配位聚合物的应用与进展
四唑类功能配位聚合物的研究进展

刘宁 论述 了四唑类 的功能化合 物的发展 现状 、 合成 以及在
应 用。
3 0 0 0 0 0 )
条件 , 从而等 到性 质 良好的 金属功 能聚合物 。溶 剂热 的方法可
法来 构筑配位化 合物 。
气体吸 附、 磁 性能 、 光 学性 能、 铁 电、 催 化 等 的众 多领域 的 重要 以利 用原位 合成 四唑 配体 , 也可 以采用直接 加入 四唑 配体 的方
键、 耵盯 堆积 , 所以这 类 配体 的体 系更 容 易等到新 颖 的结构 。相 2 . 3磁性材料 对 于咪 唑和 三 唑 , 四 唑在 五元 环 内有 四个氮 原子 , 并且 都 能参 与 配位 , 四唑 配体 的 配位 模式 也是 多种 多样 的 , 所 以更 具有 合 途很 广的功 能材料 。磁性 材料早 期根据 用途 可以分 为 : 铁铬钴 成 优 良性 能配 合物 的潜 力 。其次 , 要得 到新 颖 的配 合物 , 选 择 磁 铁 、 铁 氧体 、 钐 钴 磁体 、 钕 铁硼 、 铝镍 钴磁 铁等 五种 。金 属有
有较 多的 配位点 , 在 这类体 系 中加 入金 属离子 可以形 成不 同维 学材 料 , 而 且 已经 吸 引了更 多的科 学 人 员的注 意和兴 趣 , 他们
度 的功 能聚 合物 ; 另外 , 用唑 类 配体构 筑 配合物 时 容 易形成 氢
力求在 配合物实验 方面和理论 层面的探索 更进一步 。 强磁性 物 质是 人们 通 常意 义上 的磁性 材料 , 它是 传 统 , 用
这方 面的研 究主要 体现 在非线性 光学 、 光致 发光 以及 电致
发光 及 几个 重要 的方 向 。非线性 光 学的 材料 在光 信号 处理 以
配位化学在有机合成中的应用

配位化学在有机合成中的应用引言:配位化学是无机化学的一个重要分支,广泛应用于催化剂、药物、材料等领域。
在有机合成中,配位化学的应用也越来越受到关注。
本文将介绍配位化学在有机合成中的应用,并探讨其在有机合成中的优势和局限性。
一、配位化学在有机合成中的优势1. 催化剂:配位化合物作为催化剂在有机合成中扮演着重要角色。
通过选择合适的配体和过渡金属,可以调控反应的速率、选择性和产率。
例如,金属有机配合物常用于氢化反应、氧化反应、交叉偶联反应等。
此外,由于配位化合物的可调性,可以根据具体需求设计和合成新型配体,进一步提高反应的效果。
2. 金属有机化合物:一些金属有机化合物在有机合成中具有独特的反应性。
例如,Grignard试剂和有机锂试剂是常见的金属有机化合物。
它们可与各种化合物发生加成、消除、置换等反应,从而构建复杂的有机分子骨架。
此外,金属有机化合物还可通过金属催化的反应合成,如Suzuki偶联、Heck反应等,为有机合成提供了更多的选择。
3. 配位聚合物:配位聚合物是由金属离子和配体通过配位效应相互连接而成的大分子。
它们具有多样的结构和性质,可用于控制聚合物的形貌、分子量、相互作用等。
在有机合成中,配位聚合物可以用作催化剂、药物递送系统、分离膜等,拓宽了有机合成的应用领域。
二、配位化学在有机合成中的具体案例1. 配位催化:过渡金属配合物在有机合成中广泛应用于催化各种反应。
以铂催化剂为例,它可以催化烯烃的氢化、烯烃和芳烃的异构化、烯烃和烯炔的偶联等。
这些反应可以高产率、高选择性地得到有机化合物,有助于构建有机分子骨架。
2. 金属有机试剂的应用:金属有机试剂如Grignard试剂和有机锂试剂可与各类化合物发生反应,实现C-C键的构建。
例如,通过与酰氯反应,Grignard试剂可以合成醇、醛、酮等有机化合物;通过与卤代烷反应,有机锂试剂可以合成烷烃、芳香化合物等。
3. 配位聚合物的应用:金属配合物可以用作聚合物的交联剂,实现聚合物的多样化。
镧系金属配位聚合物的应用

镧系金属配位聚合物的应用下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by the editor. I hope that after you download them, they can help yousolve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, our shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts,other materials and so on, want to know different data formats and writing methods, please pay attention!镧系金属配位聚合物是一种具有广泛应用前景的材料,在各个领域都有着重要的作用。
配位聚合物的应用研究

配位聚合物的应用研究研究组姓名选题意义配位聚合物(coordination polymers)是有机配体与金属离子通过自组装过程形成的具有周期性网络结构的晶体材料。
它结合了复合高分子和配位化合物两者的特点,是一类具有特殊性质的杂化材料。
作为新型功能性分子材料,配位聚合物的设计与合成,结构及其性能的研究越来越受到各个领域科学家的重视,形成了跨越多个学科的热点研究领域。
报告内容具有三维空旷网络结构的金属有机骨架材料(metal-organic framework,MOFs)是一种稳定的配位聚合物材料。
MOFs材料在溶剂分子脱除后能保持骨架结构稳定,具有超大的比表面积和孔体积。
稳定性的提高大大拓展了MOFs材料的应用领域,成为MOFs材料发挥其特殊性质的基础。
MOFs材料可以用于类分子筛载体、气体存储和分离、非线性光学、分子磁体、手性拆分、发光材料、光电转化、催化等众多领域。
其中MOFs在多相不对称催化和光催化领域的应用由于其重要性逐渐受到科学家的重视。
使用具有手性催化活性的有机分子作为配体,可以得到具有手性催化活性的MOFs材料。
这是一种特殊的多相化方式,催化剂负载量大,活性中心均匀分布,开放的孔道有利于底物与活性中心接近。
在手性催化中具有重要应用的卟啉、席夫碱、联萘配体都已成功合成了MOFs材料,而且材料具有较好的手性选择性。
以光学纯的手性酒石酸衍生物为配体,合成具有手性孔道的MOFs材料,不仅可以成功地拆分外消旋的配位化合物,而且还成功实现了对酯交换反应的不对称催化作用。
理论计算表明,MOFs材料也是一种合适的半导体材料,能带带隙在1.0到5.5eV之间。
有机部分吸收光子的能量,能够发生从有机到无机部分的电荷转移。
从而像半导体一样,能作为电子给体和受体。
光激发后,MOFs材料能发生光致变色、光催化产氢、光催化氧化有机物等反应。
前景展望由于作为配位聚合物组成部分的金属离子和有机配体的高度可调性和配位方式的多样性,配位聚合物具有无限的组成和结构可裁性,这是其它材料所无法比拟的。
配位聚合物的应用与进展

配位聚合物的应用与进展王雄化学化工与材料学院应用化学1班 20133443摘要:配位聚合物是由金属和有机配体自组装而形成的, 具有独特的空间几何构型, 在非线性光学材料、气体吸附、手性拆分和催化、分子磁性材料、超导材料, 微孔材料等诸多方面都有广阔的应用前景。
本文介绍了配位聚合物的分类,列举了金属-有机骨架(MOFs)等功能型配位聚合物的研究进展,并对配位聚合物的发展前景作了展望。
关键词:配位聚合物;有机配体;合成方法;应用;催化引言:配位聚合物(coordination polymers)或金属-有机框架(metal-organic frameworks,简称MOFs)是指利用金属离子与有机桥联配体通过配位键合作用而形成的一类具有一维,二维或三维无限网络结构的配位化合物[1]。
近年来,配位聚合物作为一种新型的功能化分子材料以其良好的结构可裁性和易功能化的特性引起了研究者浓厚的兴趣。
配合物有无机的金属离子和有机配体,因此它兼有无机和有机化合物的特性,而且还有可能出现无机化合物和有机化合物均没有的新性质。
配位聚合物分子材料的设计合成、结构及性能研究是近年来十分活跃的研究领域之一,它跨越了无机化学、配位化学、有机化学、物理化学、超分子化学、材料化学、生物化学、晶体工程学和拓扑学等多个学科领域,它的研究对于发展合成化学、结构化学和材料化学的基本概念及基础理论具有重要的学术意义,同时对开发新型高性能的功能分子材料具有重要的应用价值[2-7]。
并对分子器件和分子机器的发展起着至关重要的作用。
配位聚合物在新的分子材料中将发挥重要的作用。
配位化学理论在材料的分子设计中也将起着重要的指导作用。
材料按其性能特征和用途大致可划分为结构材料和功能材料两大类。
功能材料种类繁多,功能各异,其共同的特点和发展趋势是:(1) 性能优异;(2) 分子化;(3) 巨大的应用前景。
金属有机光电磁材料综合了这几方面特点,将发展成为新一代材料,其结构和性能决定了它的应用越来越广泛。
金属有机多孔配位聚合物的研究进展

金属有机多孔配位聚合物的研究进展多孔材料在物质分离、气体储存和异相催化等领域有着广泛的应用。
传统的无机多孔材料包括硅藻土和沸石等天然多孔材料和名目繁多的(如,活性炭、活性氧化铝、蛭石、微孔玻璃、多孔陶瓷等)人工多孔材料。
天然无机多孔材料的结构类型有限,人造无机多孔材料虽然可克服这一缺点(通过改变制备工艺,人们可以制备从微孔、中孔到大孔等各类多孔材料),但是人造多孔材料的缺点是无法获得均匀孔结构。
近年来"无机!有机杂化配合物作为一种新型的多孔材料引起了人们的广泛关注。
人们将这种配合物定义为金属有机类分子筛"其孔洞处在纳米的数量级" 又称纳米微孔配位聚合物,这类材料的功能可以通过无机物种或有机桥联分子进行调节,过渡金属可以将其还原转化为沸石性主体,从而产生一些有趣的具有磁性和光谱特性的孔洞,而有机物质可以调节孔道尺寸、改变孔的内表面,还具有化学反应性或手性,可以弥补传统分子筛的许多不,在异相催化、手性拆分、气体存储、离子交换、主客体化学、荧光传感器以及光电磁多功能材料等领域显示出良好的应用前景。
和无机多孔材料相比,这类分子材料具有(1)结构多样性:MOFs是由金属离子(node)和有机配体(linker或spacer)通过配位键形成的配位聚合物,有机配体分子的多样性和金属离子配位几何的多样性导致了它们构成的配位聚合物结构的多样性(2)分子设计和分子剪裁的可行性:调节有机配体的几何性质和选择不同配位几何的金属离子可调控配位聚合物孔的结构(3)制备条件温和:在常压或几十个大气压,200度左右或更低的温度下反应等优点,因而对MOFs 的研究备受化学和材料科学工作者的关注。
由于配位聚合物的形成可以看作具有各自配位特征的配体和金属离子之间的合理识别与组装,因此,配体的几何构型和配位性能及金属离子的配位趋向和配位能力对配位聚合物的结构起着决定作用。
此外,阴离子、溶剂、反应物配比、溶液的pH、合成方法(水热或溶剂热,溶液法、扩散法、溶胶法)、反应温度等也对配位聚合物的结构有重要的影响。
[高分子材料] 南开大学卜显和:多孔配位聚合物的发展历程及研究进展
![[高分子材料] 南开大学卜显和:多孔配位聚合物的发展历程及研究进展](https://img.taocdn.com/s3/m/7b1096adf12d2af90342e694.png)
南开大学卜显和:多孔配位聚合物的发展历程及研究进展2020-01-04以下文章来源于中国科学杂志社,作者中国科学:化学多孔配位聚合物(PCP)(包括金属有机框架)是一类由金属节点和配体通过配位键连接形成的晶态多孔材料。
作为一类新兴的无机-有机杂化材料, PCP具有丰富且可调节的结构和功能, 因此其在气体吸附分离、催化、传感等诸多领域展现出巨大的应用潜力, 是多学科交叉的研究热点。
南开大学化学学院卜显和教授课题组近期在《中国科学:化学》发表评述,依据PCP的结构及性质特点,总结了第一至第四代多孔配位聚合物PCP研究的发展历程, 介绍了该领域的主要研究内容和典型研究进展, 进而基于该领域未来面临的挑战和发展趋势分析了材料的实用化前景。
近年来, 多孔配位聚合物(porous coordination polymer, PCP) (包括金属有机框架(metal-organic framework, MOF))的研究方兴未艾。
PCP是由金属节点(金属离子或金属簇)和有机连接体通过配位键自组装形成的具有无限网络结构的材料。
其作为配位超分子化学的一个重要组成部分, 与无机化学、有机化学、晶体工程、拓扑学、材料化学及固态化学等领域相互交叉、渗透, 现已成为化学和材料领域的研究热点之一。
相较于传统的无机多孔材料(如沸石分子筛、微孔二氧化硅), PCP具有结构和组成多样、结构可设计、孔道可调节和易于功能化的优点。
因此, 这类材料在吸附分离、催化、检测、磁性以及光电等领域展现出巨大的应用价值和潜力。
按照PCP的发展历程和属性对其进行的分类根据剑桥晶体数据中心的统计, 1972~2016年, 约有7万例可被定义为MOF的新结构被合成, 对应的可定义为PCP的化合物的数量更加庞大。
基于PCP数量的急剧增长, 相关研究论文的发表数量也在逐年递增。
与此同时, 涉及PCP材料的研究领域不断扩大。
目前PCP的研究热点主要集中在以下5个方面。
二酸杂核配位聚合物的研究进展

( Ma t e r i a l s a n d C h e mi c l a E n g i n e e r i n g , We s t A n h u i U n i v e r s i t y ,A n h u i L u a n 2 3 7 0 1 2 ,C h i n a )
摘 要 :两种不同的金属离子共存的二酸金属杂核配位聚合物具有独特结构,使其在磁性、发光材料等方面有潜在应用前
景 。分 别从 二酸作为单一配体 的杂核金属 聚合 物 、引人 其他 共存 配体 的混 合配体 杂核 金属 聚合物 、杂 核配位 聚合物 的结构 特点 、
性 能以及合成杂核金属聚合物 的方法这三方 面 ,论述 国内外 研究进展 。
Ke y wo r d s :d i a c i d l i g a n d s ;h e t e r o me t a l c o mp l e x e s ;s y n t h e s i s me t h o d
1 9 8 5年 ,G a t t e s c h i 等以双水 杨基二亚胺希 夫碱 为配体合 成 了三核 c u G d配合 物 ,磁性研 究表明 c u与 G d 之 间发生了弱的 铁磁耦合作用 。这 一发 现引起 了人 们在 异核金 属 配合物 合 成 、
结 构 和 磁 性 方 面极 大 的研 究 兴 趣 。 由于 二 酸 与 金 属 杂 核 配 位 聚
磁性 ,其 中 C a Mn和 C a F e 有 弱的反铁磁性 。后来合成得到 了具 有相 似 结 构 的 配位 聚 合 物 如 [ B a F e ( m 1) a : ( H 0) ] ,[ B a C o ( m a 1 ) ( H O) ] 。还有相似组成的[ N a z N i ( m 1) a ( H 2 0) 6 ] , 分子 中沿 [ 1 0 1 ] 方向延伸的平面之间通过 ( 一H: 0) : N a : 连 接 成三维 网络结构 ,金属 N i 之 间有弱 的反 铁磁性 。由于包 含桥
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
配位聚合物的应用与进展————————————————————————————————作者: ————————————————————————————————日期:配位聚合物的应用与进展王雄化学化工与材料学院应用化学1班20133443摘要:配位聚合物是由金属和有机配体自组装而形成的, 具有独特的空间几何构型,在非线性光学材料、气体吸附、手性拆分和催化、分子磁性材料、超导材料, 微孔材料等诸多方面都有广阔的应用前景。
本文介绍了配位聚合物的分类,列举了金属-有机骨架(MOFs)等功能型配位聚合物的研究进展,并对配位聚合物的发展前景作了展望。
关键词:配位聚合物;有机配体;合成方法;应用;催化引言:配位聚合物(coordination polymers)或金属-有机框架(metal-organic frameworks,简称MOFs)是指利用金属离子与有机桥联配体通过配位键合作用而形成的一类具有一维,二维或三维无限网络结构的配位化合物[1]。
近年来,配位聚合物作为一种新型的功能化分子材料以其良好的结构可裁性和易功能化的特性引起了研究者浓厚的兴趣。
配合物有无机的金属离子和有机配体,因此它兼有无机和有机化合物的特性,而且还有可能出现无机化合物和有机化合物均没有的新性质。
配位聚合物分子材料的设计合成、结构及性能研究是近年来十分活跃的研究领域之一,它跨越了无机化学、配位化学、有机化学、物理化学、超分子化学、材料化学、生物化学、晶体工程学和拓扑学等多个学科领域,它的研究对于发展合成化学、结构化学和材料化学的基本概念及基础理论具有重要的学术意义,同时对开发新型高性能的功能分子材料具有重要的应用价值[2-7]。
并对分子器件和分子机器的发展起着至关重要的作用。
配位聚合物在新的分子材料中将发挥重要的作用。
配位化学理论在材料的分子设计中也将起着重要的指导作用。
材料按其性能特征和用途大致可划分为结构材料和功能材料两大类。
功能材料种类繁多,功能各异,其共同的特点和发展趋势是:(1) 性能优异;(2) 分子化;(3)巨大的应用前景。
金属有机光电磁材料综合了这几方面特点,将发展成为新一代材料,其结构和性能决定了它的应用越来越广泛。
以下是金属有机化合物分别在光电磁材料中的应用。
1.配位聚合物的分类1998年,R obson教授根据聚合物框架结构的不同将其分为三大类:一维链状聚合物,二维网状聚合物和三维网状聚合物。
这种分类使人很容易了解配位聚合物的空间结构,但从配位聚合物的合成角度来看,未免有些不足。
在配位聚合物的合成中,有机配体起着关键作用,配体种类的不仅直接影响到聚合物的合成,而且还涉及到聚合物的空间结构。
因此,将含不同有机配体的聚合物加以分类研究,对配位聚合物的合成及其空间结构的研究将有一定的指导意义。
根据有机配体种类的不同可将配位聚合物分为:含氮杂环类配体的配位聚合物;含CN配体的配位聚合物;含氧有机配体的配位聚合物;两种配体的配位聚合物;含两种或两种以上金属的配位聚合物。
按金属中心的角度可分为:过渡金属,主族金属,稀土金属,多金属中心四类。
2.配位聚合物的合成方法2.1 常规合成法缓慢扩散法、水热/溶剂热法、溶液直接合成法等常规合成法对于获取高质量的单晶有独特的优势,因而使用广泛。
扩散法包括:气相扩散法、液层扩散法和凝胶扩散法等。
气相扩散法是将金属盐和有机配体溶解于适合的溶剂后,用易挥发性的溶剂扩散进溶液中而析出晶体;液层扩散法则是将金属盐和有机配体分别溶解于不同的溶剂中,然后把其中一种溶液置于另一种溶液上,在界面处的扩散层中发生反应;凝胶扩散法也与其类似,把两者分开,让它们缓慢地互相扩散,以减缓成核速度,从而产生高质量的单晶。
扩散法反应时间较长,从数天到数月不等,条件温和,有利于生成热力学稳定的产物。
水热溶剂热法是把反应物与溶剂混合于封闭体系,常用不锈钢反应釜,加热到一定的温度,在溶剂产生的自身压力下反应。
这种方法比扩散法耗时短,对反应物的溶解性要求也低一些,一般几个小时至一周内可完成反应,且可控制的因素很多,包括溶剂的选择、温度、反应时间等,但反应对条件较为敏感,常常重复性较差。
由于常规合成法反应时间较长,反应物浓度低,在较大规模的合成中受到限制,目前仅限于实验室范围内的制备,因而需要发展更为高效、环境友好的方法。
2.2固相合成法固相反应常指固体与固体之间的反应,广义上来说则包括了所有固体反应物参与的反应。
固相反应不仅能产生分子结构简单的配位化合物,也能形成三维无限网络状化合物。
目前固相反应在配位聚合物的合成中尚处于初始阶段,但固相反应的简便、高效、绿色等优势已经充分展现出来。
固相反应通常在研钵中或球磨机内进行,反应控制的条件包括研磨时间、研磨强度、反应温度、助剂的添加等。
低热固相反应与机械力化学反应的区别: 在无机械研磨的作用下,反应仍能进行,直到反应结束,而机械力化学反应必须在外力的持续作用下,通过机械能使体系活化而使反应发生,机械力是不可缺少的;起始研磨的作用在于减小反应物的粒径,使反应物充分接触并混合均匀,并且增大缺陷浓度以活化底物;反应过程中的研磨作用令反应物进一步地接触,减少了反应物的包埋,促进了扩散,从而增加了反应速率。
配位聚合物中的金属离子与桥联配体之间以配位键结合,配位键的键能相对较低,容易断裂,因而其合成必须在中低温下进行。
反应物的有机配体通常是分子晶体,配体分子以较弱的分子间作用力结合,晶格易变形,分子可长程移动,因此易于发生扩散和接受其他反应物的扩散。
而所用的金属源又常为含结晶水的金属盐,即以水分子为配体的配合物,这些成为应用低热固相反应制备配位聚合物的前提。
2.3 超声波法超声波在反应中的作用,被认为是超声空化现象引起的。
在超声波的作用下,液态介质形成微小气泡,经历生长振荡等过程后迅速崩溃,产生极短暂的局部高温高压和极高的温度梯度,以及高速的微射流,由此带来高速的分子运动活化的反应位点并能够促进分子的自组装。
近几年超声波被引入到配位聚合物研究领域,发现其具有高效的优点。
有研究表明,超声波对配位聚合物合成的加速作用是由于其增大了Arrhenius方程的指前因子,并没有降低反应的活化能,超声波产生局部过热点大大促进产物晶体的成核与生长过程。
但超声波作用下的溶液环境不利于大尺寸晶体的生长,所以超声波法不易产生适合单晶射线衍射的高质量单晶,然而解析晶体结构是制备新型配位聚合物的重要环节,因此超声波法在合成新颖结构的配位聚合物方面受到一定的限制但是对制备纳米配位聚合物调控产物形貌却具有显著的效果。
2.4 微波法微波是指频率为300 MHz -300GHz的电磁波,波长1m -1mm之间,位于微波场中的极性分子在变化的电磁场作用下获得动能,从而产生热量。
微波能够快速均匀地加热介质,产生各向同性的成核环境,可使晶体迅速地成核及生长,并带来均一的粒径分布。
常用的微波合成方法是将反应物溶液密封于反应溶器内,用一定功率的微波加热,反应时间可短至几十秒。
微波法具有反应时间短、产率高、选择性高、能量利用率极高、比孔容大等优点,应用微波法合成配位聚合物时可通过调节反应条件来控制产物的形成和形貌、吸附性能等性质。
3.配位聚合物功能性材料简介3.1分子基磁性材料根据磁性材料的磁特性和应用特点可分为永磁材料、软磁材料、磁信息材料和特种磁性材料等。
分子基磁性材料是由分子磁体构成的磁性材料。
有机-无机配位聚合物型分子基磁性材料有三个优点:(1)顺磁金属离子本身是一个天然的自旋载体;(2)以金属离子作为联结点易构筑成一维、二维和三维的宏观结构;(3)变化金属离子本身及其配位环境易控制它们之间的磁相互作用。
分子磁体是指在临界温度(Tc)下能自发磁化的分子聚集体,其在结构上以配位聚合物为主要结构特点,在微观上以磁耦合为主要性质。
分子磁体的磁性源于分子内或分子间未成对电子间的相互藕合,其在信息储存与转换、量子计算机的研发与利用等方面有巨大的应用价值。
分子磁性材料比传统的无机磁性材料密度低、透明性好、合成方法温和。
过渡金属配位聚合物分子磁体是目前研究最多、最深入的分子磁体,研究发现,一维链状结构的配位聚合物Tc温度较低。
要提高Tc温度,就必须合成在三维方向均有强相互作用的高维分子磁体。
3.2新型多孔材料多孔配位聚合物有高度规则的晶态结构,孔道尺寸可调控,表面性质可控,整体结构可设计,合成条件简单,在分离、气体存储及异相催化等领域有着广阔的应用前景。
2004年,日本的Kitagawa教授对多孔配位聚合物的研究状况进行了总结概述,将其按照时间的发展顺序分成三代:第一代,移走微孔框架中的客体分子后,框架将不稳定出现塌陷且不可逆转;第二代,即使在失去客体分子的情况下仍具有稳定坚固的框架,能够进行气体的可逆吸附与脱附;第三代,具有柔性和动力学可控的的框架,能够随着外界条件的变化,可逆地改变其通道或孔径,在分子开关和选择性气体吸附等领域具有潜在应用价值。
目前,多孔配位聚合物的研究主要集中在第二代,以芳香羧酸多齿配体桥连的金属有机框架材料(MOFs,Metal-Organic Frameworks)为主,美国Yaghi课题组合成的MOF系列配位聚合物在整个晶体孔材料发展的过程中占据了极其重要的地位。
美国Yaghi课题组报到了25种ZIF系列三维金属配合物孔道结构,其中ZIF-68,ZIF-69,ZIF-70配位聚合物在空气中可稳定存在到390℃,并且客体分子完全去除后,仍能保持晶态完好,可以完全可逆地吸附N2,C O,CO2。
Langmuir比表面积在1220 -2000 m2g-1之间,孔道直径在0.72 -1.59nm之间,尤其是ZIF-69有非常强的选择吸附能力和吸附储存能力, 1g 的ZIF-69能吸附储存82.7mL的CO2。
2003年K.Kim课题组发表了一个用锌盐、对苯二甲酸和吡嗪配体合成的三维多孔配位聚合物。
2010年Yaghi组合成了三维孔道结构的金属有机配位聚合物IRMOF-77[Zn4O(C28H21I2N3O4Pd)3],相应的孔径是0.5nm x1nm。
这些孔道在去除溶剂分子后,可以可逆地吸附N2,Ar和多种有机溶剂分子.吸附曲线属于I型吸附等温线,吸附过程是可逆的,并且在脱附过程中没有滞后现象,吸附比表面积约为1 610m2.g-1。
3.3 非线性光学材料由于非线性光学性质是非中心对称固体所特有的光学现象,要求组成非线性光学材料的分子本身是非中心对称,或色素分子在材料中是非中心对称排列,合理的设计与合成非中心对称的晶体在寻找非线性光学材料研究中占有重要地位。
晶体工程学和配位聚合物的发展,为人们寻找新的非线性光学材料提供了新的途径。
近年来,非线性光学材料的研究已经引起化学、物理和材料科学领域中科技工作者的广泛关注和兴趣。