均值不等式及其运用
三元均值不等式的证明与应用

三元均值不等式的证明与应用1.三元均值不等式的证明:设a、b、c为非负实数,且不全为0。
根据三元均值不等式的表述,我们要证明以下不等式成立:(a+b+c)/3 ≥ √(abc)证明:我们可以先将不等式两边平方得到以下等价不等式:(a+b+c)²/9 ≥ abc展开得到:(a²+b²+c²+2ab+2ac+2bc)/9 ≥ abc化简得到:a²+b²+c²+2ab+2ac+2bc ≥ 9abc将不等式两边减去2ab、2ac和2bc,得到:a²-2ab+b² +c²-2ac+a² +c²-2bc+b² ≥ 5abc化简得到:(a-b)² + (b-c)² + (c-a)² ≥ 5abc不等式左边是三个数的平方和,而右边是它们的积,由于三个非负实数的平方和≥它们的积,因此不等式成立。
2.三元均值不等式的应用:(1)证明两个数的平均值大于等于它们的几何平均值:设a和b为非负实数,且不全为0。
根据三元均值不等式,有:(a+b)/2 ≥ √(ab)化简得到:a+b ≥ 2√(ab)这就证明了两个数的平均值大于等于它们的几何平均值。
(2)证明两个数的平方和大于等于它们的两倍乘积:设a和b为非负实数,且不全为0。
根据三元均值不等式,有:(a²+b²)/2 ≥ ab化简得到:a²+b² ≥ 2ab这就证明了两个数的平方和大于等于它们的两倍乘积。
(3)求证函数的不等式:设f(x)为一个定义在[a,b]上的连续函数,并且f(x)在[a,b]上不恒为0。
那么根据三元均值不等式可得:∫[a,b]f(x)dx / (b-a) ≥ √(∫[a,b]f²(x)dx / (b-a))这个不等式可以用于证明函数的平均值大于等于它的均方根。
《均值不等式及其应用》PPT教学课件 等式与不等式(第2课时均值不等式的应用)

=1a+b1·(a+2b)
=1+2ab+ab+2=3+2ab+ab≥3+2
2b a a ·b
=3+2 2,
23
栏目导航
24
当且仅当2ab=ab, a+2b=1,
a= 2-1,
即 b=1-
2 2
时等号成立.
∴1a+1b的最小值为3+2 2.
栏目导航
25
法二:1a+1b=a+a2b+a+b2b=1+2ab+ab+2 =3+2ab+ab≥3+2 2,
40
栏目导航
41
课时分层 作 业
点击右图进入…
栏目导航
Thank you for watching !
栏目导航
32
[解] 设将楼房建为 x 层,则每平方米的平均购地费用为
2
126000×0x104=10
800 x.
∴每平方米的平均综合费用
y=560+48x+10 x800=560+48x+22x5. 当 x+22x5取最小值时,y 有最小值.
栏目导航
33
∵x>0,∴x+22x5≥2 x·22x5=30. 当且仅当 x=22x5,即 x=15 时,上式等号成立. ∴当 x=15 时,y 有最小值 2 000 元. 因此该楼房建为 15 层时,每平方米的平均综合费用最少.
栏目导航
[提示] (1)由 a+b≥2 ab可知正确. (2)由 ab≤a+2 b2=4 可知正确. (3) x-x 1不是常数,故错误.
[答案] (1)√ (2)√ (3)×
37
栏目导航
38
2.若实数 a,b 满足 a+b=2,则 ab 的最大值为( )
A.1
B.2 2
C.2
D.4
2.2.4 均值不等式及其应用(第2课时)高一数学(人教B版2019必修第一册)

即时训练 知识点四:利用均值不等式解决实际应用问题
设该厂每 x 天购买一次面粉,其购买量为 6x 吨. 由题意可知,面粉的保管费及其他费用为 3×[6x+6(x-1)+6(x-2)+…+6×1]=9x(x+1). 设平均每天所支付的总费用为 y1 元, 则 y1=1x[9x(x+1)+900]+6×1 800=9x+90x0+10 809≥2 9x·90x0+10 809 =10 989(元),当且仅当 9x=90x0,即 x=10 时,等号成立.所以该厂每 10 天购买一次面粉,才能使平均每天所支付的总费用最少.
【解析】∵实数 x,y 满足 xy+3x=3 0<x<12 ,∴x=y+3 3,
∴0<y+3 3<12,解得 y>3.则3x+y-1 3=y+3+y-1 3=y-3+y-1 3+
6≥2 (y-3)·y-1 3+6=8,当且仅当 y=4,x=37时取等号.
新知探索 知识点三:建立目标不等式求最值
利用均值不等式与已知条件建立求解目标的不等式,求出 不等式的解集即得求解目标的最值.
提示:(1)已知 x,y 都是正数,如果和 x+y 等于定值 S, 那么当 x=y 时,积 xy 有最大值 1S2.
4 (2)已知 x,y 都是正数,如果积 xy 等于定值 P,那么当 x =y 时,和 x+y 有最小值 2 P.
新知探索 知识点一:“常数代换法”求最值
若题中不存在满足均值不等式的条件,则需要创造条件对 式子进行恒等变形,灵活运用“1”的代换.在不等式解题过 程中,常常将不等式乘“1”、除以“1”或将不等式中的某个 常数用等于“1”的式子代替.
新教材人教B版必修第一册 2.2.4 第2课时 均值不等式的应用 课件(29张)

解析:∵a,b,c>0,∴利用均值不等式可得ab2+b≥2a,bc2+c≥2b, ca2+a≥2c,∴ab2+bc2+ca2+a+b+c≥2a+2b+2c,故ab2+bc2+ca2≥a+b+ c,当且仅当 a=b=c 时,等号成立.
返回导航
第二章 等式与不等式
数学[必修 · 第一册 RJB]
归纳提升:利用均值不等式证明不等式的注意点: (1)多次使用均值不等式时,要注意等号能否成立. (2)累加法是不等式证明中的一种常用方法,证明不等式时注意使 用. (3)对不能直接使用均值不等式的证明可重新组合,达到使用均值不 等式的条件.
1.无附加条件的不等式的证明 典例 1 已知 a,b,c>0,求证:ab2+bc2+ca2≥a+b+c.
思路探究:由条件中 a,b,c>0 及待证不等式的结构特征知,先用 均值不等式证ab2+b≥2a,bc2+c≥2b,ca2+a≥2c,再进行证明即可.
返回导航
第二章 等式与不等式
数学[必修 · 第一册 RJB]
返回导航
第二章 等式与不等式
数学[必修 · 第一册 RJB]
归纳提升:求实际问题中最值的一般思路 1.读懂题意,设出变量,列出函数关系式. 2.把实际问题转化为求函数的最大值或最小值问题. 3.在定义域内,求函数的最大值或最小值时,一般先考虑用均值不 等式,当用均值不等式求最值的条件不具备时,再考虑利用第三章要学 习的函数的单调性求解. 4.正确地写出答案.
返回导航
第二章 等式与不等式
数学[必修 · 第一册 RJB]
2.有附加条件的不等式的证明 典例 2 已知 a>0,b>0,a+b=1,求证:(1+1a)(1+b1)≥9.
思路探究:本题的关键是把分子的“1”换成 a+b,由均值不等式即可 证明.
第6节 均值不等式及其应用

第6节 均值不等式及其应用知识梳理1.均值不等式如果a ,ba =b 时,等号成立.数a +b2称为a ,b a ,b 的几何平均值. 2.两个重要的不等式(1)a 2+b 2≥2ab (a ,b ∈R ),当且仅当a =b 时取等号. (2)ab ≤⎝⎛⎭⎪⎫a +b 22(a ,b ∈R ),当且仅当a =b 时取等号. (3)(a +b )2≥4ab ;2(a 2+b 2)≥(a +b )2. 当且仅当a =b 时,等号成立. 3.利用均值不等式求最值 已知x ≥0,y ≥0,则(1)如果积xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值是2p (简记:积定和最小).(2)如果和x +y 是定值s ,那么当且仅当x =y 时,xy 有最大值是s 24(简记:和定积最大).1.b a +ab ≥2(a ,b 同号),当且仅当a =b 时取等号. 2.ab ≤⎝ ⎛⎭⎪⎫a +b 22≤a 2+b 22.3.21a +1b≤ab ≤a +b2≤a 2+b 22(a >0,b >0).4.应用均值不等式求最值要注意:“一定,二正,三相等”,忽略某个条件,就会出错.5.在利用不等式求最值时,一定要尽量避免多次使用均值不等式.若必须多次使用,则一定要保证它们等号成立的条件一致.诊断自测1.判断下列结论正误(在括号内打“√”或“×”)(1)两个不等式a 2+b 2≥2ab 与a +b2≥ab 成立的条件是相同的.( ) (2)函数y =x +1x 的最小值是2.( ) (3)函数f (x )=sin x +4sin x 的最小值为4.( ) (4)x >0且y >0是x y +yx ≥2的充要条件.( ) 答案 (1)× (2)× (3)× (4)×解析 (1)不等式a 2+b 2≥2ab 成立的条件是a ,b ∈R ; 不等式a +b2≥ab 成立的条件是a ≥0,b ≥0.(2)函数y =x +1x 的值域是(-∞,-2]∪[2,+∞),没有最小值. (3)函数f (x )=sin x +4sin x 没有最小值. (4)x >0且y >0是x y +yx ≥2的充分不必要条件.2.若x >0,y >0,且x +y =18,则xy 的最大值为( ) A.9 B.18C.36D.81答案 A解析 因为x +y =18,所以xy ≤x +y2=9,当且仅当x =y =9时,等号成立.3.(多选题)若x ≥y ,则下列不等式中正确的是( ) A.3x ≥3y B.x +y2≥xy C.x 2≥y 2D.x 2+y 2≥2xy答案 AD解析 由指数函数的单调性可知,当x ≥y 时,有3x ≥3y ,故A 正确; 当0>x ≥y 时,x +y2≥xy 不成立,故B 错误; 当0≥x ≥y 时,x 2≥y 2不成立,故C 错误;x 2+y 2-2xy =(x -y )2≥0成立,即x 2+y 2≥2xy 成立,故D 正确.4.(2021·滨州三校联考)若函数f (x )=x +1x -2(x >2)在x =a 处取最小值,则a 等于( ) A.1+2 B.1+3 C.3D.4答案 C解析 当x >2时,x -2>0,f (x )=(x -2)+1x -2+2≥2(x -2)×1x -2+2=4,当且仅当x -2=1x -2(x >2),即x =3时取等号,即当f (x )取得最小值时,x =3,即a =3,故选C.5.(2020·长沙月考)一段长为30 m 的篱笆围成一个一边靠墙的矩形菜园,墙长 18 m ,则这个矩形的长为________m ,宽为________m 时菜园面积最大. 答案 15 152解析 设矩形的长为x m ,宽为y m.则x +2y =30(0<x ≤18),所以S =xy =12x ·(2y )≤12⎝ ⎛⎭⎪⎫x +2y 22=2252,当且仅当x =2y ,即x =15,y =152时取等号.6.(2018·天津卷)已知a,b∈R,且a-3b+6=0,则2a+18b的最小值为________.答案1 4解析由题设知a-3b=-6,又2a>0,8b>0,所以2a+18b≥22a·18b=2·2a-3b2=1 4,当且仅当2a=18b,即a=-3,b=1时取等号.故2a+18b的最小值为14.考点一 利用均值不等式求最值角度1 配凑法求最值【例1】 (1)(2021·乐山模拟)设0<x <32,则函数y =4x (3-2x )的最大值为________. (2)已知x <54,则f (x )=4x -2+14x -5的最大值为________.(3)已知函数f (x )=-x 2x +1(x <-1),则( )A.f (x )有最小值4B.f (x )有最小值-4C.f (x )有最大值4D.f (x )有最大值-4答案 (1)92 (2)1 (3)A解析 (1)y =4x (3-2x )=2[2x (3-2x )] ≤2⎣⎢⎡⎦⎥⎤2x +(3-2x )22=92, 当且仅当2x =3-2x ,即x =34时,等号成立.∵34∈⎝ ⎛⎭⎪⎫0,32,∴函数y =4x (3-2x )⎝ ⎛⎭⎪⎫0<x <32的最大值为92.(2)因为x <54,所以5-4x >0,则f (x )=4x -5+14x -5+3=-⎝⎛⎭⎪⎫5-4x +15-4x +3≤-2(5-4x )·15-4x+3=-2+3=1,当且仅当5-4x =15-4x,即x =1时,取等号. 故f (x )=4x -2+14x -5的最大值为1. (3)f (x )=-x 2x +1=-x 2-1+1x +1=-⎝⎛⎭⎪⎫x -1+1x +1=-⎝ ⎛⎭⎪⎫x +1+1x +1-2 =-(x +1)+1-(x +1)+2.因为x <-1,所以x +1<0,-(x +1)>0, 所以f (x )≥21+2=4, 当且仅当-(x +1)=1-(x +1),即x =-2时,等号成立.故f (x )有最小值4.角度2 常数代换法求最值【例2】(2021·武汉模拟)已知正数m ,n 满足m +2n =8,则2m +1n 的最小值为________,等号成立时m ,n 满足的等量关系是________. 答案 1 m =2n解析 因为m +2n =8,所以2m +1n =⎝ ⎛⎭⎪⎫2m +1n ×m +2n 8=18⎝ ⎛⎭⎪⎫4+4n m +m n ≥18⎝⎛⎭⎪⎫4+24n m ×m n =18(4+4)=1,当且仅当4n m =m n ,即m =4,n =2时等号成立. 角度3 消元法求最值【例3】(2020·江苏卷)已知5x 2y 2+y 4=1(x ,y ∈R ),则x 2+y 2的最小值是________. 答案 45解析 由题意知y ≠0.由5x 2y 2+y 4=1,可得x 2=1-y 45y 2,所以x 2+y 2=1-y 45y 2+y 2=1+4y 45y 2=15⎝ ⎛⎭⎪⎫1y 2+4y 2≥15×21y 2×4y 2=45,当且仅当1y 2=4y 2,即y =±22时取等号.所以x 2+y 2的最小值为45.感悟升华 利用均值不等式求最值的方法(1)知和求积的最值:“和为定值,积有最大值”.但应注意以下两点:①具备条件——正数;②验证等号成立.(2)知积求和的最值:“积为定值,和有最小值”,直接应用均值不等式求解,但要注意利用均值不等式求最值的条件.(3)构造不等式求最值:在求解含有两个变量的代数式的最值问题时,通常采用“变量替换”或“常数1”的替换,构造不等式求解.【训练1】(1)已知实数x,y>0,且x2-xy=2,则x+6x+1x-y的最小值为()A.6B.62C.3D.32(2)(多选题)(2021·烟台模拟)下列说法正确的是()A.若x,y>0,x+y=2,则2x+2y的最大值为4B.若x<12,则函数y=2x+12x-1的最大值为-1C.若x,y>0,x+y+xy=3,则xy的最小值为1D.函数y=1sin2x+4cos2x的最小值为9答案(1)A(2)BD解析(1)由x,y>0,x2-xy=2得x-y=2x,则1x-y=x2,所以x+6x+1x-y=x+6x+x 2=3⎝⎛⎭⎪⎫x2+2x≥3×2x2×2x=6,当且仅当x2=2x,即x=2,y=1时等号成立,所以x+6x+1x-y的最小值为6.(2)对于A,取x=32,y=12,可得2x+2y=32>4,A错误;对于B,y=2x+12x-1=-⎝⎛⎭⎪⎫1-2x+11-2x+1≤-2+1=-1,当且仅当x=0时等号成立,B正确;对于C ,易知x =2,y =13满足等式x +y +xy =3,此时xy =23<1,C 错误; 对于D ,y =1sin 2x +4cos 2x =⎝ ⎛⎭⎪⎫1sin 2x +4cos 2x (sin 2x +cos 2x )=cos 2x sin 2x +4sin 2x cos 2x +5≥24+5=9.当且仅当cos 2x =23,sin 2x =13时等号成立,D 正确.故选BD. 考点二 均值不等式的综合应用【例4】 (1)(2020·湘东七校联考)已知f (x )=13x 3+ax 2+(b -4)x +1(a >0,b >0)在x =1处取得极值,则2a +1b 的最小值为( ) A.3+223 B.3+22 C.3D.9(2)已知不等式(x +y )⎝ ⎛⎭⎪⎫1x +a y ≥9对任意正实数x ,y 恒成立,则正实数a 的最小值为( ) A.2B.4C.6D.8答案 (1)C (2)B解析 (1)因为f (x )=13x 3+ax 2+(b -4)x +1(a >0,b >0), 所以f ′(x )=x 2+2ax +b -4. 因为f (x )在x =1处取得极值,所以f ′(1)=0,所以1+2a +b -4=0,解得2a +b =3. 所以2a +1b =⎝ ⎛⎭⎪⎫2a +1b ·13·(2a +b )=13⎝ ⎛⎭⎪⎫5+2b a +2a b ≥13⎝⎛⎭⎪⎫5+22b a ·2a b =3(当且仅当a =b =1时取等号).故选C. (2)已知不等式(x +y )⎝ ⎛⎭⎪⎫1x +a y ≥9对任意正实数x ,y 恒成立,只要求(x +y )⎝ ⎛⎭⎪⎫1x +a y 的最小值大于或等于9, ∵1+a +y x +axy ≥a +2a +1,当且仅当y =ax 时,等号成立, ∴a +2a +1≥9,∴a ≥2或a ≤-4(舍去),∴a ≥4, 即正实数a 的最小值为4,故选B.感悟升华 1.当均值不等式与其他知识相结合时,往往是提供一个应用均值不等式的条件,然后利用常数代换法求最值.2.求参数的值或范围时,要观察题目的特点,利用均值不等式确定相关成立的条件,从而得到参数的值或范围.【训练2】 (1)在△ABC 中,A =π6,△ABC 的面积为2,则2sin C sin C +2sin B+sin Bsin C 的最小值为( ) A.32B.334C.32D.53(2)在△ABC 中,点D 是AC 上一点,且=4,P 为BD 上一点,向量=λ+μ(λ>0,μ>0),则4λ+1μ的最小值为( ) A.16B.8C.4D.2答案 (1)C (2)A解析 (1)由△ABC 的面积为2,所以S △ABC =12bc sin A =12bc sin π6=2,得bc =8, 在△ABC 中,由正弦定理得 2sin C sin C +2sin B +sin B sin C =2c c +2b +bc=2·8b8b +2b +b 8b=168+2b2+b 28=84+b2+b 2+48-12 ≥284+b 2·b 2+48-12=2-12=32, 当且仅当b =2,c =4时,等号成立,故选C.(2)由题意可知,=λ+4μ,又点B ,P ,D 共线,由三点共线的充要条件可得λ+4μ=1,又因为λ>0,μ>0,所以4λ+1μ=⎝ ⎛⎭⎪⎫4λ+1μ·(λ+4μ)=8+16μλ+λμ≥8+216μλ·λμ=16,当且仅当λ=12,μ=18时等号成立,故4λ+1μ的最小值为16.故选A. 考点三 均值不等式的实际应用【例5】网店和实体店各有利弊,两者的结合将在未来一段时期内,成为商业的一个主要发展方向.某品牌行车记录仪支架销售公司从2019年1月起开展网络销售与实体店体验安装结合的销售模式.根据几个月运营发现,产品的月销量x 万件与投入实体店体验安装的费用t 万元之间满足函数关系式x =3-2t +1.已知网店每月固定的各种费用支出为3万元,产品每1万件进货价格为32万元,若每件产品的售价定为“进货价的150%”与“平均每件产品的实体店体验安装费用的一半”之和,则该公司最大月利润是________万元. 答案 37.5 解析 由题意知t =23-x-1(1<x <3),设该公司的月利润为y 万元,则y =⎝ ⎛⎭⎪⎫48+t 2x x -32x -3-t =16x -t 2-3=16x -13-x +12-3=45.5-⎣⎢⎡⎦⎥⎤16(3-x )+13-x ≤45.5-216=37.5,当且仅当x =114时取等号,即最大月利润为37.5万元.感悟升华 1.设变量时一般要把求最大值或最小值的变量定义为函数. 2.根据实际问题抽象出函数的解析式后,只需利用均值不等式求得函数的最值.3.在求函数的最值时,一定要在定义域(使实际问题有意义的自变量的取值范围)内求解.【训练3】某公司一年购买某种货物600吨,每次购买x 吨,运费为6万元/次,一年的总存储费用为4x 万元.要使一年的总运费与总存储费用之和最小,则x 的值是________.答案 30解析 一年的总运费与总存储费用之和为y =6×600x +4x =3 600x +4x ≥2 3 600x ·4x =240,当且仅当3 600x =4x ,即x =30时,y 有最小值240.A 级 基础巩固一、选择题1.已知a ,b ∈R ,且ab ≠0,则下列结论恒成立的是( )A.a +b ≥2abB.a b +b a ≥2C.⎪⎪⎪⎪⎪⎪a b +b a ≥2 D.a 2+b 2>2ab答案 C解析 因为a b 和b a 同号,所以⎪⎪⎪⎪⎪⎪a b +b a =⎪⎪⎪⎪⎪⎪a b +⎪⎪⎪⎪⎪⎪b a ≥2. 2.若3x +2y =2,则8x +4y 的最小值为( )A.4B.42C.2D.22 答案 A解析 因为3x +2y =2,所以8x +4y ≥28x ·4y =223x +2y =4, 当且仅当3x +2y =2且3x =2y ,即x =13,y =12时等号成立.故选A.3.(多选题)(2021·山东新高考模拟)已知正实数a ,b 满足a +b =2,下列式子中,最小值为2的有( )A.2abB.a 2+b 2C.1a +1bD.2ab答案 BCD 解析 因为a ,b >0,所以2=a +b ≥2ab ,所以0<ab ≤1,当且仅当a =b =1时等号成立.由ab ≤1,得2ab ≤2,所以2ab 的最大值为2,A 错误;a 2+b 2=(a+b )2-2ab ≥4-2=2,B 正确;1a +1b =a +b ab =2ab ≥2,C 正确;2ab ≥2,D 正确,故选BCD.4.已知x >0,y >0,且1x +1+1y =12,则x +y 的最小值为( ) A.3B.5C.7D.9 答案 C解析 ∵x >0,y >0,且1x +1+1y =12,∴x +1+y =2⎝ ⎛⎭⎪⎫1x +1+1y (x +1+y )=2⎝ ⎛⎭⎪⎪⎫1+1+y x +1+x +1y ≥2⎝ ⎛⎭⎪⎪⎫2+2y x +1·x +1y =8,当且仅当y x +1=x +1y ,即x =3,y =4时取等号,∴x +y ≥7,故x +y 的最小值为7.5.要制作一个容积为4 m 3,高为1 m 的无盖长方体容器.已知该容器的底面造价是每平方米20元,侧面造价是每平方米10元,则该容器的最低总造价是( )A.80元B.120元C.160元D.240元答案 C解析 由题意知,体积V =4 m 3,高h =1 m ,所以底面积S =4 m 2,设底面矩形的一条边长是x m ,则另一条边长是4x m ,又设总造价是y 元,则y =20×4+10×(2x +8x )≥80+202x ·8x =160,当且仅当2x =8x ,即x =2时取得等号. 6.若实数x ,y 满足x 2+y 2+xy =1,则x +y 的最大值是( )A.6B.233C.4D.23答案 B解析 x 2+y 2+xy =1⇒(x +y )2-xy =1,∵xy ≤⎝ ⎛⎭⎪⎫x +y 22,当且仅当x =y 时取等号, ∴(x +y )2-⎝ ⎛⎭⎪⎫x +y 22≤1, 即34(x +y )2≤1,∴-233≤x +y ≤233,∴x +y 的最大值是233.故选B.7.(2021·沈阳一模)若log 2x +log 4y =1,则x 2+y 的最小值为( )A.2B.23C.4D.22 答案 C解析 因为log 2x +log 4y =log 4x 2+log 4y =log 4(x 2y )=1,所以x 2y =4(x >0,y >0),则x 2+y ≥2x 2y =4,当且仅当x 2=y =2时等号成立,即x 2+y 的最小值为4.故选C.8.(2020·重庆联考)对任意m ,n ∈(0,+∞),都有m 2-amn +2n 2≥0,则实数a 的最大值为( ) A.2B.22C.4D.92 答案 B解析 ∵对任意m ,n ∈(0,+∞),都有m 2-amn +2n 2≥0,∴m 2+2n 2≥amn ,即a ≤m 2+2n 2mn =m n +2n m 恒成立,∵m n +2n m ≥2m n ·2n m =22,当且仅当m n =2n m 即m =2n 时取等号,∴a ≤22,故a 的最大值为22,故选B.二、填空题 9.若直线x a +y b =1(a >0,b >0)过点(1,2),则2a +b 的最小值为________.答案 8解析 由题设可得1a +2b =1,∵a >0,b >0,∴2a +b =(2a +b )⎝ ⎛⎭⎪⎫1a +2b =4+b a +4a b ≥4+2b a ·4ab=8⎝ ⎛⎭⎪⎫当且仅当b a =4a b ,即b =2a =4时,等号成立. 故2a +b 的最小值为8.10.已知x >0,y >0,x +3y +xy =9,则x +3y 的最小值为________.答案 6解析 法一(换元消元法)由已知得x +3y =9-xy ,因为x >0,y >0, 所以x +3y ≥23xy ,所以3xy ≤⎝ ⎛⎭⎪⎫x +3y 22, 当且仅当x =3y ,即x =3,y =1时取等号,即(x +3y )2+12(x +3y )-108≥0,令x +3y =t ,则t >0且t 2+12t -108≥0,得t ≥6,即x +3y 的最小值为6.法二 (代入消元法)由x +3y +xy =9,得x =9-3y 1+y, 所以x +3y =9-3y 1+y +3y=9+3y 21+y =3(1+y )2-6(1+y )+121+y=3(1+y )+121+y -6≥23(1+y )·121+y-6 =12-6=6,当且仅当3(1+y )=121+y,即y =1,x =3时取等号, 所以x +3y 的最小值为6.11.(2020·天津卷)已知a >0,b >0,且ab =1,则12a +12b +8a +b的最小值为__________.答案 4解析 因为a >0,b >0,ab =1,所以原式=ab 2a +ab 2b +8a +b =a +b 2+8a +b≥2a +b 2·8a +b =4,当且仅当a +b 2=8a +b ,即a +b =4时,等号成立.故12a +12b +8a +b的最小值为4. 12.函数y =x 2+2x -1(x >1)的最小值为________. 答案 23+2解析 ∵x >1,∴x -1>0,∴y =x 2+2x -1=(x 2-2x +1)+(2x -2)+3x -1=(x -1)2+2(x -1)+3x -1=(x -1)+3x -1+2≥23+2.当且仅当x -1=3x -1,即x =3+1时,等号成立.B 级 能力提升13.(多选题)(2021·石家庄一模)若a ,b ,c ∈R ,且ab +bc +ca =1,则下列不等式成立的是( )A.a +b +c ≤3B.(a +b +c )2≥3C.1a +1b +1c ≥23D.a 2+b 2+c 2≥1答案 BD解析 由均值不等式可得a 2+b 2≥2ab ,b 2+c 2≥2bc ,c 2+a 2≥2ca ,∴2(a 2+b 2+c 2)≥2(ab +bc +ca )=2,∴a 2+b 2+c 2≥1,当且仅当a =b =c =±33时,等号成立.∴(a +b +c )2=a 2+b 2+c 2+2(ab +bc +ca )≥3,∴a +b +c ≤-3或a +b +c ≥ 3.若a =b =c =-33,则1a +1b +1c =-33<2 3.因此,A ,C 错误,B ,D 正确.故选BD.14.(2020·山东名校联考)正实数a ,b 满足a +3b -6=0,则1a +1+43b +2的最小值为( ) A.13B.1C.2D.59 答案 B解析 由题意可得a +3b =6,所以1a +1+43b +2=19[(a +1)+(3b +2)]⎝ ⎛⎭⎪⎫1a +1+43b +2=19⎣⎢⎢⎡⎦⎥⎥⎤5+3b +2a +1+4(a +1)3b +2≥1, 当且仅当⎩⎪⎨⎪⎧2(a +1)=3b +2,a +3b =6,即a =2,b =43时等号成立.故1a +1+43b +2的最小值为1,选B.15.若a ,b ∈R ,ab >0,则a 4+4b 4+1ab的最小值为________. 答案 4解析 ∵a ,b ∈R ,ab >0,∴a 4+4b 4+1ab ≥4a 2b 2+1ab =4ab +1ab ≥24ab ·1ab =4,当且仅当⎩⎨⎧a 2=2b 2,4ab =1ab ,即⎩⎪⎨⎪⎧a 2=22,b 2=24时取得等号. 16.已知函数f (x )=x 2+ax +11x +1(a ∈R ),若对于任意的x ∈N *,f (x )≥3恒成立,则a 的取值范围是________.答案 ⎣⎢⎡⎭⎪⎫-83,+∞ 解析 对任意x ∈N *,f (x )≥3,即x 2+ax +11x +1≥3恒成立,即a ≥-⎝ ⎛⎭⎪⎫x +8x +3. 设g (x )=x +8x ,x ∈N *,则g (x )=x +8x ≥42,当且仅当x =22时等号成立,又g (2)=6,g (3)=173,∵g (2)>g (3),∴g (x )min =173.∴-⎝ ⎛⎭⎪⎫x +8x +3≤-83,∴a ≥-83,故a 的取值范围是⎣⎢⎡⎭⎪⎫-83,+∞.。
均值不等式

均值不等式及其应用一、 均值不等式的含义及成立的条件(一) 原型: ;2:22ab b a R b a ≥+∈,都有、对于任意的实数 .3,333abc c b a R c b a ≥++∈+都有:、、对于任意的正数(二) 均值不等式:任意n 个正数的算术平均值不小于这n 个正数的几何平均值两个数的均值不等式:若,a b R +∈,则2a b+a b =时成立)三个数的均值不等式:若,,a b c R +∈,则a b c ++≥a b c ==时成立) (等号仅当a b c ===d 时成立) (三)均值不等式常见的变形时取得最小值)为常数,则若时取得最小值)(注意当且仅当的最小值为,则常数若、、、对于任意的正数b a ((b a .22,122=≤=+=+≥+=∈+mm ab m b a m b a m b a m ab R c b a注意当且仅当若(注意当且仅当则常数、若c b a (c b a ,2===++==+=m c b a b a m abc3、几个常用不等式:① ab 2 ⎪⎝⎭233b c ++⎫⎪⎝⎭;③如果,a b R ∈≥2a b +2a b+(可以推广到n 的情形)【均值不等式的几何证明------用几何意义加深对不等式的理解】 (1)的几何意义ab b a 222≥+:如右图,不妨设0>>a b ,两个正方体的体积 之和为22b a +,两个矩形的面积之和为:ab 2 显然,这两部分面积之差ab b a 2-22+为图中 阴影部分面积..4,4abcd d c b a R d c b a ≥+++∈+都有:、、、对于任意 b(2)的几何意义ab ba ≥+2: 【其一】分析:设ab x =,其意义是什么?联想到圆幂定理:ab x =2如右图:设a AB =,b AC =,则a b BC -=,以BC 为直径作圆,切线AD 与圆相切于D 点,则有:AD=ab ,AO=2ba +(为什么?). 显然,AD AO ≥ 【其二】原式即的几何意义)(ab b a ≥+22: 如右图,设a AC =,b AB =,中点为BC D ,则,2b a AD +=,正方形ADEF 的面积=22)(b a + 矩形ACHG 的面积= ab ,这两面积的差= MHNE S 矩形,(为什么?)即22)(b a +=ab +S 矩形(注意:CD EN S S 矩形=(3)如右图:设a AC =,则,2ba AD +=, 则222b a +而b a )(22+这两个面积的差等于MNG S ∆即222b a +=22)(b a ++MNG S ∆(为什么?)ABCODFA BC D二、均值不等式的应用【适应性预备练习】1、课本P11练习1、2、32、课本P11习题1、2、3、4、6;2(4);(3);411)2( ;2211 ,322ab ba abab abb a )ba b)((a abb a R b a >+>+>++>++∈+)()成立的是(则下列不等式中一定不、、设 zxyz xy z y x R z y x cba b a c a c b R c b a ++≥++∈≥+++++∈+222,2614求证:、、)已知:(,证明:、、)已知:、( 【方法三种:均值不等式、构造函数的方法、配方法】(一)应用于证明不等式--------值不等式证之.1、 证明:log 5lg 42<(2)12222222444c b b a b a c b a R c b a ++++≥++∈)(、、、已知;(2) 4;))((13222c b a ac c b b a c b a c b a R a 、、b、c ++≥++≥++++∈+),求证:(、设9)111)(( (3)≥++++cb ac b a .8)1-1)(1-1)(1-1231,14≥≤++=++∈+cb ac b a c b a R a 、、b、)(;()(求证:,若、设 9111 (3)≥++c b a ; ;31)4(222≥++c b a )(2,,5222zx yz xy z cb a y b ac x a c b R c b a R z y x ++≥+++++∈∈+求证:、、、、、若4171(4).225)b 1(b )1(3)( ;425)b 1)(b 1)(2( ;811111,0,0622≥+≥+++≥++≥++=+>>ab ab a a a a ab b a b a b a )(,求证:、设【第(1)题方法:具有代表性,五种方法。
均值不等式应用(技巧)

均值不等式应用(技巧)一.均值不等式1.(1)若,则 (2)若,则(当且仅当时取R b a ∈,ab b a 222≥+R b a ∈,222b a ab +≤b a =“=”)2. (1)若,则(2)若,则(当且仅当时取“=”)*,R b a ∈ab b a ≥+2*,R b a ∈ab b a 2≥+b a =(3)若,则 (当且仅当时取“=”)*,R b a ∈22⎪⎭⎫⎝⎛+≤b a ab b a =3.若,则 (当且仅当时取“=”);若,则 (当且仅当时取0x >12x x +≥1x =0x <12x x+≤-1x =-“=”)若,则 (当且仅当时取“=”)0x ≠11122-2x x x x x x +≥+≥+≤即或b a =3.若,则 (当且仅当时取“=”)0>ab 2≥+a b b a b a =若,则(当且仅当时取“=”)0ab ≠22-2a b a b a bb a b a b a+≥+≥+≤即或b a =4.若,则(当且仅当时取“=”)R b a ∈,2)2(222b a b a +≤+b a =注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”.(2)求最值的条件“一正,二定,三取等”(3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用.应用一:求最值例1:求下列函数的值域(1)y =3x 2+ (2)y =x +12x 21x解:(1)y =3x 2+≥2= ∴值域为[,+∞)12x 266 (2)当x >0时,y =x +≥2=2;1x 当x <0时, y =x += -(- x -)≤-2=-21x 1x ∴值域为(-∞,-2]∪[2,+∞)解题技巧:技巧一:凑项例1:已知,求函数的最大值。
54x <14245y x x =-+-解:因,所以首先要“调整”符号,又不是常数,所以对要进行拆、凑450x -<1(42)45x x --A 42x -项,,5,5404x x <∴-> 11425434554y x x x x ⎛⎫∴=-+=--++ ⎪--⎝⎭231≤-+=当且仅当,即时,上式等号成立,故当时,。
均值不等式的证明方法及应用

均值不等式的证明方法及应用摘要均值不等式在不等式理论中处于核心地位,是现代分析数学中应用最广泛的不等式之一。
应用均值不等式,可以使一些较难的问题得到简化处理。
本文首先系统全面地总结了均值不等式的十种证明方法,其中包括柯西法、数学归纳法、詹森不等式法、不等式法、几何法、排序法、均值变量替换法、构造概率模型法、逐次调整法、泰勒公式法;其次, 结合相关例题给出均值不等式在证明不等式、比较大小、求最值、证明极限的存在性、判断级数敛散性、证明积分不等式方面的应用。
关键词:均值不等式;数学归纳法;最值;极限;积分不等式PROOFS AND APPLICATIONS ON AVERAGE VALUEINEQUALIT YABSTRACTAverage value inequality occupies a core position in inequality theory and is one of the most widely used inequalities in modern mathematics. Using average inequality can make some difficult problems simple. In this paper, ten proof methods of average value inequality are first systematically summarized, including Cauchy method, mathematical induction, Jensen inequality, inequality method, geometry method, sorting method, variable substitution method of average value, constructing probability model method, successive adjustment method, Taylor formula method, respectively. Secondly, we give applications of average value inequality combining the corresponding examples on comparing the size, solving maximum and minimum, proving the existence of the limit, judging convergence of series and proving integral inequality.Key words: average value inequality; mathematical induction; maximum and minimum; limit; integral inequality目录前言 --------------------------------------------------------------------- 4 1 均值不等式的证明方法 --------------------------------------------------- 51.1 柯西法 ----------------------------------------------------------- 51.2 数学归纳法 ------------------------------------------------------- 61.3 詹森不等式法 ----------------------------------------------------- 71.4 不等式法 --------------------------------------------------------- 71.5 几何法 ----------------------------------------------------------- 81.6 排序法 ----------------------------------------------------------- 91.7 均值变量替换法 --------------------------------------------------- 91.8 构造概率模型法 --------------------------------------------------- 91.9 逐次调整法 ------------------------------------------------------ 101.10 泰勒公式法 ----------------------------------------------------- 102 均值不等式的应用 ------------------------------------------------------ 122.1 均值不等式在证明不等式中的应用 ---------------------------------- 122.2均值不等式在比较大小问题中的应用--------------------------------- 132.3 均值不等式在求最值问题中的应用 ---------------------------------- 132.3.1 均值不等式求最值时常见错误 -------------------------------- 142.3.2 均值不等式求最值“失效”时的对策 -------------------------- 162.4 均值不等式在证明极限的存在性时的应用 ---------------------------- 172.5 均值不等式在判断级数敛散性中的应用 ------------------------------ 192.6 均值不等式在证明积分不等式中的应用 ------------------------------ 193 结论 ------------------------------------------------------------------ 21 参考文献: --------------------------------------------------------------- 22 致谢 -------------------------------------------------------------------- 23前言不等式在数学的各个领域和科学技术中都是不可缺少的基本工具, 而均值不等式是重中之重. 通过学习均值不等式,不仅可以帮助我们解决一些实际问题,还可以培养逻辑推理论证能力和抽象思维能力,以及养成勤于思考、善于思考的良好学习习惯. 因此,研究均值不等式的证明方法及应用,是一个既有理论意义又有广泛现实意义的问题.均值不等式的证明及运用均值不等式来解决数学中的某些问题,在数学研究中历历可见. 如,比较大小、求函数的最值、证明不等式常利用均值不等式的方法进行解答. 均值不等式还是高等数学中最基本的运算之一,作为最基本不等式,在解决高等数学问题中也发挥着重要的作用. 运用均值不等式可以使复杂的问题简单化,繁琐的问题清晰化.著名数学家阿基米德[]1最先运用了均值不等式,证明了球和圆柱的相关问题.此后科学家们对均值不等式的证明方法进行了深入的研究,并在此基础上把均值不等式应用到了其他领域. 当前, 我国许多学者对均值不等式的证明方法及应用进行了大量的研究[]214-. 如,陈益琳在学生利用均值不等式解题时遇到的常见问题作了总结性的工作[]8.冉凯[]9对均值不等式在数学分析中的应用做了探讨. 均值不等式在解决许多问题中发挥着重要的作用.本文将对均值不等式的证明方法及应用进行归纳和总结.1 均值不等式的证明方法首先,我们给出均值不等式. 定理1 设12,,...,n a a a 是n 个正数,则 1212nn n a a a a a a n+++≥⋅, ()11-上式当且仅当12n a a a ===时等号成立.上述不等式我们称之为算术—几何平均不等式,以后简称均值不等式. 我们把12na a a n+++和12n n a a a ⋅分别叫做这n 个数的算术平均数和几何平均数,分别记做()n A a 和()n G a ,(1-1)式即为()()n n a G A a ≥.下面给出均值不等式的几种证明方法.1.1 柯西法当2n =时,由于120,0a a >>.有212()0a a -≥,得12122a a a a +≥. 当4n =时,12341234()()a a a a a a a a +++=+++41234123412342244a a a a a a a a a a a a ≥+≥=.当8n =时,12345678()()a a a a a a a a +++++++441234567844a a a a a a a a ≥+8123456788a a a a a a a a ≥. 这样的步骤重复n 次之后将会得到, 令1211122,,;n nn n n n a a a a a a a a a a A n+++++======= ()12-有1122221212(2)()2n nnnn n nn n n nA n A A a a a Aa a a A--+-=≥⋅=⋅即1212nn n a a a a a a n+++≥⋅.这个归纳法的证明是柯西首次提出的,我们将它称之为柯西法.1.2 数学归纳法证法一当2n =时,不等式显然成立. 假设当n k =时,命题成立. 则当1n k =+时,12111k k K a a a a A k ++++++=+,11121k K k G a a a +++=⋅.因为i a 具有全对称性,所以不妨设1min 1,2,,|,1{}i a a i k k ==+,1{|,,1}1,2,k i a ma a x i k k +==+.显然 111K k a A a ++≤≤,以及()()11110K k K a A a A +++--≤.于是,111111()K k K k A a a A a a +++++-≥. 所以12111111()(1)k K K K K K a a a A kA k A A A k k k +++++++++-+-====211121111()()k k K kk k K a a a a A a a a a A k+++++++++-≥⋅+-.即12111()k k k k K A a a a a A +++≥+-两边乘以1K A +,得111211112111()()k K k k K k K k k K A a a A a a A a a a a G ++++++++≥+-≥=.从而,有11K K A G ++≥.所以,由数学归纳法,均值不等式对一切n 成立,即 ()()n n A a G a ≥. 证法二当2n =时,不等式显然成立; 假设当n k =时成立.则当1n k =+时,有1111(1)k k k k k a k G k G -++++-≥⋅,于是11111122111(1)()()k k k k k k k k k k a k G G G a GG k-++++++-=≤⋅11(1)1()2k k k a k G G k +++-≤+ 11(1)1()2k k k a k G A k+++-≤+.所以 1112(1)(1)k k k k G k A k G +++⋅≤++-,所以 11k k G A ++≤. 当且仅当11k k a G ++=且1(1)k k k k G a k G +⋅=+-时等号成立. 由数学归纳法知,均值不等式对一切n 成立,即 ()()n n A a G a ≥.1.3 詹森不等式法引理1(Jensen 不等式)若()f x 为区间I 上的凸函数,对任意i x I ∈,0(1,2,,)i i n λ>=,且11ni i λ==∑,则11()()i nni i i i i f x f x λλ==≤∑∑ (1-3)成立.下面利用詹森不等式证明均值不等式.令 ()ln f x x =-,(0)x >,易知()f x 在(0,)+∞是凸函数.由于0(1,2,,)i a i n >=,令1i nλ=,则由引理1有下式,12121)(ln ln ln )ln(nn a a a a a a nn +++≤-+++-.则12121211)(ln ln ln )ln()ln(nn n a a a a a a a a n n na +++≥+++=,因此11212)ln()ln(nnn a a a a a na +++≥,即1212nn n a a a a a a n+++≥⋅,当且仅当12n a a a ===时等号成立.1.4 不等式法在均值不等式的证明中,可以运用一个特殊的不等式1x e x ≥+进行推导. 设()x f x e =,对()x f x e =应用迈克劳林展开式并取拉格朗日余项得:2112x x e x x e θ=++, 其中, 0x ≠, 01θ<<. 因此, 1x e x >+,0x ≠.当0x =时,等号成立.下面给出均值不等式的证明过程. 取一组数k x ,1,2,,k n =,使10nk k x ==∑.令 (1)k k n a x A =+.则由(1)k x k x e +≤(k x 全为零时,取等号)可得,111111()(1)k nnn nx nn n k k n n n k k k G a x A A e A ===⎡⎤==+≤=⎢⎥⎣⎦∏∏∏,所以 ()()n n A a G a ≥.1.5 几何法作函数nx G y e =的图像,它是凸曲线,并在点(),n G e 处作切线 ny exG =,可见这条切线在函数的下面(见图11-),因此,可以得到0i na G inea eG ≥>1,2,3,,i n =().所以12()12()()()n na a a G n nn nnea ea ea e e G G G +++≥⋅=,于是n n nA n G ≥,即n n A G ≥,且从上述证明中可知,当且仅当12n n a a a G ====时,等号成立.图1-11.6 排序法做序列: 11n a x G =,1222n a ax G =,…,12111n n n n a a a x G ---=,121n n n na a a x G ==,取其中的一个排列:11nb x ==,21b x =,…,1n n b x -=,则111n x a b G =,222n x a b G =,…,n n n nx a b G =. 不妨设120n x x x ≥≥≥>.则121110n x x x <≤≤≤.由排序原理可知3121212312111n n n nx x x x x x x n b b b b x x x ++++≥⋅+⋅++⋅=, 即12n nn n a a a n G G G +++≥,1212nn n a a a a a a n+++≥⋅,所以 ()()n n A a G a ≥.1.7 均值变量替换法本节运用数学归纳和变量替换相结合的方法证明均值不等式. 易证2n =时,不等式显然成立. 假设当n k =时,不等式成立. 则当1n k =+时,设1(1,2,,)i i k x a A i n +=-=,则110k i i x +==∑.设i x 不全为零,必有一个ix 为正,另一个为负,不妨设10i x x <<,由于 1211121112()()()k k k k a a A x A x A A x x ++++=++++<, 从而112311123411()()k k k k k k A x x a a A x x a a a kA ++++++++++>++=111234111k k kkk k k G a a a a a A A +++++>=.所以 1111k k k k A G ++++>,即11k k A G ++>.易证,当且仅当0i x =时(即12n a a a ===时)取等号,故原不等式()()n n A a G a ≥成立.1.8 构造概率模型法首先给出证明过程中要用到的一个引理.引理 2 设X 是一个随机变量,并且数学期望EX 存在,则有22()EX EX ≥,ln (ln )EX E X ≥. ()14-建立概率模型,设随机变量X 的概率分布为1()i P X a n==,其中0i a ≥,1,2,,i n =.由引理2可知,1111ln ln nni i i i a nn a ==≥∑∑,112ln ln 1ni i n n a a a a n =≥∑,即1212nn n a a a a a a n+++≥⋅成立.1.9 逐次调整法12,,...,n a a a 中必存在最值数,不妨设1min{}i a a =,2max{}i a a =. 易见21212()[]2a a a a +≥.于是,用122a a+取代12,a a .n A 不变,但是n G 增大,即 121231()()11()22nn i i a a a a a a a n n =++++++=∑,1212123()()22n nn n a a a a a a a a a ++≤⋅⋅.对于各个n ,这种代换至多进行1n -次(有限次).因此,212123()2n n n n n n n nn n a a G a a a a a A A A A +=≤⋅≤≤=.即 n n G A ≤,当且仅当12n a a a ===时,取等号.1.10 泰勒公式法设()log (01,0)xaf x a x =<<>,则21''()0ln f x x a=->,将()f x 在0x 处展开,有 '''200000()()()()()()2f x f x f x f x x x x x =+-+-.因此有'000()()()()f x f x f x x x ≥+-,取011,(,),(1,2,,)ni i i x a a a b i n n ==∈=∑,从而'111111()()()()(1,2,,)n nn i i i i i i i i f a f a f a a a i n n n n ===≥+-=∑∑∑.故'111111111()()()()()nn n n nn i i i i i i i i i i i i f a nf a f a a a nf a n n n ======≥+⋅-=∑∑∑∑∑∑, 即 1111()()n ni i i i f a f a n n ==≤∑∑.因此有 12121()1log (log log log )n na a a a a a naa a a n+++≤+++,即 12121()()1log log n n a a a a a a n a an+++⋅≥,亦即112121()()loglog (01)nn n a a a a a a n aaa +++⋅≥<<,故有1212nn n a a a a a a n+++≥⋅,(0,1,2,,)i a i n >=.2 均值不等式的应用2.1 均值不等式在证明不等式中的应用一般不等式的证明,常常考虑比较法,综合法,分析法,这是高中比较常用的方法,但有些不等式运用上述方法不好入手,故考虑均值不等式或者均值不等式与综合法相结合,这样处理,常常使复杂问题简单化,从而达到证明的目的.下面举几个例子予以说明.例1 已知,,a b c 为互不相等的正数,且1abc =.求证111a b c a b c++<++. 证明1111/1/1/1/1/1/111222b c a c a b a b c bc ac ab a b c+++++=++<++=++. 故原不等式得证.例2 证明 221a b ab a b ++≥++.证明 由均值不等式得,212a a +≥,212b b +≥,222a b ab +≥.以上三式相加得,()()22212a b ab a b ++≥++,即有,221a b ab a b ++≥++. 原不等式得证.例3 设圆o 的半径为12,两弦CD 和EF 均与直径AB 交45︒,记AB 与CD 和EF 的交点分别为P 和Q,求证 221PC QE PD QF ⋅+⋅<.图21-证明 如图21-,设M 为弦CD 的中点,连接CO ,MO ,则△POM 为等腰直角三角形,且MP MO =.222222222()()2()2()2PC PD MC MP MC MP MC MP MC MO CO +=-++=+=+=211222⎛⎫== ⎪⎝⎭.同理,2212QE QF +=. 由均值不等式得,222222PC QE PD QF PC QE PD QF ++⋅+⋅≤+ 2222()()2PC PD QE QF +++=1112222+==.即 221PC QE PD QF ⋅+⋅<,原不等式得证.2.2均值不等式在比较大小问题中的应用比较大小问题是高中数学中常见的问题,准确巧妙地运用均值不等式是快速解决这类问题的关键.例4 若1a b >>,lg lg p a b =⋅,1(lg lg )2Q a b =+,lg 2a bR +=,试判断,,P Q R 之间的大小关系.解 由均值不等式,得1(lg lg )lg lg 2Q a b a b P =+≥⋅=.1lg lg (lg lg )22a b R ab a b Q +=≥=+=.由于,a b a b >≠,所以不能取等号,即R Q P >>.2.3 均值不等式在求最值问题中的应用均值不等式在求函数最值,解决一些取值范围问题时运用非常广泛,是重要知识点之一.在实际应用问题中,我们应因题而宜地进行变换,并注意等号成立的条件,达到解题的目的,变换题目所给函数的形式,利用熟悉知识求解是常用的解题技巧,熟练运用该技巧,对于提高思维的灵活性和严密性大有益处.例5 求下列函数的值域:(1)22132y x x =+; (2)1y x x=+. 解 (1)因为,222211323x =622y x x x =+≥⋅. 所以,值域为[6,+)∞. (2)当0x >时,112 2y x x x x=+≥⋅=. 当0x <时,111()2 -2y x x x x x x=+=---≤-⋅=故,值域为[.],22∞⋃+∞(--,) 例6 若02x <<,求函数()3(83)f x x x =-的最大值. 解 因为, 02x <<.所以,()3(83)3(83)24x x x f x x =≤+-=-,故()f x 的最大值是4.例7 制作容积一定的有盖圆柱形罐头, 当圆柱高h 和底面半径r 的比为何值时,使用的材料最省? (不计加工损耗)解 设圆322222222232V V V S rh r r r V r r rπππππ=+=+=++≥,当且仅当22Vr r π=,即32V r π= 时, 材料最省. 此时有322r r h ππ= ,故 :2:1h r =,即圆柱形的高与底面半径之比为2:1时,使用的材料最省.2.3.1 均值不等式求最值时常见错误运用均值不等式解题是一项重要内容,运用这种方法有三个条件:(1)正;(2)定;(3)相等.在此运用过程中,往往需要对相关对象进行适当地放大、缩小, 或不等式之间进行传递等变形,在此过程中,学生常常因为忽视条件成立而导致错误,而且错误不易察觉.因此,就这一问题列举几个例子进行说明.例8 求()111y x x x =+≠-的值域. 分析 在解题时,我们常常写成()111112113111y x x x x x x =+=-++≥-+=---, 故[)3,y ∈+∞.虽然111x x --与的积是常数,但1x -不一定是正数,忽视均值不等式中的各项为“正”致错, 因此解法是错误的.下面给出正确解法.解 当 1x >时,()111112113111y x x x x x x =+=-++≥-+=---,当且仅当111x x -=-,即 2x =时等号成立; 当1x <时,()111112111111y x x x x x x-=-+=-+-≥--=---,所以 1y ≤-,当且仅当0x =时取等号,所以原函数的值域为(][),13,-∞-⋃+∞.例9 求2254x y x +=+的最小值.分析 在解题时,我们常常写成 222222225411142424444x x y x x x x x x +++===++≥+=++++,所以y 的最小值是 2.可是在2y ≥ 中,当且仅当22144x x +=+,即23x =-,这是不可能的,所以等号不成立,这个问题忽视均值不等式中等号成立条件.故原式的最小值不是2.下面给出正确解法.解 在22144y x x =+++中,令24t x =+, 则1y t t =+(2t ≥),易证1y t t =+在[2,)+∞上递增,所以y 的最小值是15222+=,当且仅当2t =时,即242x +=,0x =,取“”=号.例10 若正数,x y 满足26x y +=,求xy 的最大值.分析 在解题时,我们常常写成22x y xy +⎛⎫≤ ⎪⎝⎭,当且仅当x y =且26x y +=,即2x y ==时取“”=号, 将其代入上式,可得xy 的最大值为4.初看起来,很有道理, 其实在用均值不等式求最值时,在各项为正的前提下,应先考虑定值,再考虑等号是否成立.但在22x y xy +⎛⎫≤ ⎪⎝⎭中,x y +不是定值,所以xy 的最大值不是4.这个问题忽视了均值不等式中积或和是定值的条件.下面给出正确解.解 因2112922222x y xy x y +⎛⎫=⨯≤⨯= ⎪⎝⎭, 当且仅当2x y =时(此时33,2x y ==)取“”=号, 所以()max 92xy =. 2.3.2 均值不等式求最值“失效”时的对策.运用均值不等式是求最值的一种常用方法, 但由于其约束条件苛刻,在使用时往往顾此失彼,从而导致均值不等式“失效”. 下面例说几种常用的处理策略.例11 已知0 1x <<,求4lg lg y x x=+的最大值. 解 因为0 1x <<,所以lg 0x <,lg 0x ->,从而有()4lg 244lg y x x ⎛⎫-=-+-≥= ⎪⎝⎭,即 4y ≤-,当且仅当4lg lg x x -=-即1100x =时等号成立,故max 4y =-. 本题满足4lg 4lg x x⋅= 为定值,但因为0 1x <<,lg 0x <,所以此时不能直接应用均值不等式,需将负数化正后再使用均值不等式.例12 求 1 () 2y x x =- 102x ⎛⎫<< ⎪⎝⎭ 的最大值.解 ()()2112121122122228x x y x x x x +-⎛⎫=-=⋅⋅-≤⋅= ⎪⎝⎭,当且仅当212x x =-,即14x =时等号成立.故max 18y =. 本题)2(1x x +-不是定值,但可通过平衡系数来满足和为定值.例13 已知0a b >>,求()64y a a b b=+-的最小值.解 ()()()3646436412y a a b b a b b a b b =+=-++≥=--,当且仅当()64a b b a b b-==-,即 8a =, 4b =时等号成立.故min 12y =.本题 ()64a ab b⋅-不是定值,但可通过添项、减项来满足积为定值.例14 已知0 x π<<,求4sin sin y x x=+的最小值. 解 41313sin sin 2sin 5sin sin sin sin 1y x x x x x x x ⎛⎫=+=++≥⋅+= ⎪⎝⎭. 当且仅当1sin sin x x =且33sin x=,即sin 1x = 时等号成立. 故min 5y =. 本题虽有4sin sin x x ⋅为定值,但4sin sin x x=不可能成立. 故可通过拆项来满足等号成立的条件.例15 已知52x ≥,则()24524x x f x x -+=- 有______.()A 最大值54 ()B 最小值54()C 最大值1. ()D 最小值1. 解 ()()()()2221451121242222x x x f x x x x x -+-+⎡⎤===-+≥⎢⎥---⎣⎦,当且仅当()122x x -=-,即3x =时等号成立.故选()D .本题看似无法使用均值不等式,但对函数式进行分离,便可创造出使用均值不等式的条件.2.4 均值不等式在证明极限的存在性时的应用极限概念是高等数学中的重要概念,在证明数列极限的存在性时,需证明数列单调及数列有界.而在此过程中便运用了均值不等式的相关内容.下面举例说明.例16 证明重要极限1lim(1)n n e n →∞+=的存在性.证明 先证数列{1(1)n n +}单调递增.令1211n a a a n===+=,11n a +=,则由均值不等式()11-得,111111(1)(1).1[(1)(1)1]1n n n nn n nn++++++<+++个个.即 111(1)11n n n n ++<++,所以 111(1)(1)1n n n n ++++<.所以 数列{1(1)n n +}单调递增.再证数列{1(1)n n+}有上界.下面的证明可以看到一个更强的命题:数列{1(1)n n +}以11(1)k k M ++=(k 为正整数)为上界.先证不等式, 当n k >时, 1111(1)(1)n k n k++<++.设 1211k ka a a k +====+,21k n a a +===.由均值不等式111()1[(1)()]1111k n k n k k n k n k k n k n +-+⋅+⋅+-=++<++, 所以 11()()11k n k n k n ++<++,因此,1111(1)(1)n k n k ++<++. 其次由111n +>,有111(1)(1)n n n n +<++,所以111(1)(1)n k n k+<++.当n k >时,任取一个正整数k ,11(1)k k M ++=均是数列{1(1)n n+}的上界.又数列{1(1)n n +}单调递增,所以,当n k ≤时,不等式111(1)(1)n k n k+<++仍然成立.因此,对于数列 {1(1)n n +}1,2n =(), 恒有111(1)(1)n k n k +<++(k 为正整数). 任意选定一个k 值,11(1)k k M ++= 均是数列{1(1)n n+}的上界.所以数列{1(1)n n +} 单调有界,由单调有界定理,数列{1(1)n n +} 极限存在.极限值为e ,即1lim(1)n x e n→∞+=.例17 证明数列{11(1)n n ++}极限存在且其极限是e .证明 令 11{(1)}n n x n+=+.11221(1)11111()()[]()1122n n n n n n nn n n n n x n n n n x ++++++⋅+++==≤==++++. 所以,数列{}n x 单调减少.又0n x >,则数列{}n x 有下界.1111lim(1)lim (1)(1)n n n n nn n +→∞→∞⎡⎤+=+⋅+⎢⎥⎣⎦. 因为 1(1)n n +和1(1)n+的极限都存在, 所以1111lim(1)lim (1)(1)n n n n e n n n +→∞→∞⎡⎤+=+⋅+=⎢⎥⎣⎦. 因此, 数列{11(1)n n++}极限存在且其极限是e .例18 证明lim 1n n n →∞=.证明 由均值不等式(1-1)有:121111nnn n n n n n n -⎛⎫++++=⋅⋅≤⎪⎝⎭个2221n n n n+-=<+, 从而有201n n n≤-<,故 lim 1n n n →∞=.2.5 均值不等式在判断级数敛散性中的应用均值不等式的应用很广泛,在证明级数的敛散性时也有很重要的应用. 例19 已知正项级数1n n a ∞=∑收敛,证明级数11n n n a a ∞+=∑也收敛.证明 因为,0n a >(1,2,)n =,由均值不等式,有111()2n n n n a a a a ++≤+,已知级数1n n a ∞=∑收敛,所以级数112n n a ∞=∑与1112n n a ∞+=∑都收敛,从而级数111()2n n n a a ∞+=+∑也收敛,再由比较判别法,知级数11n n n a a ∞+=∑收敛.2.6 均值不等式在证明积分不等式中的应用积分不等式是一种特殊的不等式,而均值不等式又是证明不等式的重要方法.因此,在积分不等式的证明中我们自然会想到运用均值不等式来进行证明.例20 证明函数f x ()在[],a b 上是正值可积的, 1,2,k n =,且0a b <<,则[]11111212()()()()()()bbbbnnnnn n aa a a f x f x f x dx f x dx f x dx f x dx ⎡⎤⎡⎤⎡⎤⋅≤⋅⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎰⎰⎰⎰. 证明 利用1212nn n a a a a a a n+++≥⋅.有,1212()()()()()()n bbbnn aaaf x f x f x f x dxf x dxf x dx⋅⎰⎰⎰1212()()()1()()()n b bbn a a af x f x f x n f x dx f x dx f x dx ⎡⎤⎢⎥≤+++⎢⎥⎢⎥⎣⎦⎰⎰⎰.于是 1111212()()()()()()n n nb n b bba n a a a f x f x f x dx f x dx f x dx f x dx ⎧⎫⎡⎤⎡⎤⎡⎤⎪⎪⎪⎪⎢⎥⎢⎥⎢⎥⋅⎨⎬⎢⎥⎢⎥⎢⎥⎪⎪⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎪⎪⎩⎭⎰⎰⎰⎰ 1212()()()11()()()b bbn a a a b b b n a a af x dx f x dx f x dx n f x dxf x dx f x dx ⎡⎤⎢⎥≤+++=⎢⎥⎢⎥⎣⎦⎰⎰⎰⎰⎰⎰,即 []11111212()()()()()()bbbbnnnnn n aa a a f x f x f x dx f x dx f x dx f x dx ⎡⎤⎡⎤⎡⎤⋅≤⋅⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎰⎰⎰⎰. 例21 设f x ()在[0,1]上非负连续,证明101ln ()0()f x dxe f x dx ⎰≤⎰.证明 由题设知f x ()在[0,1]上可积,将[0,1]n 等分,作积分和111()lim()n n i i f x dx f n n →∞==∑⎰,110111ln ()lim ln ()limln ()nn nn n i i i i f x dx f f n n n →∞→∞==⎡⎤==⎢⎥⎣⎦∑∏⎰. 所以 01111li ln (n )m l ()1lim ()n nn i i f nnn f x n dxi i e f n e →∞=⎡⎤⎢⎥⎢⎥⎣⎦→∞=∏⎡⎤=⎢⎣⎰⎥⎦=∏. 由均值不等式1212...n nn a a a a a a n+++≥⋅得,110111lim ()lim ()()nn nn n i i i i f f f x dx n n n →∞→∞==⎡⎤≤=⎢⎥⎣⎦∑∏⎰.故 11ln ()0()f x dx e f x dx ⎰≤⎰.3 结论均值不等式是数学中的重要内容,对培养数学思维发展有很大帮助.本文重在梳理均值不等式的相关证明方法和应用.如,运用均值不等式时,一定时刻谨记一正、二定、三相等原则,具体问题具体分析,有时可以通过转化达到运用均值不等式解题的目的.本文系统地归纳总结均值不等式的各种证明方法及其在具体解题分析和论证推理过程中的应用.通过本论文的撰写,更深刻地理解均值不等式在证明问题和解题中的重要作用.参考文献:[1]中译本(朱恩宽、李文铭等译):《阿基米德全集》[M]. 西安:陕西科学技术出版社,1998.[2]陈侃.算术-几何平均值不等式的证明[J].巢湖学院学报,2008,6(3):129-130.[3]熊桂武 .概率方法在不等式证明中的应用[J].重庆师范大学学报,2003,12:89-91.[4]敦茂.算术平均值与几何平均值不等式的各种证法[J].云梦学刊,1980,1(3):65-80.[5]Norman schaumberger.A coordinate approach to the AM-GM inequality[J].MathematicsMagazine,1991,64:273.[6]刘鸿雁.由Jensen不等式导出某些重要不等式[J].成都大学学报,2003,22(3):32-35.[7]匡继昌.常用不等式[M].济南:山东科学技术出版社,2004.[8]陈益琳.高中教学导练(高二)[M].北京:冶金工业出版社,2004.[9]冉凯.均值不等式在数学分析中的应用[J].青海师专学报,1997,4(2):35-38.[10]赵建勋.浅谈均值不等式的应用[J].高中数学教与学,2011,5(3):7-10.[11]蓝兴苹.均值不等式的推广与应用[J].云南民族大学学报,2006,15(4):22-24.[12]高飞、朱传桥《高中数学教与学》[M]. 济南:山东科学技术出版社,2007.[13]章国凤.均值不等式在高等数学中的应用[J].广西教育学院学报,2008,05(1):151-152.[14]陈复华.均值不等式在微积分中的应用及其它[J].湖北民族学院学报(自然科学版),1994,2(3):88-89.致谢毕业论文暂告收尾,这也意味着我在鞍山师范学院四年的学习生活既将结束。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
均值不等式及其运用编稿:周尚达审稿:张扬责编:严春梅目标认知学习目标:1. 了解基本不等式的证明过程,理解这个基本不等式的几何意义,并掌握定理中的不等号“≥”取等号的条件是:当且仅当这两个数相等;2. 会用基本不等式解决简单的最大(小)值问题.重点:会应用基本不等式求某些函数的最值;能够解决一些简单的实际问题难点:基本不等式等号成立条件,利用基本不等式求最大值、最小值。
知识要点梳理知识点一:2个重要不等式1.重要不等式:如果,那么(当且仅当时取等号“=”).2.基本不等式:如果是正数,那么(当且仅当时取等号“=”).注意:和两者的异同:(1)成立的条件是不同的:前者只要求都是实数,而后者要求都是正数;(2)取等号“=”的条件在形式上是相同的,都是“当且仅当时取等号”。
(3)可以变形为:,可以变形为:.知识点二:基本不等式的证明1. 几何面积法如图,在正方形中有四个全等的直角三角形。
设直角三角形的两条直角边长为、,那么正方形的边长为。
这样,4个直角三角形的面积的和是,正方形的面积为。
由于4个直角三角形的面积小于正方形的面积,所以:。
当直角三角形变为等腰直角三角形,即时,正方形缩为一个点,这时有。
得到结论:如果,那么(当且仅当时取等号“=”)特别的,如果,,我们用、分别代替、,可得:如果,,则,(当且仅当时取等号“=”).通常我们把上式写作:如果,,,(当且仅当时取等号“=”)2. 代数法∵,当时,;当时,.所以,(当且仅当时取等号“=”).特别的,如果,,我们用、分别代替、,可得:如果,,则,(当且仅当时取等号“=”).通常我们把上式写作:如果,,,(当且仅当时取等号“=”)知识点三:基本不等式的几何意义如图,是圆的直径,点是上的一点,,,过点作交圆于点D,连接、.易证,那么,即.这个圆的半径为,它大于或等于,即,其中当且仅当点与圆心重合,即时,等号成立.注意:1. 在数学中,我们称为的算术平均数,称为的几何平均数. 因此基本不等式可叙述为:两个正数的算术平均数不小于它们的几何平均数.2. 如果把看作是正数的等差中项,看作是正数的等比中项,那么基本不等式可以叙述为:两个正数的等差中项不小于它们的等比中项.知识点四:用基本不等式求最大(小)值在用基本不等式求函数的最值时,应具备三个条件:一正二定三取等。
①一正:函数的解析式中,各项均为正数;②二定:函数的解析式中,含变数的各项的和或积必须有一个为定值;③三取等:函数的解析式中,含变数的各项均相等,取得最值。
知识点五:几个常见的不等式1),当且仅当a=b时取“=”号。
2),当且仅当a=b 时取“=”号。
3);特别地:;4)5);6);7)规律方法指导1.两个不等式:与成立的条件是不同的,前者要求a,b都是实数,后者要求a,b都是正数。
如是成立的,而是不成立的。
2.两个不等式:与都是带有等号的不等式,对于“当且仅当……时,取“=”号这句话的含义要有正确的理解。
当a=b取等号,其含义是;仅当a=b取等号,其含义是。
综合上述两条,a=b是的充要条件。
3.基本不等式的功能在于“和积互化”。
若所证不等式可整理成一边是和,另一边是积的形式,则考虑使用平均不等式;若对于所给的“和式”中的各项的“积”为定值,则“和”有最小值,对于给出的“积式”中的各项的“和”为定值则“积”有最大值。
4.利用两个数的基本不等式求函数的最值必须具备三个条件:①各项都是正数;②和(或积)为定值;③各项能取得相等的值。
5.基本不等式在解决实际问题中有广泛的应用,在应用时一般按以下步骤进行:①先理解题意,设变量,设变量时一般把要求最大值或最小值的变量定为函数;②建立相应的函数关系式,把实际问题抽象为函数的最大值或最小值问题;③在定义域内,求出函数的最大或最小值;④写出正确答案.经典例题透析类型一:基本不等式的理解1. 给出下面四个推导过程:①∵,∴;②∵,∴;③∵,,∴;④∵,,∴.其中正确的推导为()A.①②B.②③C.③④D.①④思路点拨:在应用基本不等式时,逐一检验是否具备三个条件:一正二定三取等。
解析:①∵,∴,符合基本不等式的条件,故①推导正确.②虽然,但当或时,是负数,∴②的推导是错误的.③由不符合基本不等式的条件,∴是错误的.④由得均为负数,但在推导过程中,将整体提出负号后,均变为正数,符合基本不等式的条件,故④正确.选D.总结升华:在用基本不等式求函数的最值时,必须同时具备三个条件:一正二定三取等,缺一不可.举一反三:【变式1】,,给出下列推导,其中正确的有___________(填序号).(1)的最小值为;(2)的最小值为;(3)的最小值为.【答案】(1);(2)(1)∵,,∴(当且仅当时取等号).(2)∵,,∴(当且仅当时取等号).(3)∵,∴,(当且仅当即时取等号)∵,与矛盾,∴上式不能取等号,即【变式2】下列命题正确的是()A.函数的最小值为2.B.函数的最小值为2C.函数最大值为D.函数的最小值为2【答案】C解析:A选项中,∵,∴当时由基本不等式;当时.∴选项A错误.B选项中,∵的最小值为2(当且仅当时,成立)但是,∴这是不可能的. ∴选项B错误.C选项中,∵,∴,故选项C正确。
类型二:利用基本不等式求最值2. 若,求的最小值。
思路点拨:和是应用基本不等式的两个前提条件;解析:因为,由基本不等式得(当且仅当即时,取等号)故当时, 取最小值.总结升华:1. 形如(,,)的函数的最值可以用基本不等式求最值;2. 利用基本不等式求最值时,每一项都必须为正数,若为负数,则添负号变正.举一反三:【变式1】若,求的最大值.【答案】因为,所以, 由基本不等式得:, (当且仅当即时, 取等号)故当时,取得最大值.【变式2】已知,当取什么值时,函数的值最小?最小值是多少?【答案】∵,∴,∴(当且仅当即时,取等号)故当时,的值最小为18.【变式3】求函数()的最小值.【答案】∵,∴∴(当且仅当即时,取等号)故当时,函数()的最小值为32.【变式4】已知,求的最大值.【答案】∵,∴,∴(当且仅当,即时,等号成立)∴(当且仅当,即时,等号成立)故当时,的最大值为4.3.已知(1)若,求的最小值;(2)若,求的最大值。
解析:(1)方法一:∵且,∴,即(当且仅当时取等号)∴,的最小值为4.方法二:∵且,∴,即(当且仅当时取等号)∴,的最小值为4.(2)方法一:∵,∴,即(当且仅当时取等号)∴,的最大值为4.方法二:∵,∴,(当且仅当时取等号)∴,的最大值为4.方法三:∵,,∴(当且仅当时取等号)∴,的最大值为4.总结升华:1. 两个正数的和为定值时,它们的积有最大值,即若,且,为定值,则,等号当且仅当时成立.2. 两个正数的积为定值时,它们的和有最小值,即若,且,为定值,则,等号当且仅当时成立.举一反三:【变式1】已知,,,求的最小值.【答案】∵,,,∴由(等号当且仅当时成立)故当时,的最小值为6.【变式2】已知,,,求的最大值.【答案】解法一:∵,,,∴(当且仅当即时,等号成立)故当时,的最大值为16.解法二:∵,,,即,可得,(当且仅当时,等号成立)故当时,的最大值为16.【变式3】若实数满足则的最小值是___________.【答案】,即的最小值是6.4. 已知x>0,y>0,且,求x+y的最小值。
思路点拨:巧用中的“1”,为应用基本不等式创造条件。
解析:方法一:∵,∴∵x>0,y>0,∴(当且仅当,即y=3x时,取等号)又,∴x=4,y=12∴当x=4,y=12时,x+y取最小值16。
方法二:由,得∵x>0,y>0,∴y>9∵y>9,∴y-9>0,∴(当且仅当,即y=12时,取等号,此时x=4)∴当x=4,y=12时,x+y取最小值16。
举一反三:【变式1】若,,且,求的最小值 .【答案】∵,,∴(当且仅当即,时,等号成立)∴(当且仅当,时,等号成立)故当,时,的最小值为64.【变式2】若,,且,求的最小值 .【答案】∵,,∴(当且仅当时,取等号)故当,时,的最小值为16.类型三:利用基本不等式证明不等式5. 已知,求证。
思路点拨:因为,所以可把和分别看作基本不等式中的和,直接利用基本不等式。
解析:因为,所以,(当且仅当,即时,取等号)总结升华:前提条件:和=144(定值).举一反三:【变式1】已知,求证:【答案】(当且仅当即,等号成立).【变式2】已知、都是正数,求证:。
【答案】∵、都是正数,∴,,∴(当且仅当即时,等号成立)故.6. 已知、、都是正数,求证:思路点拨:选择(,)灵活变形,可求得结果.解析:∵、、都是正数∴(当且仅当时,取等号)(当且仅当时,取等号)(当且仅当时,取等号)∴(当且仅当时,取等号)即.总结升华:1. 在运用时,注意条件、均为正数,结合不等式的性质,进行变形.2. 三个式子必须都为非负且能同时取得等号时,三个式子才能相乘,最后答案才能取得等号.3. 在利用基本不等式证明的过程中,常常要把数、式合理的拆成两项或多项或恒等地变形配凑成适当的数、式,以便于利用基本不等式。
举一反三:【变式1】证明:【答案】方法一:∵,(当且仅当,时,取等号)∴(当且仅当时,取等号);方法二:∵(当且仅当,时,取等号)∴.【变式2】已知、都是正数,求证:.【答案】∵、都是正数,∴,,,,,(当且仅当时,取等号)(当且仅当时,取等号)(当且仅当时,取等号)∴(当且仅当时,取等号)即.类型四:基本不等式在实际问题中的应用7. 某单位用木料制作如图所示的框架, 框架的下部是边长分别为、(单位:)的矩形.上部是等腰直角三角形. 要求框架围成的总面积为. 问、分别为多少(精确到0.001m) 时用料最省?解析:由题意可得,∴。
于是,框架用料长度为。
当,即时等号成立。
此时,,。
故当约为2.343 m,约为2.828 m时用料最省。
总结升华:用均值不等式解决此类问题时,应按如下步骤进行:(1)理解题意,设变量,设变量时一般把要求最大值或最小值的变量定为函数;(2)建立相应的函数关系式,把实际问题抽象为函数的最大值或最小值问题;(3)在定义域内,求出函数的最大值或最小值;(4)正确写出答案.举一反三:【变式1】某游泳馆出售冬季学生游泳卡,每张卡240元.并规定不记名,每卡每次只限1人,每天只限1次.某班有48名学生,教师准备组织学生集体冬泳,除需要购买若干张游泳卡外,每次去游泳还要包一辆汽车,无论乘坐多少学生,每次的包车费为40元.要使每个学生游8次,每人最少交多少钱?【答案】设购买x张游泳卡,活动开支为y元,则(当且仅当x=8时取“=”)此时每人最少交80元.【变式2】某农场有废弃的猪圈,留有一面旧墙长12m,现准备在该地区重新建立一座猪圈,平面图为矩形,面积为,预计(1)修复旧墙的费用是建造新墙费用的,(2)拆去旧墙用以改造建成新墙的费用是建新墙的,(3)为安装圈门,要在围墙的适当处留出的空缺。