第五章PLC的步进电机控制系统(应用举例)
PLC的步进电机控制系统

在机器人中,步进电机控制系统 可以用于关节、手臂等部位的驱 动和控制,实现机器人的灵活运 动。
02
PLC在步进电机控制系统中 的作用
PLC的定义与功能
PLC(可编程逻辑控制器)是一种工 业自动化控制设备,它通过编程实现 各种逻辑控制、顺序控制和过程控制 等功能。
PLC具有高可靠性、高灵活性、易于 编程和易于扩展等优点,广泛应用于 工业自动化领域。
基于PLC的步进电机控制系 统实例
实例一:自动化生产线上的物料分拣系统
自动化生产线上的物料分拣系统通常采用PLC作为主控制器,通过步进电 机驱动传送带、机械臂等设备进行物料的分拣。
PLC通过接收上位机发出的指令,控制步进电机驱动器,进而驱动步进电 机转动,实现物料的传送和分拣。
该系统能够提高生产效率、减少人工干预,并保证物料分拣的准确性和一 致性。
提高控制精度
PLC可以对步进电机的运行进行精确 控制,从而提高系统的控制精度。
增强系统稳定性
PLC具有高可靠性和稳定性,可以保 证步进电机控制系统长期稳定运行。
易于编程和调试
PLC采用图形化编程语言,易于学习 和使用,同时具有丰富的调试工具, 方便系统调试。
易于扩展和维护
PLC具有易于扩展和维护的特点,可 以根据实际需求进行系统升级和改造。
05
PLC步进电机控制系统的未 来发展
技术创新与改进
高效能控制算法
随着控制理论的发展,将会有更多高
智能传感器技术
模块化设计
采用模块化设计理念,便于系统的扩 展和维护,降低系统的复杂性和成本。
集成智能传感器技术,实现精确的电 机位置和速度检测,提高系统的可靠 性和稳定性。
驱动器是用来驱动步进电机的设备,它将 PLC输出的脉冲信号转换成适合步进电机的 控制信号,驱动步进电机转动。
PLC在步进电机控制中的应用探究

PLC在步进电机控制中的应用探究PLC(可编程逻辑控制器)是一种常用于工业控制系统的计算机控制器,它能够实现对电气设备的自动控制,被广泛应用于工厂的生产线、机械设备等领域。
步进电机是一种可以根据输入信号来控制准确位置的电机,常常用于需要高精度位置控制的自动化设备。
本文将探究PLC在步进电机控制中的应用。
在步进电机控制过程中,PLC可以实现以下功能:1.位置控制:步进电机在工业生产中常常需要实现准确的位置控制,PLC可以通过编程来控制步进电机的位置。
PLC可以接收外部传感器的信号,根据输入的位置信号进行逻辑判断,然后输出控制信号给步进电机,使其准确地移动到指定的位置。
通过PLC实现位置控制,不仅可以提高步进电机的精度和稳定性,还可以实现自动化的生产流程,提高生产效率。
2.速度控制:步进电机的速度控制也是控制流程中的一个重要环节。
PLC可以通过编程来控制步进电机的转速。
PLC可以根据输入的速度控制信号来调节步进电机的转速,使其在不同的工作场景下达到最佳效果。
通过PLC的速度控制,不仅可以保证步进电机的工作效率,还可以节约能源,延长步进电机的使用寿命。
2.步进电机与其他设备的协同控制:在一些复杂的控制系统中,步进电机需要与其他设备进行协同控制。
PLC可以通过编程来实现步进电机与其他设备的联动控制。
将PLC与传感器、触摸屏等设备连接,通过PLC的控制,实现步进电机、传感器的自动配合,从而完成复杂的生产流程。
PLC在步进电机控制中的应用主要包括位置控制、速度控制、方向控制等基本功能。
PLC还具备控制步进电机的运动模式和与其他设备的协同控制能力。
通过PLC的应用,可以使步进电机在工业控制系统中发挥重要作用,提高生产效率和产品质量。
步进电机控制方法plc

步进电机控制方法plc随着现代制造业的飞速发展,步进电机作为一种精密控制技术在自动化设备中得到广泛应用,而PLC(可编程逻辑控制器)则是控制步进电机的常见方案之一。
在工业生产中,步进电机的控制方法多种多样,其中结合PLC技术进行控制是一种高效可靠的方式。
本文将介绍一些常见的步进电机控制方法,并分析PLC在这些控制方法中的应用。
正转和反转控制正转和反转控制是步进电机最基本的控制方法之一。
通过控制电机输入的脉冲信号的频率和方向,可以实现步进电机的正转和反转。
在PLC中通常会使用计数器来记录脉冲信号的数量,从而控制电机的转动角度和方向。
通过设定计数器的值和控制脉冲信号的输出频率,可以精确控制步进电机的转动。
速度控制除了控制电机的方向外,控制步进电机的速度也是至关重要的。
在工业自动化系统中,需要根据不同的生产需求来调整步进电机的转速。
PLC可以通过调节输出脉冲信号的频率来实现步进电机的精确速度控制。
通过监控电机的转速并根据实际情况进行调整,可以保证生产过程的稳定性和效率。
位置控制在很多自动化系统中,需要步进电机按照预先设置的位置进行精确定位。
PLC在位置控制中发挥了关键作用。
通过监测电机的位置信息以及输入的控制指令,PLC可以精确地控制步进电机的位置。
在工业生产中,位置控制常常用于需要高精度定位的场景,如自动装配线和自动化仓储系统等。
脉冲控制步进电机的运动是通过输入一定数量的脉冲信号来实现的。
因此,脉冲控制是控制步进电机最基本的方法之一。
PLC通过输出一定频率和数量的脉冲信号,可以精确控制步进电机的运动。
在工业生产中,通常会根据实际需求设定脉冲信号的参数,如脉冲频率、脉冲数量和脉冲方向等,从而实现对步进电机的精确控制。
总结步进电机作为一种精密控制技术,在工业自动化领域具有重要的应用意义。
结合PLC技术可以实现对步进电机的高效控制,包括正转和反转控制、速度控制、位置控制和脉冲控制等。
通过合理设计控制方案并结合PLC的灵活性和可编程特性,可以实现对步进电机运动的精确控制,从而提高生产效率和产品质量。
plc步进电机控制方法攻略程序图纸

PLC控制步进电机应用实例基于PLC的步进电机运动控制一、步进电机工作原理1. 步进电机简介步进电机是一种将电脉冲转化为角位移的执行机构。
通俗一点讲:当步进驱动器接收到一个脉冲信号,它就驱动步进电机按设定的方向转动一个固定的角度(及步进角)。
可以通过控制脉冲个数来控制角位移量,从而达到准确定位的目的;也可以通过控制脉冲频率来控制电机转动的速度和加速度,从而达到调速的目的。
在非超载的情况下,电机的转速、停止的位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响,即给电机加一个脉冲信号,电机则转过一个步距角。
这一线性关系的存在,加上步进电机只有周期性的误差而无累积误差等特点。
使得在速度、位置等控制领域用步进电机来控制变的非常的简单2. 步进电机的运转原理及结构电机转子均匀分布着很多小齿,定子齿有三个励磁绕阻,其几何轴线依次分别与转子齿轴线错开。
0、1/3て、2/3て,即A 与齿1相对齐,B与齿2向右错开1/3て,C与齿3向右错开2/3て,A‘与齿5相对齐,(A‘就是A,齿5就是齿1)3. 旋转如A相通电,B,C相不通电时,由于磁场作用,齿1与A对齐,(转子不受任何力,以下均同)。
如B相通电,A,C相不通电时,齿2应与B对齐,此时转子向右移过1/3て,此时齿3与C偏移为1/3て,齿4与A偏移(て-1/3て)=2/3て。
如C相通电,A,B相不通电,齿3应与C对齐,此时转子又向右移过1/3て,此时齿4与A偏移为1/3て对齐。
如A相通电,B,C相不通电,齿4与A对齐,转子又向右移过1/3て这样经过A、B、C、A分别通电状态,齿4(即齿1前一齿)移到A相,电机转子向右转过一个齿距,如果不断地按A,B,C,A……通电,电机就每步(每脉冲)1/3て,向右旋转。
如按A,C,B,A……通电,电机就反转。
由此可见:电机的位置和速度由导电次数(脉冲数)和频率成一一对应关系。
而方向由导电顺序决定。
步进电机的静态指标术语拍数:完成一个磁场周期性变化所需脉冲数或导电状态用n表示,或指电机转过一个齿距角所需脉冲数,以四相电机为例,有四相四拍运行方式即AB-BC-CD-DA-AB,四相八拍运行方式即A-AB-B-BC-C-CD-D-DA-A. 步距角:对应一个脉冲信号,电机转子转过的角位移用θ表示。
PLC脉冲控制步进电机技术

PLC脉冲控制步进电机技术一、步进电机、脉冲与方向信号步进电机作为一种常用的电气执行元件,广泛应用于自动化控制领域。
步进电机的运转需要配备一个专门的驱动电源,驱动电源的输出受外部的脉冲信号和方向信号控制。
每一个脉冲信号可使步进电机旋转一个固定的角度,这个角度称为步距角。
脉冲的数量决定了旋转的总角度,脉冲的频率决定了旋转的速度。
方向信号决定了旋转的方向。
就一个传动速比确定的具体设备而言,无需距离、速度信号反馈环,只需控制脉冲的数量和频率即可控制设备移动部件的移动距离和速度;而方向信号可控制移动的方向。
因此,对于那些控制精度要求不是很高的应用场合,用开环方式控制是一种较为简单而又经济的电气控制技术方案。
另外,步进电机的细分运转方式非常实用,尽管其步距角受到机械制造的限制,不能制作得很小,但可以通过电气控制的方式使步进电机的运转由原来的每个整步分成m个小步来完成,以提高设备运行的精度和平稳性。
控制步进电机电源的脉冲与方向信号源常用数控系统,但对于一些在运行过程中移动距离和速度均确定的具体设备,采用PLC(可编程控制器)是一种理想的技术方案。
二、控制方案图1 PLC脉冲控制步进电机系统示意图在操作面板上设定移动距离、速度和方向,通过PLC的运算产生脉冲、方向信号,控制步进电机的驱动电源,达到对距离、速度、方向控制的目的,见图1。
操作面板上的位置旋钮控制移动的距离,速度旋钮控制移动的速度,方向按钮控制移动的方向,启/停按钮控制电机的启动与停止。
在实际系统中,位置与速度往往需要分成几挡,故位置、速度旋钮可选用波段开关,通过对波段开关的不同跳线进行编码,可减少操作面板与PLC的连线数量,同时也减少了PLC的输入点数,节省了成本。
一个n刀波段开关的最多挡位可达到2n。
在对PLC选型前,应根据下式计算系统的脉冲当量、脉冲频率上限和最大脉冲数量。
根据脉冲频率可以确定PLC高速脉冲输出时需要的频率,根据脉冲数量可以确定PLC的位宽。
plc步进电机控制方法攻略程序图纸

PLC控制步进电机应用实例基于PLC的步进电机运动控制一、步进电机工作原理1. 步进电机简介步进电机是一种将电脉冲转化为角位移的执行机构。
通俗一点讲:当步进驱动器接收到一个脉冲信号,它就驱动步进电机按设定的方向转动一个固定的角度(及步进角)。
可以通过控制脉冲个数来控制角位移量,从而达到准确定位的目的;也可以通过控制脉冲频率来控制电机转动的速度和加速度,从而达到调速的目的。
在非超载的情况下,电机的转速、停止的位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响,即给电机加一个脉冲信号,电机则转过一个步距角。
这一线性关系的存在,加上步进电机只有周期性的误差而无累积误差等特点。
使得在速度、位置等控制领域用步进电机来控制变的非常的简单2. 步进电机的运转原理及结构电机转子均匀分布着很多小齿,定子齿有三个励磁绕阻,其几何轴线依次分别与转子齿轴线错开。
0、1/3て、2/3て,即A 与齿1相对齐,B与齿2向右错开1/3て,C与齿3向右错开2/3て,A‘与齿5相对齐,(A‘就是A,齿5就是齿1)3. 旋转如A相通电,B,C相不通电时,由于磁场作用,齿1与A对齐,(转子不受任何力,以下均同)。
如B相通电,A,C相不通电时,齿2应与B对齐,此时转子向右移过1/3て,此时齿3与C偏移为1/3て,齿4与A偏移(て-1/3て)=2/3て。
如C相通电,A,B相不通电,齿3应与C对齐,此时转子又向右移过1/3て,此时齿4与A偏移为1/3て对齐。
如A相通电,B,C相不通电,齿4与A对齐,转子又向右移过1/3て这样经过A、B、C、A分别通电状态,齿4(即齿1前一齿)移到A相,电机转子向右转过一个齿距,如果不断地按A,B,C,A……通电,电机就每步(每脉冲)1/3て,向右旋转。
如按A,C,B,A……通电,电机就反转。
由此可见:电机的位置和速度由导电次数(脉冲数)和频率成一一对应关系。
而方向由导电顺序决定。
步进电机的静态指标术语拍数:完成一个磁场周期性变化所需脉冲数或导电状态用n表示,或指电机转过一个齿距角所需脉冲数,以四相电机为例,有四相四拍运行方式即AB-BC-CD-DA-AB,四相八拍运行方式即A-AB-B-BC-C-CD-D-DA-A. 步距角:对应一个脉冲信号,电机转子转过的角位移用θ表示。
PLC控制步进电机的应用案例

P L C控制步进电机的应用案例1(利用P L S Y指令)任务:利用PLC作为上位机,控制步进电动机按一定的角度旋转。
控制要求:利用PLC 控制步进电机顺时针2周,停5秒,逆时针转1周,停2秒,如此循环进行,按下停止按钮,电机马上停止(电机的轴锁住)。
1、系统接线PLC控制旋转步进驱动器,系统选择/转,设置成N细分后,则1000脉冲/转。
Y1输出,Y3[S1.]用来指定脉冲频率(2~20000Hz),[S2.]指定脉冲的个数(16位指令的范围为1~32767,32位指令则为1~2147483647)。
如果指定脉冲数为0,则产生无穷多个脉冲。
指定脉冲输出完成后,完成标志M8029置1。
如上图所示,当X10由ON变为OFF时,M8029复位,停止输出脉冲。
若X10再次变为ON则脉冲从头开始输出。
注意:PLSY指令在程序中只能使用一次,适用于晶体管输出类型的PLC。
6、控制流程图7、梯形图程序(参考)8、制作触摸屏画面PLC控制步进电机的应用案例2(利用定时器T246产生脉冲)任务:利用步进电机驱动器可以通过PLC端的On和Off就能决定电机的正传或者反转;步进驱动器的其中一个。
Y2;PLC的COM1——GND;B绕组X0X4—频率增加,X5—频率4、制作触摸屏画面PLC控制步进电机的应用案例3(利用FX2N-1PG产生脉冲)任务:应用定位脉冲输出模块FX2N-1PG,通过步进驱动系统对机器人左右、旋转、上下运动进行定位控制。
控制要求:正向运行速度为1000Hz,连续输出正向脉冲,加减速时间为100ms,1、系统接线系统选择外部连接方式。
PLC通过FX2N-1PG控制左右、旋转、上下步进驱动器的其中一个。
VIN端、CP+端、U/D+端——+24VDC; CP-——FP;U/D-——Y4;PLC的COM1端、FX2N-1PG的COM0端——GNDA、A-——电机A绕组;B、B-2、I/O分配。
PLC控制步进电机的实例(图与程序)

PLC控制步进电机的实例(图与程序)·采用绝对位置控制指令(DRVA),大致阐述FX1S控制步进电机的方法。
由于水平有限,本实例采用非专业述语论述,请勿引用。
·FX系列PLC单元能同时输出两组100KHZ脉冲,是低成本控制伺服与步进电机的较好选择!·PLS+,PLS-为步进驱动器的脉冲信号端子,DIR+,DIR-为步进驱动器的方向信号端子。
·所谓绝对位置控制(DRVA),就是指定要走到距离原点的位置,原点位置数据存放于32位寄存器D8140里。
当机械位于我们设定的原点位置时用程序把D8140的值清零,也就确定了原点的位置。
·实例动作方式:X0闭合动作到A点停止,X1闭合动作到B点停止,接线图与动作位置示例如左图(距离用脉冲数表示)。
·程序如下图:(此程序只为说明用,实用需改善。
)·说明:·在原点时将D8140的值清零(本程序中没有做此功能)·32位寄存器D8140是存放Y0的输出脉冲数,正转时增加,反转时减少。
当正转动作到A点时,D8140的值是3000。
此时闭合X1,机械反转动作到B点,也就是-3000的位置。
D8140的值就是-3000。
·当机械从A点向B点动作过程中,X1断开(如在C点断开)则D8140的值就是200,此时再闭合X0,机械正转动作到A点停止。
·当机械停在A点时,再闭合X0,因为机械已经在距离原点3000的位置上,故而机械没有动作!·把程序中的绝对位置指令(DRVA)换成相对位置指令(DRVI):·当机械在B点时(假设此时D8140的值是-3000)闭合X0,则机械正转3000个脉冲停止,也就是停在了原点。
D8140的值为0·当机械在B点时(假设此时D8140的值是-3000)闭合X1,则机械反转3000个脉冲停止,也就是停在了左边距离B点3000的位置(图中未画出),D8140的值为-6000。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4.钳制转矩(DETENT TORQUE)
钳制转矩是指步进电机没有通电的情况下, 定子锁住转子的力矩。由于反应式步进电 机的转子不是永磁材料,所以它没有 DETENT TORQUE。
步进电机主要有以下特点
1.一般步进电机的精度为步进角的35%,且不累积。
步进电机主要有以下特点
2.步进电机外表允许的最高温度取决于 不同电机磁性材料的退磁点。 步进电机温度过高时会使电机的磁性材料 退磁,从而导致力矩下降乃至于失步,因 此电机外表允许的最高温度应取决于不同 电机磁性材料的退磁点;一般来讲,磁性 材料的退磁点都在摄氏130度以上,有的 甚至高达摄氏200度以上,所以步进电机 外表温度在摄氏80-90度完全正常。
步进电机的基本结构和工作原理
三相反应式步进电机 的结构如图所示 定子、转子是用硅钢 片或其他软磁材料制 成的。定子的每对极 上都绕有一对绕组, 构成一相绕组,共三 相称为A、B、C三相。
步进电机的基本结构和工作原理
在定子磁极和转子上都开有齿分度相同的 小齿,采用适当的齿数配合,当A相磁极 的小齿与转子小齿一一对应时,B相磁极 的小齿与转子小齿相互错开1/3齿距,C相 则错开2/3齿距。如图所示
5.1步进电机的分类、基本结构和工作原理
步进电机的分类 1.永磁式步进电机 2.反应式步进电机 3.混合式步进电机 步进电机的基本结构和工作原理
步进电机的分类
1.永磁式步进电机一般为两相,转矩和体积较小, 步进角一般为7.5度或15度。 2.反应式步进电机一般为三相,可实现大转矩输 出,步进角一般为1.5度,但噪声和振动都很大。 3.混合式步进电机是指混合了永磁式和反应式的 优点。它又分为两相和五相。两相步进角一般分 为1.8度而五相步进角一般为 0.72度。这种步进 电机的应用最为广泛。
步进电机的基本结构和工作原理
上图中,A相绕组与齿1、5一一对应,而 此时B相绕组与齿2错开1/3齿距,而与齿 3错开2/3齿距,C相绕组与齿3错开2/3齿 距,而与齿4错开1/3齿距。 电机的位置和速度由绕组通电次数(脉冲 数)和频率成一一对应关系。而方向由绕 组通电的顺序决定。
步进电机的基本结构和工作原理
编程方法
1.例如:使用图所示的程序可以产生所 需要的脉冲:
编程方法
M0.0作为总控制状态位,控制脉冲发生 指令是否启动。一旦启动,采用T0、T1、 T2以及它们的组合可以得到三相单三拍和 三相双三拍的两种工作方式下,各相的脉 冲信号。如T0的状态为三相单三拍工作状 态下A相的脉冲。同理可使用类似程序得 到三相单六拍时各相所需的脉冲信号。
西门子PLC与步进电机驱动器控制步进电机
但是,在使用步进电机驱动器时,往往需 要较高频率的脉冲。因此PLC是否能产生 高频脉冲成为能否成功控制步进电机驱动 器以及步进电机的关键。西门子 CPU312C、CPU313C、CPU313-2DP 等型号,集成有用于高速计数以及高频脉 冲输出的通道,可用于高速计数或高频脉 冲输出。
西门子PLC与步进电机驱动器控制步进电机
作为普通数字量输出点使用时,其系统默 认地址为Q124.0、Q124.1、Q124.2 (该地址用户可根据需要自行修改),作 为高速脉冲输出时,对应的通道分别为0 通道、1通道、2通道(通道号为固定值, 用户不能自行修改)。每一通道都可输出 最高频率为2.5KHZ(周期为0.4ms)的 高频脉冲。
PLC直接控制步进电机
可根据步进电机的工作方式,以及所要求 的频率(步进电机的速度),画出A、B、 C各相的时序图。并使用PLC产生各种时 序的脉冲 例如:采用西门子S7-300PLC控制三相 步进电机的过程。 要求通过PLC可实现三相步进电机的起停 控制、正反转控制,以及三种工作方式的 切换(每相通电时间为1秒钟)。
西门子PLC与步进电机驱动器控制步进电机
如图所示:CPU313C中,X2前接线端子 22、23、24号接线端子分别对应通道0、 通道1、和通道3。另外,每个通道都有自 己的硬件控制门,0通道的硬件门对应X2 前接线端子的4号接线端子,对应的输入 点默认地址为I124.2。1通道硬件门7号 接线端子,对应的输入点默认地址为 I124.5,而2号通道硬件门为12号接线端 子,对应的输入点默认地址为I125.0。
3.保持转矩(HOLDING TORQUE)
保持转矩是指步进电机通电但没有转动时, 定子锁住转子的力矩。它是步进电机最重 要的参数之一,通常步进电机在低速时的 力矩接近保持转矩。由于步进电机的输出 力矩随速度的增大而不断衰减,输出功率 也随速度的增大而变化,所以保持转矩就 成为了衡量步进电机最重要的参数之一。 比如,当人们说2N.m的步进电机,在没 有特殊说明的情况下是指保持转矩为 2N.m的步进电机。
西门子PLC与步进电机驱动器控制步进电机
在对步进电机进行控制时,常常会采用步 进电机驱动器对其进行控制。步进电机驱 动器采用超大规模的硬件集成电路,具有 高度的抗干扰性以及快速的响应性,不易 出现死机或丢步现象。使用步进电机驱动 器控制步进电机,可以不考虑各相的时序 问题(由驱动器处理),只要考虑输出脉 冲的频率(控制驱动器CP端),以及步进 电机的方向(控制驱动器的DIR端)。 PLC的控制程序也简单得多。
采用西门子S7-300PLC控制三相步进电机的过程
变量约定如下 输入:启动按钮SB1:I0.0 方向选择开关SA1:I0.1 停止按钮SB2:I0.2 三相单三拍方式选择SA2:I0.3 三相双三拍方式选择SA3:I0.4 三相单六拍方式选择SA4:I0.5
采用西门子S7-300PLC控制三相步进电机的过程
编程方法
在不同的工作方式下,将移位指令移动的 位数保存在MW20中,程序如图所示
编程方法
程序段5:三相单三拍或三相双六拍,每 次应移动2位。程序段6:三相单六拍,每 次应移动一位。程序段7为移位指令,由 于T1的周期为1秒钟,因此每间隔1秒钟, 移位指令左移指定的位数。再将MW10中 对应的位控制相应的输出,可实现步进电 机的控制。步进电机的反向控可根据相 同的办法来实现。
第五章 PLC的步进电机控制系统
步进电机是一种将电脉冲转化为角位移的 执行机构。一般电动机是连续旋转的,而 步进电机的转动是一步一步进行的。每输 入一个脉冲电信号,步进电机就转动一个 角度。通过改变脉冲频率和数量,即可实 现调速和控制转动的角位移大小,具有较 高的定位精度,其最小步距角可达0.75°, 转动、停止、反转反应灵敏、可靠。在开 环数控系统中得到了广泛的应用。
5.3西门子PLC对步进电机的控制方法
PLC直接控制步进电机 西门子PLC与步进电机驱动器控制步进电 机 高频脉冲输出控制举例
PLC直接控制步进电机
使用PLC直接控制步进电机时,可使用 PLC产生控制步进电机所需要的各种时序 的脉冲。例如三相步进电机可采用三种工 作方式: 三相单三拍 三相双三拍 三相单六拍
编程方法
2.使用移位指令实现各相所 需的脉冲信号。 例如在MW10中进行移位,每 次移位的时间为1秒钟。如图 为三相单六拍正向时序流程图, 三相单三拍可利用相同的流程 图,从M11.1开始移位,每次 移两位,而三相双三拍从 M11.2开始,每次移两位。
编程方法
在程序段1中,先产生周期为1秒钟的脉冲 信号,如图所示:
步进电机的基本参数主要有以下内容 1.电机固有步距角 2.步进电机的相数 3.保持转矩(HOLDING TORQUE) 4.钳制转矩(DETENT TORQUE)
1.电机固有步距角
它表示控制系统每发一个步进脉冲信号, 电机所转动的角度。电机出厂时给出了一 个步距角的值,这个步距角可以称之为 “电机固有步距角”,它不一定是电机实 际工作时的真正步距角,真正的步距角和 驱动器有关。
采用西门子S7-300PLC控制三相步进电机的过程
三相双三拍正向的时序图如图所示
采用西门子S7-300PLC控制三相步进电机的过程
三相单六拍正向时序图如图所示
PLC直接控制步进电机
编程方法 1.使用定时器指令实现各种时序脉冲的 要求:使用定器产生不同工作方式下的工 作脉冲,然后按照控制开关状态输出到各 相对应的输出点控制步进电机。
西门子PLC与步进电机驱动器控制步进电机
西门子PLC与步进电机驱动器控制步进电机
控制通道产生高频脉冲分为以下两个步骤 硬件设置。 调用系统功能块SFB49。
1.硬件设置
要想使这三个通道输出高频脉冲,首先必 须进行硬件设置。硬件设置的过程如下: (1)首先创建一个项目,CPU型号选择 为CPU313C,如图所示
步进电机主要有以下特点
3.步进电机的力矩会随转速的升高而下 降。 当步进电机转动时,电机各相绕组的电感 将形成一个反向电动势;频率越高,反向 电动势越大。在它的作用下,电机随频率 (或速度)的增大而相电流减小,从而导 致力矩下降。
步进电机主要有以下特点
4.步进电机低速时可以正常运转,但若高于一 定速度就无法启动,并伴有啸叫声。 步进电机有一个技术参数:空载启动频率,即步 进电机在空载情况下能够正常启动的脉冲频率, 如果脉冲频率高于该值,电机不能正常启动,可 能发生丢步或堵转。在有负载的情况下,启动频 率应更低。如果要使电机达到高速转动,脉冲频 率应该有加速过程,即启动频率较低,然后按一 定加速度升到所希望的高频(电机转速从低速升 到高速)。
编程方法
在不同的工作方式下赋予MW10不同的初 值,如图程序段2~4所示