)对称轴方程为,,对称中心为,(2)由,∴,∴的对称中心为,(2)∵,∴,∴,∴,得:,,∴又,∴,∴点睛:第(2)周长范围还可用正弦定理化边为角,利用三角函数性质求得:解:∵,∴,∵,∴∴,∴由正弦定理得:∴,∴∵,∴∴的周长范围为【例4】【四川省2015级高三全国Ⅲ卷冲刺演练(一)】在中,,.(1)若,求的长及边上的高;(2)若为锐角三角形,求的周长的取值范围.【答案】(1);(2).∴∴.∵∴.由等面积法可得,则.(2)设.∵∴角必为锐角.∵为锐角三角形∴角,均为锐角,则,,于是,解得.故的周长的取值范围为.点睛:本题考查余弦定理及三角形面积的应用.解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化边和角之间的关系,从而达到解决问题的目的,其基本步骤是:第一步:定条件,即确定三角形中的已知和所求,在图形中标出来,然后确定转化的方向;第二步:定工具,根据条件和所求合理选择转化的工具,实施边角之间的转换;第三步:求结果.类型三、与面积有关的范围问题【例5】【5月高三第三次全国大联考(新课标Ⅲ卷)】在锐角三角形中,内角,,所对的边分别为,,,且.(1)求;(2)若,求的面积的取值范围.【答案】(1);(2)由正弦定理可得,即,∵,∴,∴,∵,∴,即.又,可得.【例6】【辽宁省庄河市高级中学、沈阳市第二十中学高三上学期第一次联考】已知函数在区间上单调递增,在区间上单调递减.如图,四边形中,为的内角的对边,且满足.(1)证明:;(2)若,设,,,求四边形面积的最大值.【答案】(1)见解析;(2).方法、规律归纳:1、三角形中的不等关系(1)任意两边之和大于第三边:在判定是否构成三角形时,只需验证较小的两边之和是否比第三边大即可.由于不存在等号成立的条件,在求最值时使用较少(2)在三角形中,边角以及角的三角函数值存在等价关系:sin sin cos cos>⇔>⇔>⇒<a b A B A B A B其中由cos cos>⇔<利用的是余弦函数单调性,而sin sin>⇔>仅在一个三角A B A BA B A B形内有效.2、解三角形中处理不等关系的几种方法(1)转变为一个变量的函数:通过边角互化和代入消元,将多变量表达式转变为函数,从而将问题转化为求函数的值域(2)利用均值不等式求得最值实战演练:1.【山东省济南省高三第二次模拟考试】在中, ,.(1)求的长;(2)设是平面内一动点,且满足,求的取值范围.【答案】(1);(2).(2)设,则.在中,由余弦定理知:.,又,,的取值范围为.点睛:(1)本题主要考查正弦定理、余弦定理和三角函数的图像和性质,意在考查学生对这些基础知识的掌握能力和逻辑分析推理能力.(2)解答本题的关键是求出的表达式,再结合的范围求函数的值域.2.【辽宁省大连市高三第二次模拟考试】在中,,是边上的一点.(1)若,求的长;(2)若,求周长的取值范围.【答案】(1)(2)(Ⅱ)在△ABC中由正弦定理得.的周长为 .点睛:(1)本题主要考查数量积,考查正弦定理和余弦定理解三角形,意在考查学生对这些基础知识的掌握能力和函数的思想及分析推理能力. (2)本题求周长的取值范围运用了函数的思想,先求,再求函数的定义域,再利用三角函数的图像性质求其范围.函数的思想是高中数学的重要思想,大家要理解掌握并灵活运用.3.【云南省昆明市高三5月适应性检测】在中,内角所对的边分别是,已知(Ⅰ)求;(Ⅱ)当时,求的取值范围.【答案】(1);(2).,,所以,因为,所以(Ⅱ)由正弦定理:得:,所以,因为,,所以.点睛:(1)知的边和角,求其它的边和角,注意正弦定理、余弦定理的运用,知对角对边,可用余弦定理;若知边的平方关系,应想到余弦定理;(2)求的取值范围,应将角的个数转化为一个,如,然后用辅助角公式化成一个角的三角函数,用三角函数的性质求取值范围.4.【湖南省岳阳市第一中学高三第一次模拟考试】已知,,设函数.(1)求函数的单调增区间;(2)设的内角所对的边分别为,且成等比数列,求的取值范围.【答案】(1), ;(2).令,则,,所以函数的单调递增区间为,.(2)由可知,(当且仅当时取等号),所以,,,综上,的取值范围为.点睛:此类题目是三角函数问题中的典型题目,可谓相当经典.解答本题,关键在于能利用三角公式化简函数、进一步讨论函数的性质,本题易错点在于一是图象的变换与解析式的对应,二是忽视设定角的范围.难度不大,能较好的考查考生的基本运算求解能力及复杂式子的变形能力等.5.【重庆市綦江区高三5月预测调研考试】已知,,函数.(Ⅰ)求函数零点;(Ⅱ)若锐角的三内角、、的对边分别是、、,且,求的取值范围.【答案】(1)(2)所以函数零点满足,由,解得,.6.【四川省攀枝花市高三第三次(4月)统考】已知的内角的对边分别为其面积为,且.(Ⅰ)求角;(II)若,当有且只有一解时,求实数的范围及的最大值.【答案】(Ⅰ).(Ⅱ).【解析】分析:(Ⅰ)利用余弦定理和三角形的面积公式化简得到,再解这个三角方程即得A的值. (II)先根据有且只有一解利用正弦定理和三角函数的图像得到m的取值范围,再写出S的函数表达式求其最大值.详解:(Ⅰ)由己知由余弦定理得,所以,即,,所以.综上所述,.点睛:本题在转化有且只有一解时,容易漏掉m=2这一种情况.此时要通过正弦定理和正弦函数的图像分析,不能死记硬背.先由正弦定理得再画正弦函数的图像得到或.7.【四川省资阳市高三4月模拟考试(三诊)】在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c ,且()()sin sin a b A B +- ()sin sin c C B =-. (1)求A .(2)若4a =,求22b c +的取值范围. 【答案】(1)3A π=;(2)(]16,32.(2)根据余弦定理, 2222cos3a b c bc π=+-,所以222216162b c b c bc ++=+≤+,则有2232b c +≤,又221616b c bc +=+>, 所以22b c +的取值范围是(]16,32.【方法点睛】本题主要考查正弦定理及余弦定理的应用,属于中档题.在解与三角形有关的问题时,正弦定理、余弦定理是两个主要依据. 除了直接利用两定理求边和角以外,恒等变形过程中,一般来说 ,当条件中同时出现ab 及2b 、2a 时,往往用余弦定理,而题设中如果边和正弦、余弦函数交叉出现时,往往运用正弦定理将边化为正弦函数再结合和、差、倍角的正余弦公式进行解答.8.【衡水金卷 普通高校招生全国卷 I A 信息卷】在ABC ∆中,内角,,A B C 所对的边分别为,,a b c ,已知sin 3cos a C c A =.(1)求角A 的大小; (2)若2b =,且43B ππ≤≤,求边c 的取值范围.【答案】(1) 3A π=;(2) 2,31⎡⎤+⎣⎦.9.【江苏省姜堰、溧阳、前黄中学高三4月联考】在ABC ∆中,内角,,A B C 的对边分别为,,a b c ,已知222a c b -=,且sin cos 3cos sin A C A C =.(1)求b 的值; (2)若4Bπ=, S 为ABC ∆的面积,求82cos cos S A C +的取值范围.【答案】(1) 4b = (2) ()8,82(2)由正弦定理sin sin b c B C =得114sin 4sin sin 82sin sin 22sin 4S bc A A C A C π==⋅⋅=()382cos 82cos 82cos 24S AcosC A C A π⎛⎫∴+=-=-⎪⎝⎭, 在ABC ∆中,由3040{202A A C A Cπππ<<<<<<> 得3,82A ππ⎛⎫∈ ⎪⎝⎭ 320,44A ππ⎛⎫∴-∈ ⎪⎝⎭, 32cos 2,142A π⎛⎫⎛⎫∴-∈ ⎪ ⎪ ⎪⎝⎭⎝⎭(82cos 8,82S AcosC ∴+∈.10.【吉林省吉林市高三第三次调研考试】锐角ABC ∆中, ,,A B C 对边为,,a b c ,()()()222sin 3cos ba cB C ac A C --+=+(1)求A 的大小; (2)求代数式b ca+的取值范围. 【答案】(1)3π(2)32b c a+<≤ 试题解析:(1)∵2222cos b a c ac B --=-, ()()()222sin 3cos b a c B C ac A C --+=+, ∴()()2cos sin 3cos ac B B C ac A C -+=+ , ∴()()2cos sin 3,B A B ππ--=- ∴2cos sin 3cos B A B -=, 又ABC ∆是锐角三角形, ∴cos 0B ≠, ∴3sin A = ∴锐角3A π=.(2)由正弦定理得sin sin sin a b cA B C==, ∴sin sin ,sin sin a B a Cb c A A==∴233sin sin sin sin sin 3222sin sin sin 6sin 3B B B Bb c B C B a A A πππ⎛⎫++ ⎪++⎛⎫⎝⎭====+ ⎪⎝⎭,∵ABC ∆为锐角三角形,且3A π=∴02{02B Cππ<<<<,即02{ 2032B B πππ<<<-<, 解得62B ππ<<,∴2,363B πππ<+< ∴3sin 16B π⎛⎫<+≤ ⎪⎝⎭.∴32b ca+<≤. 故代数式b ca+的取值范围(3,2⎤⎦.11.【甘肃省西北师范大学附属中学高三冲刺诊断考试】已知函数(1)求函数的单调增区间;最大值,以及取得最大值时x 的取值集合; (2)已知中,角A 、B 、C 的对边分别为a ,b ,c ,若,求实数a 的取值范围.【答案】(1)2, .(2) a ∈[1,2).【解析】分析:(1)由三角恒等变换的公式,化简得,利用三角函数的图象与性质,即可得到结果. (2)由,求得,再由余弦定理和基本不等式,即可求解边的取值范围.详解:(1),,可得f (x )递增区间为, 函数f (x )最大值为2,当且仅当,即,即取到∴.12.【衡水金卷信息卷 全国卷 I A 】已知ABC ∆的内角,,A B C 的对边分别为,,a b c ,若向量()()2,cos ,,cos m b c B n a A =-=-,且//m n . (1)求角A 的值;(2)已知ABC ∆的外接圆半径为23,求ABC ∆周长的取值范围. 【答案】(1) 3A π=(2) (]4,6【解析】试题分析:(1)由//m n ,得62)0c cosA acosB -+=(,利用正弦定理统一到角上易得1cos 2A =;(2)根据题意,得2sin 2a R A ==,由余弦定理,得()223a b c bc =+-,结合均值不等式可得()216b c +≤,所以b c +的最大值为4,又2b c a +>=,从而得到ABC ∆周长的取值范围. 试题解析:(1)由//m n ,得62)0c cosA acosB -+=(. 由正弦定理,得2sin sin cos 0sinBcosA CcosA A B -+=, 即()2sin CcosA sin A B sinC =+=. 在ABC ∆中,由0sinC >, 得1cos 2A =. 又()0,A π∈,所以3A π=.13.【天津市部分区高三质量调查(二)】已知函数()的图象上相邻的最高点的距离是. (1)求函数的解析式; (2)在锐角中,内角满足,求的取值范围.【答案】(1);(2).(2)由得,即∴,又,∴∵是锐角三角形,∴,∴,∴∴点睛:本题考查了三角函数的图象与性质的应用问题,也考查了解三角形的应用问题,是中档题.14.【普通高校招生全国卷 一(A ) 衡水金卷】三信息卷 (五)】在锐角ABC ∆中,内角A ,B ,C 的对边分别为a , b , c ,且25sin 2sin 224B C A π+⎛⎫+-=- ⎪⎝⎭. (1)求角A ;(2)若3a =ABC ∆周长的取值范围.【答案】(1) 3A π=(2) (33,33⎤+⎦ 【解析】试题分析:(1)将所给的三角恒等式整理变形可得28210cos A cosA --=,结合△ABC 为锐角三角形可得12cosA =, 3A π=. (2)设ABC ∆的外接圆半径为r ,由正弦定理可得1r =.则()2b c r sinB sinC +=+236sin B π⎛⎫=+ ⎪⎝⎭,利用△ABC 为锐角三角形可求得62B ππ<<,则3,162sin B π⎛⎤⎛⎫+∈ ⎥ ⎪ ⎝⎭⎝⎦, ABC ∆周长的取值范围是(33,33⎤+⎦.(2)设ABC ∆的外接圆半径为r , 则3223ar sinA===,∴ 1r =. ∴()2b c r sinB sinC +=+ 223sinB sin B π⎡⎤⎛⎫=+- ⎪⎢⎥⎝⎭⎣⎦ 236sin B π⎛⎫=+ ⎪⎝⎭,由题意02{2032B B πππ<<<-<,∴62B ππ<<,∴2363B πππ<+<,∴3,16sin B π⎛⎤⎛⎫+∈ ⎥ ⎪ ⎝⎭⎝⎦, ∴(3,23b c ⎤+∈⎦,∴ABC ∆周长的取值范围是(33,33⎤+⎦.15.【江苏省苏锡常镇四市2017-2018学年度高三教学情况调研(二)】在△中,三个内角,,的对边分别为,设△的面积为,且.(1)求的大小;(2)设向量,,求的取值范围.【答案】(1) . (2).(2)由向量, ,得.由(1)知,所以,所以.所以.所以.所以.即取值范围是.。
《均值不等式》 知识清单
《均值不等式》知识清单一、均值不等式的定义均值不等式是数学中的一个重要不等式,它描述了若干个正数的算术平均数与几何平均数之间的关系。
对于 n 个正实数 a1,a2,…,an,它们的算术平均数为(a1 + a2 +… + an) / n ,几何平均数为(a1 × a2 × … × an) ^(1 / n) 。
二、常见的均值不等式形式1、两个正数的均值不等式对于两个正实数 a 和 b ,有算术平均数(a + b) / 2 ,几何平均数√(ab) ,则均值不等式表述为:(a + b) /2 ≥ √(ab) ,当且仅当 a = b 时,等号成立。
2、三个正数的均值不等式对于三个正实数 a、b、c ,有(a + b + c) /3 ≥ (abc) ^(1 /3) ,当且仅当 a = b = c 时,等号成立。
三、均值不等式的证明1、两个正数的均值不等式证明方法一:作差法\\begin{align}\frac{a + b}{2} \sqrt{ab} &=\frac{a + b 2\sqrt{ab}}{2}\\&=\frac{(\sqrt{a} \sqrt{b})^2}{2}\end{align}\因为任何实数的平方大于等于 0 ,所以(\sqrt{a} \sqrt{b})^2 ≥ 0 ,则\(\frac{a + b}{2} \sqrt{ab} ≥ 0\),即\(\frac{a +b}{2} ≥ \sqrt{ab}\),当且仅当\(\sqrt{a} =\sqrt{b}\),即 a = b 时,等号成立。
方法二:分析法要证明\(\frac{a + b}{2} ≥ \sqrt{ab}\),只需证明\(a +b ≥ 2\sqrt{ab}\),即证明\(a 2\sqrt{ab} +b ≥ 0\),而\(a 2\sqrt{ab} + b =(\sqrt{a} \sqrt{b})^2 ≥ 0\),所以原不等式成立,当且仅当 a = b 时,等号成立。
基本(均值)不等式与其他知识相结合的9种方式(教师版)
基本(均值)不等式与其他知识相结合的9种方式基本(均值)不等式是解决函数、立体几何、三角函数、数列、向量、解三角形等知识领域重要的方法之一.本资料整理高一知识融合试题,试题偏难,仅供强基计划学生选用.一、不等式与三角函数1.已知α+β+γ=π,β为锐角,tan α=3tan β,则1tan γ+1tan α的最小值为()A.12B.43C.32 D.34解析:∵α+β+γ=π,∴tan γ=-tan (α+β)=-tan α+tan β1-tan αtan β=-4tan β1-3tan 2β,∴1tan γ+1tan α=3tan 2β-14tan β+13tan β=9tan 2β+112tan β=34tan β+19tan β≥34×23=12,当且仅当tan β=19tan β即tan β=13时取等号,所以1tan γ+1tan α的最小值为12.故选:A .二、不等式与数列2.阅读:已知a 、b ∈(0,+∞),a +b =1,求y =1a +2b的最小值.解法如下:y =1a +2b =(1a +2b )(a +b )=b a +2ab +3≥3+22,当且仅当b a =2a b ,即a =2-1,b =2-2时取到等号,则y =1a +2b的最小值为3+2 2.应用上述解法,求解下列问题:(1)已知a ,b ,c ∈(0,+∞),a +b +c =1,求y =1a +1b+1c 的最小值;(2)已知x ∈(0,12),求函数y =1x +81-2x的最小值;(3)已知正数a 1、a 2、a 3,⋯,a n ,a 1+a 2+a 3+⋯+a n =1,求证:S =a 21a 1+a 2+a 22a 2+a 3+a 23a 3+a 4+⋯+a 2na n +a 1≥12.解析:(1)∵a +b +c =1,∴y =1a +1b +1c =(a +b +c )(1a +1b +1c )=3+(b a +a b +c a +a c +c b+bc )≥3+2b a ⋅a b +2c a ⋅a c +2c b ⋅b c =9,当且仅当a =b =c =13时取等号.即y =1a +1b+1c 的最小值为9.(2)y =22x +81-2x =(22x +81-2x )(2x +1-2x )=10+2⋅1-2x 2x +8⋅2x1-2x,而x ∈(0,12),∴2⋅1-2x 2x +8⋅2x1-2x≥22(1-2x )2x ⋅8⋅2x 1-2x =8,当且仅当2(1-2x )2x =8⋅2x 1-2x ,即x =16∈(0,12)时取到等号,则y ≥18,∴函数y =1x +81-2x的最小值为18.(3)∵a 1+a 2+a 3+…+a n =1,∴2S =(a 12a 1+a 2+a 22a 2+a 3+a 32a 3+a 4+⋯+a n2a n +a 1)[(a 1+a 2)+(a 2+a 3)+…+(a n +a 1)]=(a 21+a 22+⋯+a 2n )+[a 21a 1+a 2(a 2+a 3)+a 22a 2+a 3(a 1+a 2)+⋯+a 2n a n +a 1(a 1+a 2)+a 21a 1+a 2(a 3+a 4)+⋯]≥(a 21+a 22+⋯+a 2n )+(2a 1a 2+2a 2a 3+⋯+2a n a 1)=(a 1+a 2+⋯+a n )2=1.当且仅当a 1=a 2=⋯=a n =1n 时取到等号,则S ≥12.三、不等式与立体几何3.已知三棱锥A -BCD 的所有顶点都在球O 的球面上,AD ⊥平面ABC ,∠BAC =120°,AD =2,若球O 的表面积为20π,则三棱锥A -BCD 的体积的最大值为()A.33B.233C.3D.23【解析】设球O 的半径为R ,AB =x ,AC =y ,由4πR 2=20π,得R 2=5.如图:设三角形ABC 的外心为G ,连接OG ,GA ,OA ,可得OG =12AD =1,则AG =R 2-1=2.在ΔABC 中,由正弦定理可得:BCsin120°=2AG =4,即BC =23,由余弦定理可得,BC 2=12=x 2+y 2-2xy ×(-12)=x 2+y 2+xy ≥3xy ,∴xy ≤4.则三棱锥A -BCD 的体积的最大值为13×12×4×sin120°×2=233.故选:B .4.如图,在三棱锥S -ABC 中,SA ⊥面ABC ,AB ⊥BC ,E 、F 是SC 上两个三等分点,记二面角E -AB -F 的平面角为α,则tan α()A.有最大值43B.有最大值34C.有最小值43D.有最小值34【解析】将三棱锥放入长方体中,设AB =a ,BC =b ,AS =c ,如图所示:过E 作EN ⊥平面ABC 与N ,NM ⊥AB 与M ,连接ME ,则∠EMN 为二面角E -AB -C 的平面角,设为α1,则NE =13c ,MN =23b ,故tan α1=c2b .同理可得:设二面角F -AB -S 的平面角为α2,tan α2=b 2c.tan α=tan π2-α1-α2 =1-tan α1tan α2tan α1+tan α2=34c 2b+b2c ≤34,当c 2b=b 2c ,即b =c 时等号成立.故选:B .5.如图,已知四面体ABCD 为正四面体,AB =22,E ,F 分别是AD ,BC 中点.若用一个与直线EF 垂直,且与四面体的每一个面都相交的平面α去截该四面体,由此得到一个多边形截面,则该多边形截面面积最大值为()A.1B.2C.2D.22【解析】把正四面体补为正方体,如图,根据题意,KL //BC ,LM //GH ,KL BC =AL AB ,LM AD =BLAB ,所以KL =AL ,LM =BL ,故KL +LM =AL +BL =22,S 截面=KL ⋅LM ≤KL +LM 2 2=2,当且仅当KL =LM 时成立,故选:C .四、不等式证明6.设x ,y ,z >0,a =4x +1y ,b =4y +1z ,c =4z +1x,则a ,b ,c 三个数()A.都小于4B.至少有一个不大于4C.都大于4D.至少有一个不小于4【解析】假设三个数4x +1y <4且4y +1z <4且4z +1x<4,相加得:1x +4x +1y +4y +1z+4z <12,由基本不等式得:1x +4x ≥4;1y +4y ≥4;1z+4z ≥4;相加得:1x +4x +1y +4y +1z+4z ≥12,与假设矛盾;所以假设不成立,三个数4x +1y 、4y +1z 、4z +1x 至少有一个不小于4.故选:D .7.已知a ,b ,c ∈R ,a 2+b 2+c 2=1.1 证明:-12≤ab +bc +ca ≤1.2 证明:a 2b 2+c 2 +b 2c 2+a 2 +c 2a 2+b 2 ≤23.【解析】1 证明:由a +b +c 2=a 2+b 2+c 2+2ab +2bc +2ca =1+2ab +2bc +2ca ≥0,得ab +bc +ca ≥-12.另一方面,a 2+b 2≥2ab ,b 2+c 2≥2bc ,c 2+a 2≥2ca ,所以2a 2+2b 2+2c 2≥2ab +2bc +2ca ,即ab +bc +ca ≤1.所以-12≤ab +bc +ca ≤1.2 证明:a 2b 2+c 2 +b 2c 2+a 2 +c 2a 2+b 2 =a 21-a 2 +b 21-b 2 +c 21-c 2 =1-a 4+b 4+c 4 ,因为a 4+b 4+c 4=a 2+b 2+c 2 2-2a 2b 2-2b 2c 2-2c 2a 2≥1-a 4+b 4+b 4+c 4+c 4+a 4 ,即3a 4+b 4+c 4 ≥1,则a 4+b 4+c 4≥13,所以a 2b 2+c 2 +b 2c 2+a 2 +c 2a 2+b 2 ≤23.8.已知a ,b ,c 为正数,且满足a +b +c =1. 证明:(1)1a +1b+1c ≥9;(2)ac +bc +ab -abc ≤827.【解析】(1)a +b +c =1,故1a +1b +1c =a +b +c a +a +b +c b+a +b +cc =3+b a +a b +c a +a c +c b+b c ≥3+2+2+2=9,当a =b =c =13时等号成立.(2)易知1-a >0,1-b >0,1-c >0.ac +bc +ab -abc =1-a +b +c +ac +bc +ab -abc =1-a 1-b 1-c≤1-a +1-b +1-c 3 3=827.当a =b =c =13时等号成立.9.设实数x ,y 满足2x +y =1.1 若2y -1 -2x <3,求x 的取值范围;2 若x >0,y >0,求证:1x +2y -2xy ≥152.【解析】1 由2x +y =1,得y =1-2x ,所以不等式2y -1 -2x <3,即为4x -1 -2x <3,所以有1-4x +2x <3x <0 或0≤x ≤141-4x -2x <3 或x >144x -1-2x <3解得-1<x <0或 0≤x ≤14 或14<x <2,所x 的取值范围为x ∈-1,2 .2 ∵x >0,y >0,2x +y =1所以1x +2y =1x +2y 2x +y =4+y x +4xy≥4+4=8当且仅当y x =4x y ,即2x =y =12时取等号.又-2xy ≥-2x +y 2=-12,当且仅当2x =y =12时取等号,所以1x +2y -2xy ≥152,当且仅当2x =y =12时取等号.10.1在锐角ΔABC 中,证明:(1)tan A +tan B +tan C =tan A tan B tan C ;(2)tan A ⋅tan B ⋅tan C ≥3 3.证明:(1)∵tan C =-tan (A +B )=tan A +tan Btan A tan B -1∴tan A +tan B +tan C =tan A tan B tan C ,(2)解法1:∵y =tan x ,x ∈(0,π2)是凸函数,∴tan A tan B tan C ≥3 3.解法2:∵tan A tan B tan C ≤(tan A +tan B +tan C 3)3,∴tan A tan B tan C ≥33五、最值问题11.设x>0,y>0且x+y=4,则x2x+1+y2y+2的最小值是A.167B.73C.2310D.94【解析】∵x+y=4,∴(x+1)+(y+2)=7∴x2x+1+y2y+2=x+12-2x+1+1x+1+y+22-4y+2+4y+2=1+1x+1+4y+2=1+1x+1+4 y+2x+17+y+27=1+17+47+y+27(x+1)+4(x+1)7y+2≥127+2×27= 16712.已知实数a>0,b>1满足a+b=5,则2a+1b-1的最小值为()A.3+224 B.3+424 C.3+226 D.3+426【解析】因为a>0,b>1满足a+b=5,则2a+1b-1=(2a+1b-1)a+b-1×14=143+2b-1a+ab-1≥14(3+22)当且仅当2b-1a=ab-1时取等号,故选:A.13.设a>b>0,则ab+4b2+1b a-b的最小值是()A.2B.3C.4D.6【解析】因为a>b>0⇒a-b>0;所以ab+4b2+1b(a-b)=ab-b2+1b(a-b)+b2+4b2=b(a-b)+1b(a-b)+b2+4b2≥2b(a-b)×1b(a-b)+2b2×4b2=2+4=6.当且仅当b(a-b)=1b(a-b),b2=4b2时取等号,∴ab+4b2+1b(a-b)的最小值为6.故选:D.六、不等式与函数14.已知f x =2x-2+x+1.(1)求不等式f x <6的解集;(2)设m,n,p为正实数,且m+n+p=f2 ,求证:mn+np+pm≤3.【解析】(1)不等式2x-2+x+1<6等价于不等式组x<-1-3x+3<6或-1≤x≤2-x+5<6或x>23x-3<6,所以不等式2x-2+x+1<6的解集为-1,3;(2)证明:因为m+n+p=3,所以m+n+p2=m2+n2+p2+2mn+2mp+2np=9,因为m,n,p为正实数,所以由基本不等式m2+n2≥2mn(当且仅当m=n时等号成立),同理m2+p2≥2mp,p2+n2≥2pn,所以m2+n2+p2≥mn+mp+np,所以m+n+p2=m2+n2+p2+2mn+2mp+2np=9≥3mn+3mp+3np,所以mn+mp+np≤3.15.已知函数f x =2x -3 -x -m -1的定义域为R .(1)求实数m 的取值范围;(2)设实数t 为m 的最大值,若实数a ,b ,c 满足a 2+b 2+c 2=t 2,求1a 2+1+1b 2+2+1c 2+3的最小值.【解析】(1)∵函数f x =2x -3 -x -m -1的定义域为R .∴2x -3 -x -1≥m 对任意的x ∈R 恒成立,令g x =2x -3 -x -1,则g x =x -7,x ≥3 5-3x ,0<x <3 5-x ,x ≤0,结合g x 的图像易知g x 的最小值为-4,所以实数m 的取值范围-∞,-4 .(2)由(1)得t =-4,则a 2+b 2+c 2=16,所以a 2+1 +b 2+2 +c 2+3 =22,1a 2+1+1b 2+2+1c 2+3=1a 2+1+1b 2+2+1c 2+3a 2+1 +b 2+2 +c 2+3 22=3+b 2+2a 2+1+a 2+1b 2+2+c 2+3a 2+1+a 2+1c 3+3+c 2+3b 2+2+b 2+2c 2+322≥3+2b 2+2a 2+1×a 2+1b 2+2+2c 2+3a 2+1×a 2+1c 2+3+2c 2+3b 2+2×b 2+2c 2+322=922,当且仅当a 2+1=b 2+2=c 2+3=223,即a 2=193,b 2=163,c 2=133时等号成立,∴1a 2+1+1b 2+2+1c 2+3的最小值为922.七、不等式与向量16.若非零向量m ,n 满足|m -e |-m ⋅e =|n -e |-n ⋅e =1(e 为单位向量),且m ⊥n ,则|m -n|的最小值是()A.1B.2C.4D.8【解析】由非零向量m ,n 满足m ⊥n ,可设m =(a ,0),n=(0,b ),其中a ,b 均不为0.因为e 为单位向量,可设e =(cos θ,sin θ),因为|m -e |-m ⋅e=(a -cos θ)2+sin 2θ-a cos θ=1,所以a 2-2a cos θ+cos 2θ+sin 2θ=1+2a cos θ+a 2cos 2θ,即a sin 2θ=4cos θ①,同理,由|n -e |-n ⋅e=1可得b cos 2θ=4sin θ②,由①②,可得a 2+b 2=16cos 2θsin 4θ+16sin 2θcos 4θ=16cos 4θ+sin 2θcos 2θsin 4θ+ sin 4θ+sin 2θcos 2θcos 4θ=161tan 4θ+1tan 2θ+tan 4θ+tan 2θ ≥16×(2+2)=64当且仅当tan 2θ=1时,等号成立,所以当tan 2θ=1时,|m -n |min =8,故选:D .17.已知平行四边形ABCD 的面积为93,∠BAD =2π3,E 为线段BC 的中点.若F 为线段DE 上的一点,且AF =λAB +56AD ,则AF 的最小值为___________.【解析】由题可知,平行四边形ABCD 的图象如下:设DF =kDE ,∴AF =AD +DF =AD +kDE =AD+k DC +CE ,∵DC =AB ,CE =12DA,则AF =AD +kAB +12kDA ,所以AF =kAB +AD -12kAD =kAB +1-12k AD ,又∵AF =λAB +56AD ,则有:k =λ1-12k =56,解得:k =λ=13,即AF =13AB +56AD ,∵平行四边形ABCD 的面积为93,即∵AB ⋅AD sin 2π3=93,∴AB ⋅AD =18,∴AF 2=13AB +56AD2=19AB 2+59AB ⋅AD +2536AD 2,即:∴AF 2=19AB 2+59AB ⋅AD cos ∠BAD +2536AD2,∴AF 2=19AB 2+59×18×-12 +2536AD 2=19AB2+2536AD 2-5,即:AF2=19AB2+2536AD 2-5,∵19AB 2+2536AD 2≥219AB 2×2536AD 2=2×518×18=10,即19AB 2+2536AD 2≥10,所以19AB 2+2536AD2-5≥5,∴AF 2≥5,∴AF ≥5,当且仅当:19AB 2=2536AD2时,取等号,∴AF 的最小值为 5.18.平面向量a ,b ,c 满足|a |≤1,|b |≤1,|2c -(a +b )|≤|a -b |,则|c |的最大值为_______.【解析】由绝对值不等式的性质可知,已知中|2c -(a +b )|≤|a -b |,可得|2c |-|a +b |≤|a -b |,即|2c |≤|a+b |+|a -b |,将a ,b 的起点移到同一点,以a ,b 为边构造平行四边形,则a +b ,a -b 为平行四边形的两条对角线,在平行四边形ABCD 中,|AC |2=|AB +AD |2=|AB |2+|AD |2+2|AB |⋅|AD|cos ∠BAD ,由余弦定理可知|BD |2=|AB |2+|AD |2-2|AB |⋅|AD |cos ∠BAD ,则|AC |2+|BD |2=2|AB |2+2|AD |2,显然|AC |+|BD |若取最大值,则|AB |,|AD |应为最大1,即|AC |2+|BD |2=4⇒|AC |+|BD | 2-2|AC ||BD |=4⇒|AC |+|BD | 22-2=|AC ||BD |由基本不等式可知|AC |+|BD | 22-2=|AC ||BD |≤|AC |+|BD |24⇒|AC |+|BD | 2≤8⇒|AC |+|BD |≤22当且仅当|AC |=|BD |时取等号,所以当|a |=1,|b |=1且|a +b |=|a -b |时,|a +b |+|a -b|取得最大值22,则|2c |≤|a +b |+|a -b |≤22,即|c |≤2,所以|c |的最大值为2.故答案为:2八、不等式与解三角形19.在锐角ΔABC 中,角A ,B ,C 的对边分别为a ,b ,c ,ΔABC 的面积为S ,若sin (A +C )=2Sb 2-c 2,则tan C +12tan (B -C )的最小值为()A.2B.2C.1D.22【解析】因为sin (A +C )=2S b 2-c 2,即sin B =2Sb 2-c 2,所以sin B =ac sin Bb 2-c 2,因为sin B ≠0,所以b 2=c 2+ac ,由余弦定理b 2=a 2+c 2-2ac cos B ,可得a -2c cos B =c ,再由正弦定理得sin A -2sin C cos B =sin C ,因为sin A -2sin C cos B =sin (B +C )-2sin C cos B =sin (B -C ),所以sin (B -C )=sin C ,所以B -C =C 或B -C +C =π,得B =2C 或B =π(舍去).因为ΔABC 是锐角三角形,所以0<C <π20<2C <π20<π-3C <π2,得π6<C <π4,即tan C ∈(33,1),所以tan C +12tan (B -C )=tan C +12tan C ≥2,当且仅当tan C =22,取等号.故选:A20.已知在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且a =6,点O 为其外接圆的圆心.已知BO ·AC=15,则当角C 取到最大值时△ABC 的面积为()A.35B.25C.30D.56【解析】设AC 中点为D ,则BO ⋅AC =BD +DO ⋅AC =BD ⋅AC =12BC +BA⋅BC -BA=12BC 2-12BA 2 ,∴12a 2-12c 2=15,即c =6,由c <a 知角C 为锐角,故cos C =a 2+b 2-c 22ab =30+b 212b =112b +30b≥112×2b ⋅30b =306,当且仅当b =30b,即b =30时cos C 最小,又y =cos x 在0,π2 递减,故C 最大.此时,恰有a 2=b 2+c 2,即△ABC 为直角三角形,S △ABC =12bc =35,故选A .21.在△ABC 中,已知AB ·AC =9,sin B =cos A sin C ,S △ABC =6,P 为线段AB 上的点,且CP =x CA CA +y CBCB ,则xy 的最大值为________.【解析】由sin B =cos A sin C 得b =c b 2+c 2-a 22bc⇒a 2+b 2=c 2⇒S ΔABC =12ab =6所以由AB ·AC =9得AC 2=9,∴b =3,a =4又P 为线段AB 上的点,且CP =x CA CA +y CBCB ,所以x b+y a =1,∴x3+y 4=1,∴1≥2x 3⋅y 4∴xy ≤3,当且仅当x =32,y =2时,等号成立即xy 的最大值为3.22.设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,且a cos B -b cos A =35c ,则tan A -B 的最大值为A.32B.34C.32D.3【解析】∵a cos B -b cos A =35c ∴由正弦定理,得sin A cos B -sin B cos A =35sin C ,∵C =π-(A +B )⇒sin C =sin (A +B ),,∴sin A cos B -sin B cos A =35(sin A cos B +cos A sin B ),整理,得sin A cos B =4sin B cos A ,同除以cos A cos B ,得tan A =4tan B ,由此可得tan (A -B )=tan A -tan B 1+tan A tan B =3tan B 1+4tan 2B=31tan B+4tan B ,∵A 、B 是三角形内角,且tan A 与tan B 同号,∴A 、B 都是锐角,即tan A >0,tan B >0,∵1tan B+4tan B ≥21tan B ⋅4tan B =4tan (A -B )=31tan B+4tan B ≤34,当且仅当1tan B =4tan B ,即tan B =12时,tan (A -B )的最大值为34.故选B .23.已知△ABC 的三边分别为a ,b ,c ,若满足a 2+b 2+2c 2=8,则△ABC 面积的最大值为()A.55B.255C.355D.53【解析】因为a 2+b 2+2c 2=8,所以a 2+b 2=8-2c 2,由余弦定理得cos C =a 2+b 2-c 22ab =8-3c 22ab,即2ab cos C =8-3c 2①由正弦定理得S =12ab sin C ,即2ab sin C =4S ②由①,②平方相加得4ab 2=8-3c 2 2+4S 2≤a 2+b 2 2=8-2c 2 2,所以4S 2≤8-2c 2 2-8-3c 2 2=16-5c 2 c 2≤1516-5c 2+5c 222=645,即S 2≤45,所以S ≤255,当且仅当a 2=b 2且16-5c 2=5c 2即a 2=b 2=125,c 2=85时,取等号.故选:B24.已知G 是△ABC 的重心,过点G 作直线MN 与AB ,AC 交于点M ,N ,且AM =xAB ,AN =yAC,x ,y >0 ,则3x +y 的最小值是()A.83B.72C.52D.43+233【解析】因为M ,G ,N 三点共线,故AG =tAM +1-t AN ,因为AM =xAB ,AN =yAC ,所以AG =txAB+1-tyAC ,又G 为重心,故AG =13AB +13AC ,而AB ,AC 不共线,所以tx =13,1-t y =13,也即是1x +1y=3.3x +y =133x +y 1x +1y =134+y x +3x y,由基本不等式可以得到:y x +3x y ≥23,当且仅当x =3+39,y =33+13等号成立,故3x +y 的最小值为43+233,故选D .25.已知O 是△ABC 的外心,∠C =45°,OC =2mOA +nOB ,(m ,n ∈R ),则1m 2+4n2的最小值为____.【解析】OC =2mOA +nOB ∴OC 2=2mOA +nOB 2=4m 2OA 2+n 2OB 2+4mnOA ⋅OB∠C =45°∴∠AOB =90°∴OA ⋅OB=0故4m 2+n 2=11m 2+4n 2=1m 2+4n 2 4m 2+n 2=4+n 2m 2+16m 2n 2+4≥216+8=16当n 2m 2=16m 2n 2即n 2=12,m 2=18时等号成立,故答案为:1626.在锐角三角形ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若b 2+c 2=4bc sin A +π6,则tan A +tan B +tan C 的最小值是______.【解析】由余弦定理,得b 2+c 2=a 2+2bc cos A ,则由b 2+c 2=4bc sin A +π6 ,得a 2+2bc cos A =4bc sin A +π6=2bc (3sin A +cos A ),所以a 2=23bc sin A ,由正弦定理,得sin 2A =23sin B ⋅sin C ⋅sin A ,所以sin A =23sin B sin C ,所以sin (B +C )=23sin B sin C ,sin B cos C +cos B sin C =23sin B sin C ,tan B +tan C =23tan B tan C .因为tan A =-tan (B +C )=tan B +tan Ctan B tan C -1,所以tan A +tan B +tan C =tan A ⋅tan B ⋅tan C ,则tan A +tan B +tan C =tan B +tan C tan B tan C -1⋅tan B ⋅tan C =23tan B tan Ctan B tan C -1⋅tan B ⋅tan C .令tan B ⋅tan C -1=m ,而tan B ⋅tan C -1=tan B tan A +tan Ctan A,∴m >0则tan B ⋅tan C =m +1,tan A +tan B +tan C =23(m +1)2m =23m 2+2m +1 m =23m +1m+2 ≥23(2m ⋅1m +2)=83,当且仅当m =1时,等号成立,故tan A +tan B +tan C 的最小值为83.27.已知ΔABC 的内角A ,B ,C 所对边分别为a ,b ,c ,且a cos C -c cos A =35b ,则tan (A -C )的最大值为______.【解析】因为a cos C -c cos A =35b ,由正弦定理得sin A cos C -sin C cos A =35sin B ,又B =π-(A +C ),所以sin A cos C -sin C cos A =35sin [π-(A +C )],即sin A cos C -sin C cos A =35sin (A +C ),所以5sin A cos C -5sin C cos A =3sin A cos C +3cos A sin C ,所以2sin A cos C =8cos A sin C ,当cos C ≤0或cos A ≤0时,等式不成立,所以A ,C ∈(0,π2),所以tan A =4tan C ,所以tan (A -C )=tan A -tan C 1+tan A tan C =3tan C 1+4tan 2C =31tan C+4tan C 又tan C >0,所以1tan C +4tan C ≥21tan C ⋅4tan C =4,当且仅当1tan C =4tan C ,即tan C =12时,等号成立,所以tan (A -C )=31tan C +4tan C ≤34,所以tan (A -C )的最大值为34.28.已知ΔABC 的三个内角A ,B ,C 的对边分别为a ,b ,c ,且满足a cos A+b +2c cos B =0,则sin2B ⋅tan 2C 的取值范围是__________.【解析】a cos A+b +2c cos B =0,即a cos B +b cos A +2c cos A =0,即sin A cos B +sin B cos A +2sin C cos A =0,sin C 1+2cos A =0,sin C ≠0,故1+2cos A =0,A =3π4,故B +C =π4.sin2B ⋅tan 2C =cos2C ⋅sin 2C cos 2C =2cos 2C -1 1-cos 2C cos 2C =3-2cos 2C +1cos 2C,C ∈0,π4 ,故t =cos 2C ∈12,1 ,故y =3-2t +1t,根据双勾函数性质知:函数在12,22上单调递增,在22,1 上单调递减.故y max =3-22,当t =1时,y =0,当t =12时,y =0,故sin2B ⋅tan 2C ∈0,3-22 .故答案为:0,3-22 .九、不等式与恒成立问题29.正数a,b满足1a+9b=1,若不等式a+b≥-x2+4x+18-m对任意实数x恒成立,则实数m的取值范围是()A.[3,+∞)B.(-∞,3]C.(-∞,6]D.[6,+∞)【解析】∵a>0,b>0,1a+9b=1,∴a+b=(a+b)1a+9b=10+b a+9a b≥10+2b a⋅9a b=16当且仅当3a=b,即a=4,b=12时,“=”成立,若不等式a+b≥-x2+4x+18-m对任意实数x恒成立,则-x2+4x+18-m≤16,即-x2+4x+2≤m对任意实数x恒成立,∵-x2+4x+2=-(x-2)2+6≤6∴m≥6实数m的取值范围是[6,+∞)30.数列a n中,a1=12,a n+1=na nn+1na n+1n∈N*,若不等式4n2+1n+-1nλa n≥0恒成立,则实数λ的取值范围为__________.【解析】由数列 a n满足a1=12,a n+1=na n(n+1)(na n+1)(n∈N x),两边取倒数可得:1(n+1)a n+1-1nan=1,∴数列1nan是等差数列, 公差为1, 首项为2∴1nan =2+(n-1)=n+1,∴a n=1n(n+1)由4n2+1n+(-1)nλa n≥0恒成立,得(-1)n⋅1n(n+1)λ≥-4n2-1n=-4-nn2,当n为偶数时,λ≥-(n+1)(n+4)n=-(n+4n+5), 则λ≥-9,当n为奇数时,λ≤n+4n+5,则λ≤283,∴实数λ的取值范围为-9,283。
均值不等式在解三角形问题中的应用
均值不等式在解三角形问题中的应用在数学中,均值不等式是一种常见的不等式,它可以被广泛地应用于各种数学问题中,包括三角形几何。
均值不等式提供了一种有效的方法来解决三角形中的一些问题,特别是在涉及到三角形的边长、角度或面积时。
在本文中,我们将探讨均值不等式在解三角形问题中的应用,并举例说明其在实际问题中的作用。
首先,让我们回顾一下均值不等式的基本概念。
均值不等式是指对于任意一组非负实数,它们的算术平均数永远不会小于它们的几何平均数,这就是均值不等式的基本形式。
具体而言,对于任意一组非负实数 a1, a2, ..., an,均值不等式可以表示为:( a1 + a2 + ... + an ) / n ≥ ( a1 a2 ... an )^(1/n)。
这个不等式告诉我们,对于给定的一组非负实数,它们的算术平均数不会小于它们的几何平均数。
这个性质在三角形几何中有着重要的应用。
在三角形中,我们经常需要比较三角形的边长、角度或面积。
均值不等式可以帮助我们对这些量进行比较,并且在解决一些三角形问题时提供了简洁而有效的方法。
例如,我们可以利用均值不等式来证明三角形中任意两边之和大于第三边的基本不等式。
假设 a, b, c 分别表示三角形的三条边长,根据均值不等式,我们有:(a + b) / 2 ≥ √(ab)。
(b + c) / 2 ≥ √(bc)。
(c + a) / 2 ≥ √(ca)。
将以上三个不等式相加得到:(a + b + c) / 2 ≥ √(ab) + √(bc) + √(ca)。
这个不等式告诉我们,三角形的任意两边之和不会小于第三边。
这是三角形中一个非常重要的性质,而均值不等式为我们提供了一个简洁的证明方法。
除了边长之和的比较外,均值不等式还可以在三角形的角度或面积比较中发挥作用。
例如,我们可以利用均值不等式来证明三角形内角的平均值大于60度,或者证明三角形的面积与边长之间的关系。
这些都是三角形几何中常见的问题,而均值不等式为我们提供了一种简单而有效的方法来解决这些问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
均值不等式在解三角形中的应用在解三角形中,可以利用勾股定理,求出一个三角形的三条边长,然后利用勾股定理可以求出三角形的三个内角的度数。
利用二项式定理,可以表示三角形的三个内角的度数之和应该等于180,即
a+b+c=180。
三角形的三个内角都可以用多边形边均值不等式来表示,其中ΣC/(n-2)≥n-4 (n为多边形的边数),所以三角形中,三条边长的均值大于三角形三个内角度数之和的一半:
a/3 + b/3 + c/3≥180/3,
即a+b+c≥180。
所以可以总结为多边形边均值不等式在解三角形中的应用是:
a+b+c≥180,即三边长之和大于三角形内角度数和的一半。