数学奥数题解题技巧积累

合集下载

[全]小学奥数18个解题方法解析(含例题)

[全]小学奥数18个解题方法解析(含例题)

[全]小学奥数18个解题方法解析(含例题)解题方法1--分类分类是一种很重要的数学思考方法,特别是在计数、数个数的问题中,分类的方法是很常用的。

例1:可分为这样几类:(1)以A为左端点的线段共4条,分别是:AB,AC,AD,AE;(2)以B为左端点的线段共3条,分别是:BC,BD,BE;(3)以C为左端点的线段共2条,分别是:CD,CE;(4)以D为左端点的线段有1条,即DE。

一共有线段4+3+2+1=10(条)。

还可以把图中的线段按它们所包含基本线段的条数来分类。

(1)只含1条基本线段的,共4条:AB,BC,CD,DE;(2)含有2条基本线段的,共3条:AC,BD,CE;(3)含有3条基本线段的,共2条:AD,BE;(4)含有4条基本线段的,有1条,即AE。

例2:有长度分别为1、2、3、4、5、6、7、8、9、10、11(单位:厘米)的木棒足够多,选其中三根作为三条边围成三角形。

如果所围成的三角形的一条边长为11厘米,那么,共可围成多少个不同的三角形?提示:要围成的三角形已经有一条边长度确定了,只需确定另外两条边的长度。

设这两条边长度分别为a,b,那么a,b的取值必须受到两条限制:①a、b只能取1~11的自然数;②三角形任意两边之和大于第三边。

1、11 ;一种2、11 ;2、10;二种3、11;3、10;3、9 ;三种4、11;4、10;4、9;4、8 ;四种5、11;5、10;5、9;5、8;5、7 ;五种6、11;6、10;6、9;6、8;6、7;6、6;六种7、11;7、10;7、9;7、8;7、7;五种8、11;8、10;8、9;8、8;四种9、11;9、10;9、9;三种10、11;10、10;二种11、11;一种总计:1+2+3+4+5+6+5+4+3+2+1=36种解题方法2--化大为小找规律对于一些较复杂或数目较大的问题,如果一时感到无从下手,我们不妨把问题尽量简单化,在不改变问题性质的前提下,考虑问题最简单的情况(化大为小),从中分析探寻出问题的规律,以获得问题的答案。

奥数解题方法大全

奥数解题方法大全

奥数解题方法总结
1、形象化画图法:解奥数题时,如果可以科学合理的、科学合理的、巧妙地依靠点、线、面、图、表将小学奥数难题形象化形象的展示出来,将抽象的数量关系具象化,可让学生们非常容易弄清数量关系,沟通交流“”与“”的联系,把握住问题的本质,快速答题
2、倒推法:从题目上述的最后结果考虑,运用标准一步一步向前反推,直至题目中难题及时解决。

3、枚举法:奥数题中常常出现一些数量关系十分特殊题目,用普通的办法难以列式解释,有时候压根列出不来对应的式子来。

人们用枚举法,依据题目的需求,一一列举压根符合要求的数据信息,随后从这当中筛出符合要求的回答。

4、正难那样反:有一些数学题目假如你从标准正脸考虑考虑到有困难,那么你可以更改思考的方位,从结论或问题的背面考虑来考虑事情,使难题及时解决。

5、恰当转化:在解奥数题时,经常要提醒自己,碰到的新问题能不能转化成旧解决问题,化新为旧,通过表面,把握住难题的实质,把问题转化成自身熟悉的难题去解释。

转化的种类有条件转化、难题转化、关联转化、图形转化等。

整体掌握:有一些奥数题,从细节上考虑到,很复杂,也没有必要,如果可以从整体上掌握,宏观上考虑到,根据研究问题的整体方式、整体结构、一部分与整体的相互关系,“只看见山林,看不到花草树木”,来求取问题的解决。

奥数应用题解题技巧

奥数应用题解题技巧

奥数应用题解题技巧1.理清题意:首先要仔细读题,理解题目的意思。

了解题目所给的条件和要求,抓住关键信息,确认解题目标。

如果碰到长篇大论的题目,可以先将题目中的关键信息做出提取和归纳,然后再进行解题。

2.建立数学模型:将实际问题转化为数学问题,并建立数学模型。

通过建立合适数学关系式,可以帮助我们更好地理解问题,并找到解题的突破口。

3.利用逻辑推理:奥数应用题往往需要进行逻辑推理。

通过分析题目中给出的条件,并进行逻辑推理,可以得到一些隐藏条件。

利用这些条件,可以帮助我们解决问题。

4.增量法:对于奥数应用题中的一些涉及增减的问题,可以使用增量法来解题。

即假设问题中的一些量增加或减少一定数值,然后根据新的条件来求解问题。

通过不断迭代,可以最终解决问题。

5.画图辅助:对于涉及几何问题的奥数应用题,可以通过画图来辅助解题。

通过画出几何图形,可以更直观地理解问题,并且可以利用几何性质来解决问题。

6.类比法:有时候遇到难题,我们可以尝试找到类似的已解决的问题,然后将已解决问题的方法应用到当前问题中。

通过类比法,可以帮助我们快速找到解题的思路。

7.反证法:奥数应用题中经常使用的解题技巧就是反证法。

通过对问题进行反向思考,假设问题的解不存在或者是错误的,然后通过推理和逻辑推演来推翻反证,从而得到问题的正确解答。

8.举例法:对于一些奥数应用题中的抽象问题,可以通过举例法来验证解答。

通过选择合适的例子,可以帮助我们更好地理解问题,并找到解题的思路。

9.试错法:对于一些复杂的奥数应用题,可以采用试错法来解题。

通过尝试不同的方案,得出不同的结果,然后分析哪个方案是正确的。

通过不断试错,最终可以找到问题的正确解答。

总之,奥数应用题解题技巧需要学生灵活运用数学知识和解题技巧,善于分析问题,理清思路。

通过不断的练习和思考,可以提高解题能力,更好地解决奥数应用题。

奥数知识点速算和巧算

奥数知识点速算和巧算

奥数知识点速算和巧算奥数是指奥林匹克数学竞赛,是一项国际性的数学竞赛。

在竞赛中,学生需要运用数学知识进行问题求解,并且通常要在短时间内给出答案。

因此,在奥数竞赛中,速算和巧算是非常重要的技巧。

下面是一些奥数中常用的速算和巧算的知识点。

一、速算速算是指在有限的时间内,用快捷的方法得到近似值或精确值。

速算在奥数竞赛中非常有用,可以帮助学生快速计算出结果。

以下是一些常用的速算技巧:1.快速乘法:快速乘法是一种用于快速计算两个数乘积的方法。

其中一种常用的方法是竖式乘法,即将两个数分别按位相乘,然后将结果相加。

另外,还有一些其他的快速乘法方法,比如俄式乘法、中国乘法等。

2.快速除法:快速除法是一种用于快速计算两个数商的方法。

其中一种常用的方法是长除法,即将除数和被除数进行竖式计算。

另外,还有一些其他的快速除法方法,比如不动小数点法、移位法等。

3.快速开方:快速开方是一种用于快速计算一个数的平方根的方法。

其中一种常用的方法是牛顿迭代法,即通过迭代求解来逼近平方根的值。

4.快速三角函数计算:在奥数竞赛中,需要经常计算三角函数的值。

为了节省时间,可以使用一些快速计算三角函数的公式,比如正弦和余弦的半角公式、正弦和余弦的和差公式等。

二、巧算巧算是指用巧妙的方法解决问题的技巧。

巧算可以使解题过程更加简洁和高效。

以下是一些常用的巧算技巧:1.数字规律:在奥数竞赛中,许多问题都存在一定的数字规律。

通过观察数字的规律,可以快速求解问题。

比如,找出数列中的规律、发现数字的对称性等。

2.圆与方的关系:圆和正方形是两个常见的图形。

在解决与这两个图形相关的问题时,可以利用圆与正方形的特性进行巧算。

比如,利用圆的对称性和正方形的边长等。

3.分解与组合:一些数学问题可以通过分解与组合的方法进行巧算。

比如,将一个复杂的问题分解为多个简单的问题进行求解,然后将结果进行组合得到最终答案。

4.数量关系:在解决与数量关系相关的问题时,可以运用一些巧妙的方法进行巧算。

小学数学奥数题与解题方法

小学数学奥数题与解题方法

小学数学奥数题与解题方法在小学数学的学习中,奥数题常常是让同学们感到既有趣又具有挑战性的部分。

奥数题不仅能够锻炼我们的思维能力,还能培养我们解决问题的技巧和方法。

接下来,让我们一起探讨一些常见的小学数学奥数题以及它们的解题方法。

一、行程问题行程问题是奥数中常见的题型之一。

例如:小明和小红同时从学校和家出发相向而行,小明每分钟走 60 米,小红每分钟走 50 米,经过10 分钟两人相遇,求学校到家的距离。

解题方法:行程问题的关键在于理解速度、时间和路程之间的关系,即路程=速度×时间。

对于相向而行的情况,两人走过的路程之和就是总路程。

在这个例子中,小明的速度是每分钟60 米,走了10 分钟,所以小明走的路程是 60×10 = 600 米;小红的速度是每分钟 50 米,走了 10 分钟,小红走的路程是 50×10 = 500 米。

那么学校到家的距离就是 600 + 500 = 1100 米。

二、工程问题工程问题也是经常出现的一类奥数题。

比如:一项工程,甲单独做需要15 天完成,乙单独做需要20 天完成,两人合作需要多少天完成?解题方法:工程问题中,通常把工作总量看作单位“1”。

甲单独做需要 15 天完成,那么甲每天的工作效率就是 1÷15 = 1/15;乙单独做需要 20 天完成,乙每天的工作效率就是 1÷20 = 1/20。

两人合作每天的工作效率就是 1/15 + 1/20 = 7/60,所以两人合作完成这项工程需要的时间是 1÷7/60 = 60/7 天。

三、年龄问题年龄问题常常让同学们感到困惑。

例如:今年爸爸 35 岁,儿子 10 岁,几年后爸爸的年龄是儿子的 2 倍?解题方法:年龄问题的关键是抓住年龄差不变。

爸爸和儿子的年龄差是 35 10 = 25 岁。

当爸爸的年龄是儿子的 2 倍时,年龄差还是 25 岁,此时儿子的年龄是 25 岁,所以需要经过 25 10 = 15 年。

奥数计算题及解题技巧

奥数计算题及解题技巧

奥数计算题及解题技巧
奥数(奥林匹克数学竞赛)是一种专注于培养学生逻辑思维能力和解题技巧的数学竞赛。

以下是一些常见的奥数计算题及解题技巧:
1. 简化问题:奥数题目通常是通过将复杂问题简化为更易解决的问题来考察学生的解题思路。

例如,将一个复杂的几何问题转化为求一个已知图形的面积或周长等简单问题。

2. 利用数学性质:奥数题目经常利用数学性质来解决问题。

熟悉常用的数学定理和公式,例如勾股定理、等腰三角形性质等,可以帮助解题。

3. 分析思路:在解题过程中,分析问题是非常重要的。

将问题分解为几个简单的步骤,逐步解决,可以避免出现错误,并更好地理解问题。

4. 实际问题转化:奥数题目经常与实际生活问题相关。

将数学问题转化为实际问题,可以更好地理解和解决问题。

5. 数学工具的灵活应用:在解答奥数题目中,灵活运用数学工具如图形、方程式、代数运算等能够帮助学生快速解题。

6. 培养逻辑思维:奥数题目强调逻辑思维能力的培养。

通过练习逻辑推理、概念分类等能力,可以提高解题效率。

7. 多实践:奥数题目的解题技巧需要不断实践才能掌握。

参加
奥数培训班、阅读相关的数学竞赛资料以及练习大量的题目,能够帮助学生熟悉题目类型和解题方法。

总结起来,奥数的计算题及解题技巧包括简化问题、利用数学性质、分析思路、实际问题转化、数学工具的灵活应用、培养逻辑思维和多实践等。

通过不断实践和积累经验,学生能够提高解题能力和竞赛成绩。

奥数竞赛解题技巧

奥数竞赛解题技巧

奥数竞赛解题技巧
以下是 9 条关于奥数竞赛解题技巧:
1. 嘿,要学会找关键信息呀!就像在森林里找宝藏的线索一样。

比如一道题说有几个小朋友分苹果,那人数和苹果数不就是关键嘛。

2. 哎呀,大胆去假设呀!比如说那道追及问题,咱就假设其中一个速度,就好解决多啦,你说是不是?
3. 记得灵活运用公式呀!公式就像是武器,要用对地方。

比如计算图形面积的公式,碰到相应图形就拿出来用呀。

4. 咋能忘了画图呢?这就好比给题目画一幅地图,一下子就清晰了。

像行程问题,画出路线,答案就容易找到啦。

5. 尝试多角度思考呀!别死磕一种方法,就像走迷宫,这条路不行就换条路嘛。

比如那道方程题,换个未知数试试呢?
6. 一定要细致呀!不能放过任何一个小细节,不然就像千里之堤毁于蚁穴。

那道计算的题,一个小数点可不能错哟。

7. 多积累一些特殊解法呀!这就像游戏里的隐藏技能。

比如特殊的图形规律,学会了可厉害啦。

8. 学会类推呀!看见一个题,想想以前做过的类似的,不就有思路了嘛。

那道找规律的题不就和以前做的很像嘛。

9. 心态要稳住呀!别急别慌,这可不是打仗。

就算遇到难题,咱也慢慢分析,肯定能找到办法的啦。

我的观点结论就是:掌握这些奥数竞赛解题技巧,就能在竞赛中更得心应手啦!。

小学奥数的十一种解题方法

小学奥数的十一种解题方法

小学奥数的十一种解题方法2021年小学奥数的十一种解题方法一1公式法运用定律、公式、规则、法则来解决问题的方法。

它表达的是由一样到专门的演绎思维。

公式法简便、有效,也是小学生学习数学必须学会和把握的一种方法。

但一定要让学生对公式、定律、规则、法则有一个正确而深刻的明白得,并能准确运用。

例3:运算59×37+12×59+5959×37+12×59+59=59×(37+12+1)…………运用乘法分配律=59×50…………运用加法运算法则=(60-1)×50…………运用数的组成规则=60×50-1×50…………运用乘法分配律=3000-50…………运用乘法运算法则=2950…………运用减法运算法则2比较法通过对比数学条件及问题的异同点,研究产生异同点的缘故,从而发觉解决问题的方法,叫比较法。

比较法要注意:(1)找相同点必找相异点,找相异点必找相同点,不可或缺,也确实是说,比较要完整。

(2)找联系与区别,这是比较的实质。

(3)必须在同一种关系下(同一种标准)进行比较,这是“比较”的差不多条件。

(4)要抓住要紧内容进行比较,尽量少用“穷举法”进行比较,那样会使重点不突出。

(5)因为数学的严密性,决定了比较必须要精细,往往一个字,一个符号就决定了比较结论的对或错。

例4:填空:0.75的最高位是( ),那个数小数部分的最高位是( );十分位的数4与十位上的数4相比,它们的( )相同,( )不同,前者比后者小了( )。

这道题的意图确实是要对“一个数的最高位和小数部分的最高位的区别”,还有“数位和数值”的区别等。

例5:六年级同学种一批树,假如每人种5棵,则剩下75棵树没有种;假如每人种7棵,则缺少15棵树苗。

六年级有多少学生?这是两种方案的比较。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学奥数题解题技巧积累
数学奥数题解题技巧积累
小学数学奥数题的解题方法有很多,掌握这些有效的方法,我们在小学数学奥数考试中就能有更好的表现。

下面是店铺分享一些数学奥数题解题技巧积累,欢迎大家参考!
1、直观画图法:解小学数学奥数题时,如果能合理的、科学的、巧妙的借助点、线、面、图、表将奥数问题直观形象的展示出来,将抽象的数量关系形象化,可使同学们容易搞清数量关系,沟通“已知”与“未知”的联系,抓住问题的本质,迅速解题。

2、倒推法:从题目所述的最后结果出发,利用已知条件一步一步向前倒推,直到题目中问题得到解决。

3、枚举法:奥数题中常常出现一些数量关系非常特殊的`题目,用普通的方法很难列式解答,有时根本列不出相应的算式来。

我们可以用枚举法,根据题目的要求,一一列举基本符合要求的数据,然后从中挑选出符合要求的答案。

4、正难则反:有些数学问题如果你从条件正面出发考虑有困难,那么你可以改变思考的方向,从结果或问题的反面出发来考虑问题,使问题得到解决。

5、巧妙转化:在解奥数题时,经常要提醒自己,遇到的新问题能否转化成旧问题解决,化新为旧,透过表面,抓住问题的实质,将问题转化成自己熟悉的问题去解答。

转化的类型有条件转化、问题转化、关系转化、图形转化等。

6、整体把握:有些奥数题,如果从细节上考虑,很繁杂,也没有必要,如果能从整体上把握,宏观上考虑,通过研究问题的整体形式、整体结构、局部与整体的内在联系,“只见森林,不见树木”,来求得问题的解决。

奥数题的七种解题方法
题目:计算1+2-3-4+5+6-7-8+9+10-11-12+…+1993+1994-1995-1996+1997+1998-1999-2000,最后结果是( )
(A)0 (B)-1
(C)1999 (D)-2000
(第十届“希望杯”初一培训题)
原题所给的参考答案为:
原式=1+(2-3-4+5)+(6-7-8+9)+(10-11-12+13)+…+(1994-1995-1996+1997)+(1998-1999)-2000=1+0+0+…+0-1-2000=-2000,故选(D)。

以上解法我们权且称作不均匀分组法。

下面我们再给出几种不同解法。

解法一:观察法
∵1+2-3-4=-4,1+2-3-4+5+6-7-8=-8,1+2-3-4+5+6-7-8+9+10-11-12=-12,…
经观察知,每一“片断”的代数和均为参加运算的最后一个数,故原式=-2000,选(D)。

解法二:小段均匀分组法
将式中每连续4个数分为一组,则有1+2-3-4=-4,5+6-7-8=-4,9+10-11-12=-4,…,∴2000÷4=500(组),故原式=500×(-4)=-2000.
解法三:凑零法
∵-0+1+2-3=0,-4+5+6-7=0,…,-1996+1997+1998-1999=0,∴原式=0+0+…+0-2000=-2000.
解法四:大段均匀分组法
按个位数0,1,2,3,…,8,9分为一大组,进行计算,则有1+2-3-4+5+6-7-8+9=-0+1+2-3-4+5+6-7-8+9=1,
又10-11-12+13+14-15-16+17+18-19=-1
而-20+21+22-23-24+25+26-27-28+29=1
另外:30-31-32+33+34-35-36+37+38-39=-1,…
1990-1991-1992+1993+1994-1995-1996+1997+1998-1999=-1.
∴原式=1-1+1-1+…+1-1-2000=0+0+…+0-2000=-2000.
解法五:添数法
每一个方框数之和为-2,而这样的方框有1000个,将每个方框中添加2,故有:原式+2000=0.
∴原式=-2000.
解法六:隔数相加法
在1+2-3-4+5+6-7-8+9+10-11-12+…+1993+1994-1995-1996+1997+1998-1999-2000中
隔数相加:如1-3=-2,2-4=-2,5-7=-2,…,这样的数对共有1000对,∴原式=-2×1000=-2000.
解法七:倒序错位相加法
令1+2-3-4+5+6-7-8+…+1997+1998-1999-2000=T
∴有1+2-3-4+5+6-7-8+…+1997+1998-1999-2000
故2T=3-2003-2003+3=-4000,∴T=-2000.
下载全文。

相关文档
最新文档