-锁模激光器综述

合集下载

锁模脉冲激光器概述

锁模脉冲激光器概述

锁模脉冲激光器概述张斌北京工业大学 应用数理学院 010611班指导教师:宋晏蓉摘要 本文概述了锁模激光器的发展历史和发展方向、激光超短脉冲技术的分类及应用。

关键词 锁模,脉冲,激光器一、引言自从1964年第一台锁模激光器问世以来,超短脉冲激光器的研制工作已有了飞速发展,到目前为止已经可产生脉宽几个飞秒,峰值功率TW (1012瓦)级,激光波长从紫外到红外的全光谱范围的超短、超强脉冲激光器。

缩短脉冲激光器脉冲宽度的方法主要经历了三次革新,即调Q 脉冲激光器阶段、主动、被动锁模激光器阶段和克尔锁模激光器阶段。

随着超短脉冲激光技术的飞速发展,目前人们已能从克尔透镜锁模(KLM )的掺钛蓝宝石飞秒激光器中直接产生脉冲宽度不到两个光学周期的激光脉冲(对于800nm 的中心波长,一个光学周期约等于2.17fs )。

同时在得到高峰值功率的脉冲输出方面也作了很多尝试,目前利用啁啾脉冲放大技术(CPA )所能获得的最高脉冲峰值功率已经突破了200TW [1]。

由于输出的脉宽窄、峰值功率高、光谱范围宽这些特点,使超短脉冲激光器广泛应用于各个领域。

如高峰值功率的脉冲激光器被用于产生高次谐波,用于“水窗”和X 射线的应用中。

而高重复率的脉冲激光器在信息处理、通信(波分复用)、互联网及光全息技术、激光光谱等领域中均有广泛用途。

也正是由于这些重要领域对超短光脉冲源的需求,促使从事激光领域研究的人们一直在不断努力探索,用各种手段,各种方法得到脉宽越来越窄,峰值功率越来越高,波长范围连续可调并覆盖全波段的相干光脉冲,并不断地改进其锁模方式和泵浦方式,使激光器向小型化、全固化方向发展。

二、锁模脉冲激光器的发展历史自本世纪60年代第一台激光器诞生以来,由于此新型光源具有以前光源所不具有的优点,如单色性好、相干性好、高亮度等,使激光技术得到了飞速发展,其中发展的一个重要方向是缩短输出脉冲宽度,就锁模脉冲激光技术领域来研究,大致可以分为四个发展阶段:60年代中期~为第一阶段,其特征是各种锁模理论的建立和各种锁模方法的试验探索。

固体锁模激光器

固体锁模激光器
11
四、被动锁模原理
在激光谐振腔中插入可饱和吸收体(半导体可饱和吸收镜、碳纳米管、硫化钨、黑磷)来调
节腔内的损耗.当满足锁模条件时,就可获得一系列的锁模脉冲。根据锁模形成过程的机理和特 点,被动锁模分为固体激光器的被动锁模和染料激光器的被动锁模两种类型。
1. 工作原理
由于吸收体的可饱和吸收系数随光强的增加而下降,所以高增益激光器所产生的高强度 激光能使吸收体吸收饱和。图示出了激光通过吸收体的透过率T随激光强度 I 的变化情况。 强信号的透过率较弱信号的为大,只有小部分为吸收体所吸收。强、弱信号大致以吸收体的 饱和光强 Is来划分。大于Is的光信号为强信号,否则为弱信号。
v3
v1
技术”。
3 E02 /2
0
time
未 锁相 前的 三个 光 波 的 叠加
二、实现锁模的方 法
三. 声光驻波场振幅调制主动锁模
1.时域分析
设在t1时刻通过调制器的光信 号受到的损耗为 t ,在经过 2L/c时间往返一周后,这部分 光信号受到的损耗为 t1 2 L / c , 如果 t 的周期 Tm 2 L / c ,则这 部分信号每往返一次受到相同 的损耗。则有:
固体锁模激光器

锁模原理 实现锁模的方法 主动锁模 被动锁模




锁模:调Q技术得到的脉宽有所极限,为了得到更窄的脉冲在 光纤通讯、医学、激光精细微加工、高密度信息存储和记录及 非线性光学等领域的应用,从而诞生锁模技术。

激光器的分类方法有很多种,一般按照产生激光的工作物质不 同分类,或者按照工作方式分类。用激光二极管(LD)泵浦固体工 作物质的激光器(简称DPSSL)就是所谓的全固态激光器。

锁模激光器

锁模激光器

西安邮电大学光电子技术及应用锁模激光器班级:软件1103班学号:04113098院(系):计算机学院姓名:刘歌歌2013年12月8日一、摘要本文主要介绍了锁模的基本原理和应用前景,并简单介绍了锁模激光器。

二、关键词:锁模激光器,工作原理,应用和前景三、引言如果在激光谐振腔内不加入任何选模装置,那么激光器的输出谱线是由许多分立的,由横纵模确定的频谱组成的。

锁模就是将多纵模激光器中各纵模的初相位关系固定,形成等时间间隔的光脉冲序列。

使各纵模在时间上同步,频率间隔也保持一定,则激光器将输出脉宽极窄、峰值功率很高的超短脉冲。

发展前景:目前,最为广泛使用的一种产生飞秒激光脉冲的克尔透镜锁模(Kerr Lensmode locking)技术是一种独特的被动锁模方法。

科尔透镜锁模实际上是利用了材料的折射率随光强变化的特性使得激光器运转中的尖峰脉冲得到的增益高出连续的背景激光增益,从而最终实现短脉冲输出。

一台激光器实现锁模运转后,在通常情况下,只有一个激光脉冲在腔内来回传输,该脉冲每到达激光器的输出镜时,就有一部分光通过输出镜耦和到腔外。

因此,锁模激光器的输出是一个等间隔的激光脉冲序列。

相邻脉冲间的时间间隔等于光脉冲在激光腔内的往返时间,即所谓腔周期。

一台锁模激光器所产生的激光脉冲的宽度是否短到飞秒量级主要取决于腔内色散特性、非线性特性及两者间的相互平衡关系。

而最终的极限脉宽则受限于增益介质的光谱范围。

衡量一台飞秒激光器的重要技术指标为:脉冲宽度、平均功率和脉冲重复频率。

此外,还有谱宽与脉宽积,脉冲的中心波长,输出光斑大小,偏振方向等。

脉冲重复频率实际上告诉我们了激光脉冲序列中两相邻脉冲间的间隔。

由平均功率和脉冲重复频率可求出单脉冲能量,由单脉冲能量和脉冲宽度可求出脉冲的峰值功率。

四、锁模激光器的原理1、多模激光器的输出特性为了更好地理解锁模的原理,先讨论未经锁摸的多纵模自由运转激光器的输出特性。

腔长为L 的激光器,其纵模的频率间隔为LC v v v q q q 21=-=∆+ (1) 自由运转激光器的输出一般包含若干个超过阀值的纵模,这些模的振幅及相位都不固定,激光输出随时间的变化是它们无规则叠加的结果,是一种时间平均的统计值。

锁模激光器用途

锁模激光器用途

锁模激光器用途锁模激光器用途一、概述锁模激光器是一种具有高单色性和窄线宽的激光器,广泛应用于科学研究、通信、医疗、材料加工等领域。

本文将从这些方面详细介绍锁模激光器的用途。

二、科学研究1. 光谱学研究锁模激光器具有高单色性和窄线宽的特点,可以提供非常准确的波长和频率。

因此,在光谱学研究中,锁模激光器被广泛应用于吸收光谱、荧光光谱、拉曼光谱等方面。

例如,在生物医学领域中,使用锁模激光器可以实现非常精确的荧光共振能量转移(FRET)测量。

2. 全息术全息术是一种利用相干光的干涉原理制作三维图像的技术。

由于锁模例如,在生物医学领域中,使用锁模激光器可以制作出非常精细的三维细胞图像。

3. 纳米加工纳米加工是一种利用激光器对材料进行微观结构加工的技术。

由于锁模激光器具有高功率和窄线宽的特点,因此在纳米加工中也得到了广泛应用。

例如,在半导体制造领域中,使用锁模激光器可以实现非常精确的微观结构刻蚀。

三、通信1. 光纤通信光纤通信是一种利用光学信号传输信息的技术。

由于锁模激光器具有高单色性和窄线宽的特点,因此在光纤通信中也得到了广泛应用。

例如,在长距离通信中,使用锁模激光器可以提供非常稳定和准确的光源。

2. 全息显影全息显影是一种利用相干光制作三维图像的技术。

由于锁模激光器具在全息存储领域中,使用锁模激光器可以实现非常高密度的数据存储。

四、医疗1. 激光治疗激光治疗是一种利用激光对人体进行治疗的技术。

由于锁模激光器具有高功率和窄线宽的特点,因此在激光治疗中也得到了广泛应用。

例如,在皮肤科领域中,使用锁模激光器可以实现非常精确的皮肤切割和去除。

2. 全息术全息术是一种利用相干光制作三维图像的技术。

由于锁模激光器具有高单色性和相干性,因此在医学成像中也得到了广泛应用。

例如,在眼科领域中,使用锁模激光器可以制作出非常精细的眼底图像。

五、材料加工1. 激光切割激光切割是一种利用激光对材料进行切割的技术。

由于锁模激光器具有高功率和窄线宽的特点,因此在激光切割中也得到了广泛应用。

锁模光纤激光器的光谱

锁模光纤激光器的光谱

锁模光纤激光器的光谱锁模光纤激光器是一种高性能光纤激光器,其光谱具有独特的特点。

锁模光纤激光器通过被动锁模技术实现超短脉冲输出,具有很高的稳定性和可靠性。

其光谱特点主要表现在以下几个方面:1. 光谱宽度:锁模光纤激光器的光谱宽度相对较窄,这是由于被动锁模技术本身的特点决定的。

被动锁模光纤激光器通常采用线性光纤光栅或非线性光纤光栅作为光谱调节元件,通过调节光纤内的增益和损耗来实现光谱的窄化。

2. 光谱形状:锁模光纤激光器的光谱形状通常为高斯型或近高斯型分布。

这种光谱形状有利于实现较高的光束质量和输出功率。

同时,高斯型光谱具有良好的谱线对称性,有利于实现稳定的锁模输出。

3. 输出功率和波长调节:锁模光纤激光器的输出功率和波长可以通过调节泵浦源的功率、光纤激光器的结构以及光谱调节元件来实现优化。

在实际应用中,锁模光纤激光器通常需要具备较高的输出功率,以满足各种应用场景的需求。

4. 光谱稳定性:锁模光纤激光器具有较高的光谱稳定性,这是由于其被动锁模技术的特性所决定的。

在被动锁模光纤激光器中,锁模稳定性主要取决于光纤激光器内部的噪声源和光谱调节元件的稳定性。

通过选用高品质的光谱调节元件和优化光纤激光器结构,可以进一步提高光谱稳定性。

5. 光谱可调性:部分锁模光纤激光器具有光谱可调性,这意味着可以通过调节光谱调节元件或泵浦源来实现光谱的连续调整。

这种可调性有利于满足不同应用场景对光谱的需求。

综上所述,锁模光纤激光器的光谱具有窄宽度、高光束质量、良好的光谱形状、较高的输出功率和光谱稳定性等特点。

通过优化光纤激光器结构和光谱调节元件,可以进一步提高锁模光纤激光器的光谱性能。

锁模激光器的原理

锁模激光器的原理

锁模激光器的原理嘿,朋友们!今天咱来聊聊锁模激光器的原理,这玩意儿可神奇啦!你看啊,锁模激光器就像是一个超级有节奏感的音乐家。

咱普通的激光器呢,就像一群人各自为政地乱唱,声音乱七八糟的。

但锁模激光器不一样,它能让这些光啊,变得超级有秩序,就跟乐队演奏一样整齐好听。

它是怎么做到的呢?其实就是通过一些巧妙的办法,让激光器里的光都按照同一个节奏跑。

这就好比一群人在跑步,本来是各跑各的,速度也不一样,但是突然有个指挥出来,让大家都迈同样的步子,那跑起来多整齐呀!这里面有个关键的东西叫“锁模元件”,它就像是那个指挥。

它让光脉冲一个接一个地紧密排列,形成一串超快的脉冲序列。

你说神奇不神奇?想象一下,这些光脉冲就像一列高速行驶的列车,快速而有序地前进。

而且它们的间隔非常非常短,短到让人惊叹!这能带来啥好处呢?那可多了去了!比如可以用来做超高速的通信,信息传递得那叫一个快呀,就跟火箭似的。

还有啊,锁模激光器在科学研究中也特别重要。

科学家们可以用它来研究超快的现象,就好像给时间按了快进键一样,能看到很多平时看不到的东西。

这多有意思呀!它在医学上也有大用处呢!可以用它来做精准的治疗,就像一个超级准确的手术刀,能把问题解决得干干净净。

你说锁模激光器是不是很厉害?它就像一个隐藏在科学世界里的魔法棒,能变出各种神奇的东西。

我们真应该好好感谢那些聪明的科学家们,是他们让我们能享受到这么厉害的技术。

所以呀,锁模激光器的原理虽然有点复杂,但它带来的好处却是实实在在的。

它让我们的生活变得更加精彩,让我们能看到更多的奇迹。

让我们一起为锁模激光器点赞吧!原创不易,请尊重原创,谢谢!。

有关激光文献阅读的综述

有关激光文献阅读的综述马瑞(电子科技大学光电信息学院,成都611371)前言为响应学校关于本科生积极阅读文献资料,拓展专业知识的号召,我积极报名参加了本次文献月阅读活动,按照学院的安排,本次阅读方向是激光,共有十篇文章,其中五篇中文五篇英文。

其中,主要涉及非线性偏振旋转锁模激光器、被动锁模激光器、掺杂特殊金属离子光纤激光器的理论研究及部分实验验证。

锁模激光器(mode-locking laser)是利用锁模技术使脉冲宽度达到皮秒甚至飞秒量级输出的激光器,在医学、光学、光通信等领域有着重要的应用,是激光研究的前言课题,因此解除相关知识对今后的学习发展有着积极的意义。

主题一.锁模激光器锁模光纤激光器因其紧凑小巧、成本低和光束质量好等优点,近年来获得快速的发展。

根据其锁模的原理,锁模光纤激光器可分为三类:主动锁模光纤激光器、被动锁模光纤激光器,主被动混合锁模光纤激光器。

主动锁模光纤激光器又可分为调制型锁模和注入型锁模两类。

调制型主动锁模光纤激光器通常利用LiNbO3晶体作为调制器实现锁模,既可以进行振幅调制也可以进行相位调制,而注入型锁模光纤激光器主要有两种形式:一是利用行波半导体光放大器的非线性增益调制特性实现主动锁模;二是利用光纤的价差相位调制效应进行主动锁模。

被动锁模光纤激光器通常利用半导体的可饱和吸收效应或光纤中的非线性效应作为锁模机制,它一般不需要外接施加的调制信号。

半导体可饱和吸收锁模激光器的优点是容易实现激光器的自启动,而且脉冲的重复频率较稳定,脉宽小,但因为其不是全光纤的结构,故在实际应用中响应速度交大。

基于光纤非线性的锁模激光器可实现全光纤的结构,克服了半导体可饱和吸收体被动锁模的缺点,响应时间小。

主被动混合锁模光纤激光器是以上两种的有机结合,因为主动锁模光纤激光器的弛豫震荡和超模噪声劣化了输出脉冲的质量,而被动锁模光纤激光器输出脉冲重复率受光纤长度的限制不可能提高,而且不容易调整和控制,所以利用主被动混合的技术,可以优化这些不足,获得最好的效果。

关于激光器研究(文献综述)

关于锁模光纤激光器的研究前言激光器,顾名思义,即是能发射激光的装置。

1954年制成了第一台微波量子放大器,获得了高度相干的微波束。

1958年A.L.肖洛和C.H.汤斯把微波量子放大器原理推广应用到光频范围,1960年T.H.梅曼等人制成了第一台红宝石激光器。

1961年A.贾文等人制成了氦氖激光器。

1962年R.N.霍耳等人创制了砷化镓半导体激光器。

以后,激光器的种类就越来越多。

按工作介质分,激光器可分为气体激光器、固体激光器、半导体激光器和染料激光器4大类。

近来还发展了自由电子激光器,大功率激光器通常都是脉冲式输出。

2004 年,Idly 提出了一种自相似脉冲光纤激光器,同时为这种光纤激光器建立了一种数值模型。

模型中采用非线性薛定谔方程(NLSE)描述脉冲在正色散光纤中的传输,引入了一个与脉冲强度相关的透过率函数将NPE 锁模机理等效成快速可饱和吸收体(SA)的作用0 模拟发现这种激光器输出的脉冲具有抛物线的形状和线性啁啾,能量可高达10nJ。

随着自相似脉冲在实验上的实现,自相似锁模光纤激光器迅速成为超短光脉冲领域的研究热点。

用Idly 模型对自相似锁模光纤激光器的研究不断取得新的进展。

在此我将对激光和激光器的原理和基于原理而做出的进一步的相关研究(如被动锁模光纤激光器)做一个大致的探讨。

主题激光器的原理非线性偏振旋转被动锁模环形腔激光器的结构如图1所示, 激光器由偏振灵敏型光纤隔离器、波分复用器、偏振控制器、输出藕合器、掺yb3+光纤组成。

其工作原理为从偏振灵敏型光纤隔离器输出的线偏振光,经过偏振控制器PCI(1/4 λ波片)后变为椭圆偏振光, 此椭圆偏振光可看成两个频率相同、但偏振方向互相垂直的线偏振光的合成, 它们在掺yb3+增益光纤中藕合传输时, 经过光纤中自相位调制和交叉相位调制的非线性作用, 产生的相移分别为其中n1x 、n1y分别为yb3+光纤沿X、Y方向的线性折射率, n2、l分别为该光纤的非线性折射率系数和长度。

锁模激光器的工作原理及其特性

锁模激光器的工作原理及其特性摘要: 本文主要介绍了锁模的基本原理和实现方法,并简单介绍了锁模激光器。

关键词:锁模,速率方程,工作原理一、引言如果在激光谐振腔内不加入任何选模装置,那么激光器的输出谱线是由许多分立的,由横纵模确定的频谱组成的。

锁模就是将多纵模激光器中各纵模的初相位关系固定,形成等时间间隔的光脉冲序列。

使各纵模在时间上同步,频率间隔也保持一定,则激光器将输出脉宽极窄、峰值功率很高的超短脉冲。

二、锁模的概念一般非均匀加宽激光器,如果不采取特殊选模措施,总是得到多纵模输出。

并且,由于空间烧孔效应,均匀加宽激光器的输出也往往具有多个纵模。

每个纵模输出的电场分量可用下式表示])-([),(q q z t i q q e E t z E ϕυω+= (2.1)式中,q E 、q ω、q ϕ为第q 个模式的振幅、角频率及初相位。

各个模式的初相位q ϕ无确定关系,各个模式互不相干,因而激光输出是它们的无规叠加的结果,输出强度随时间无规则起伏。

但如果使各振荡模式的频率间隔保持一定,并具有确定的相位关系,则激光器将输出一列时间间隔一定的超短脉冲。

这种激光器称为锁模激光器。

假设只有相邻两纵模振荡,它们的角频率差Ω='=L cq q πωω1-- (2.2)它们的初相位始终相等,并有01-==q q ϕϕ。

为分析简单起见,假设二模振幅相等,二模的行波光强I I I q q ==1-。

现在来讨论在激光束的某一位置(设为0=z )处激光场随时间的变化规律。

不难看出,在0=t 时,二纵模的电场均为最大值,合成行波光强是二模振幅和的平方。

由于二模初相位固定不变,所以每经过一定的时间0T 后,相邻模相位差便增加了π2,即πωω2-01-0=T T q q (2.3)因此当0mT t =时(m 为正整数),二模式电场又一次同时达到最大值,再一次发生二模间的干涉增强。

于是产生了具有一定时间间隔的一列脉冲,脉冲峰值光强为I 4,由式(2.3)可求出脉冲周期为cL T '=Ω=220π 如果二纵模初相位随机变化,则在0=z 处,合成行波光强在I 2附近无规涨落。

光纤激光器锁模原理介绍

光纤激光器锁模原理介绍Lasers are devices that produce intense beams of monochromatic light through the process of stimulated emission of radiation. Fiber lasers, in particular, are a type of solid-state laser that uses an optical fiber as the gain medium. Their ability to produce high-quality beams of light with high efficiency makes them highly desirable for a variety of applications, including cutting, welding, drilling, and marking in the industrial sector.激光是通过受激辐射过程产生强烈的单色光束的设备。

光纤激光器是一种将光纤作为增益介质的固体激光器。

它们能够高效地产生高质量的光束,因此在工业领域的切割、焊接、钻孔和标记等应用中备受青睐。

One fundamental principle behind the operation of fiber lasers lies in the process of mode locking. Mode locking refers to the synchronization of the phases of the modes of the laser’s electromagnetic field. By doing so, the laser produces pulses of light with a very narrow linewidth and high peak power, which is advantageous for many applications.光纤激光器运作背后的一个基本原理是锁模过程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

东北石油大学课程设计2013年3 月8 日东北石油大学课程设计任务书课程光电子技术基础课程设计题目锁模激光器的设计专业电子科学与技术姓名学号04主要内容、基本要求、主要参考资料等1、主要内容:设计一锁模激光器,说明所设计的锁模激光器的基本原理、给出所设计的锁模激光器的结构、所使用的材料。

2、基本要求:说明该锁模激光器的性能参数,撰写报告。

3、主要参考资料:[1]江涛,激光与光电子学进展,北京,电子工业出版社,2000年(8) 40-43[2]贾正根,半导体报,北京,电子工业出版社,2000年6月第37卷(3)45-47[3]周炳琨等,激光原理,第5版,北京,国防工业出版社,2004年8月[4]马养武等,光电子学,第2版,杭州,浙江大学出版社,2003年3月完成期限2013.3.4 ~2013.3.8指导教师专业负责人2013年3 月4 日目录第1章概述 (4)第2章锁模激光器的原理 (2)2.1 锁模的基本原理 (4)2.1.1锁模脉冲的特征 (4)第3章锁模方式 (8)3.1 主动锁模 (8)3.1.1损耗内调制锁模 (8)3.1.2相位内调制锁模 (9)3.1.3主动锁模激光器的结构 (9)3.2 被动锁模 (10)第4章锁模光纤激光器设计 (13)4.1 锁模光纤激光器基本结构 (13)4.2 锁模光纤激光器设计 (13)结论 (11)参考文献 (12)第1章概述锁模就是将多纵模激光器中各纵模的初相位关系固定,形成等时间间隔的光脉冲序列。

使各纵模在时间上同步,频率间隔也保持一定,则激光器将输出脉宽极窄、峰值功率很高的超短脉冲。

实现锁模的方法有很多种,但一般可以分成两大类:即主动锁模和被动锁模。

主动锁模指的是通过由外部向激光器提供调制信号的途径来周期性地改变激光器的增益或损耗从而达到锁模目的;而被动锁模则是利用材料的非线性吸收或非线性相变的特性来产生激光超短脉冲。

目前,最为广泛使用的一种产生飞秒激光脉冲的克尔透镜锁模(Kerr Lens mode locking)技术是一种独特的被动锁模方法。

科尔透镜锁模实际上是利用了材料的折射率随光强变化的特性使得激光器运转中的尖峰脉冲得到的增益高出连续的背景激光增益,从而最终实现短脉冲输出。

一台激光器实现锁模运转后,在通常情况下,只有一个激光脉冲在腔内来回传输,该脉冲每到达激光器的输出镜时,就有一部分光通过输出镜耦和到腔外。

因此,锁模激光器的输出是一个等间隔的激光脉冲序列。

相邻脉冲间的时间间隔等于光脉冲在激光腔内的往返时间,即所谓腔周期。

一台锁模激光器所产生的激光脉冲的宽度是否短到飞秒量级主要取决于腔内色散特性、非线性特性及两者间的相互平衡关系。

而最终的极限脉宽则受限于增益介质的光谱范围。

衡量一台飞秒激光器的重要技术指标为:脉冲宽度、平均功率和脉冲重复频率。

此外,还有谱宽与脉宽积,脉冲的中心波长,输出光斑大小,偏振方向等。

脉冲重复频率实际上告诉我们了激光脉冲序列中两相邻脉冲间的间隔。

由平均功率和脉冲重复频率可求出单脉冲能量,由单脉冲能量和脉冲宽度可求出脉冲的峰值功率。

第2章 锁模激光器的原理2.1多模激光器的输出特性为了更好地理解锁模的原理,先讨论未经锁摸的多纵模自由运转激光器的输出特性。

腔长为L 的激光器,其纵模的频率间隔为 LC v v v q q q 21=-=∆+ (1) 自由运转激光器的输出一般包含若干个超过阀值的纵模,这些模的振幅及相位都不固定,激光输出随时间的变化是它们无规则叠加的结果,是一种时间平均 的统计值。

假设在激光工作物质的净增益线宽内包含有2N+1个纵模,那么激光器输出的光波电场是N 个纵模电场的和,即E(t)=)cos(q q N N q q t w E φ+∑-= (2)式中,q =0,± 1,± 2,…,± N 是激光器内(2N +1)个振荡模中第q 个纵模的序数; q E 是纵模序数为q 的场强; q w 及q φ是纵模序数为q 的模的角频率及相位。

2.2锁模脉冲的特征先看三个不同频率光波的叠加:)2cos(01i i v E E ϕπ+= (3) 其中i=1,2,3设三个振动频率分别为1v 、2v 、3v 的三个光波沿同一方向传播且有关系式:3v =31v ,2v =21v ,E 1=E 2=E 3=E 0若相位未锁定,则此三个不同频率的光波的初位相ϕ1 、ϕ2 、ϕ3 彼此无关。

由于破坏性的干涉叠加,所形成的光波并没有一个地方有很突出的加强。

输出的光强只在平均光强2/320E 基础上有一个小的起伏扰动。

但若设法使ϕ1 = ϕ2 = ϕ3 =0时,有)2cos(101t v E E π=)4cos(102t v E E π=)6cos(103t v E E π=当 t=0 时,013E E =,2029E E =; 131v t =时, 2)32cos(001E E E -==π 2)34cos(002E E E -==π 003)2cos(E E E ==π三波叠加的结果是:E=E 1+E 2+E 3 = 0;同理可得132v t =时,E=0;11v t =时,03E E =……这样就会出现一系列周期性的脉冲。

当各光波振幅同时达到最大值处时,由于“建设性”的干涉作用,就周期性地出现了极大值(2029E E I ==)。

当然, 对于谐振腔内存在多个纵模的情况,同样有类似的结果。

如果采用适当的措施使这些各自独立的纵模在时间上同步,即把它们的相位相互联系起来,使之有一确定的关系(ϕq+1 - ϕq =常数),那么就会出现一种与上述情况有质的区别而有趣的现象;激光器输出的将是脉宽极窄、峰值功率很高的光脉冲,这就是说,该激光器各模的相位己按照=-+q q ϕϕ1常数的关系被锁定,这种激光器叫做锁模激光器,相应的技术称为“锁模技术”。

要获得窄脉宽、高峰值功率的光脉冲,只有采用锁模的方法,就是使各纵模相邻频率间隔相等并固定为LC v q 2=∆,并且相邻位相差为常量。

这一点在单横模的激光器中是能够实现的。

下面分析激光输出与相位锁定的关系,为运算方便,设多模激光器的所有振荡模均具有相等的振幅E 0,超过阈值的纵模共有2N +1个,处在介质增益曲线中心的模,其角频率为0w ,初相位为0,其模序数q =0,即以中心模作为参考,各相邻模的相位差为α,模频率间隔为w ∆,假定第q 个振荡模])[()cos()(000αϕq t w q w E t w E t E q q q +∆+=+= (4) 式中,q 为腔内振荡纵模的序数。

激光器输出总光场是2N +1个纵模相干的结果:t w t A t E 0cos )()(= (5)式中2sin 2))(12(sin )(0αα+∆+∆+=wt wt N E t A (a ) 2N+1个模式经过锁定以后,总的光波场变为频率为0w 的单色调幅波,振幅A(t)-即总光波场受到振幅调制。

(b) 光波电场调幅波按傅立叶分析是由2N+1个纵模频率组成,因此光波的脉冲包括2N+1个纵模的光波。

光场变为频率为0w 的调幅波。

振幅)(t A 是随时间变化的周期函数,光强)()(2t A t I ∝,也是时间的函数,光强受到调制。

按傅里叶分析,总光场由2N +1个纵模频率组成,因此激光输出脉冲是包括2N +1个纵模的光波。

图1给出了9(N=4)个振荡模的输出光强曲线。

图1 9个振荡模的输出光强由上面分析可知,只要知道振幅A (t )的变化情况,即可了解输出激光的持性。

为讨论方便,假定α= 0,则2sin 2)12(sin )(0wt wt N E t A ∆∆+= (6) 上式分子、分母均为周期函数,因此A (t )也是周期函数。

只要得到它的周期、零点,即可以得到A (t )的变化规律。

可求出A (t ) 的周期为c L 2; 因为L c v w ππ=∆=∆2 ,所以,cL T 2=,在一个周期内2N 个零值点及2N +1个极值点。

在t =0和cL t 2=时,A (t )取得极大值,因A (t )分子、分母同时为零,利用罗彼塔法则可求得此时振幅0)12(E N +。

在cL t =时,A (t )取得极小值±E 0,当N 为偶数时,A (t )=E 0,N 为奇数时,A (t )=-E 0。

除了t =0,cL 及c L 2点之外,A (t )具有2N -1次极大值。

由于光强正比于A2(t),所以在t=0和c L t 2=时的极大值,称为主脉冲。

在两个相邻主脉冲之间,共有2N 个零点,并有2N-1个次极大值,称为次脉冲。

所以锁模振荡也可以理解为只有一个光脉冲在腔内来回传播。

通过分析可知以下性质:(1)激光器的输出是间隔为c L 2=τ的规则脉冲序列。

(2)每个脉冲的宽度qv N ∆-+=∆1121τ可见增益线宽愈宽,愈可能得到窄的锁模脉宽。

( t=t 0=0时,A(t)有极大值,而分子π=∆+2121t w N )(时,A(t)=0,令01t t t -=∆并近似为半峰值宽,则有…)(3)输出脉冲的峰值功率正比于220)12(+N E ,因此,由于锁模,峰值功率增大了2N +1倍。

(4)多模q w q w ∆+0激光器相位锁定的结果,实现了=-+q q ϕϕ1常数,导致输出一个峰值功率高,脉冲宽度窄的序列冲。

因此多纵模激光器锁模后,各振荡模发生功率耦合而不再独立。

每个模的功率应看成是所有振荡模提供的。

第3章锁模光纤激光器设计3.1 锁模光纤激光器基本结构锁模光纤激光器主要由泵浦源、光学耦合系统、增益掺杂光纤、锁模调制器件和光学准直系统组成,其基本结构如图6所示。

图2 锁模光纤激光器基本结构图锁模光纤激光器在结构上与连续波光纤激光器基本相同,所不同之处在于谐振腔内加入的是锁模调制器件,而非连续波激光器中的选模器件,通过锁模器件将谐振腔内所有的振荡纵模利用起来,从而形成稳定的超短脉冲输出。

泵浦源主要是为掺杂光纤提供泵浦能量,当泵浦光通过光纤中的稀土离子时,稀土离子吸收泵浦光,使粒子从低能级跃升到高能级,从而实现粒子数反转。

泵浦源在很大程度上决定了锁模光纤激光器的性能,泵浦源工作稳定、可靠、寿命长,则所获得的锁模脉冲质量和可靠性就高。

目前用于锁模光纤激光器的泵浦源主要是半导体激光器(LD),由于 LD 具有体积小、寿命长、功耗小、耦合效率高等优点,因此被广泛采用,常用的 LD 泵浦波长有 820nm,920nm,980nm 和1480nm 等。

3.2 锁模光纤激光器设计锁模调制器件是锁模光纤激光器中最为关键的部件。

锁模脉冲的形成主要是通过锁模调制器件来促使谐振腔内各纵模间满足固定的相位关系实现的。

因此其调制特性对锁模脉冲的宽度、幅度以及脉冲形状等都有重要的影响。

相关文档
最新文档