纳米自组装分析

合集下载

纳米材料自组装技术

纳米材料自组装技术

纳米材料自组装技术纳米材料自组装技术是指利用纳米颗粒和分子之间的相互作用力,在特定外界条件下实现纳米材料自组装、自排列的一种技术。

在纳米领域中,纳米材料自组装技术具有许多优势,如可控性强、成本低、工艺简单等,因此在纳米技术研究和应用中得到广泛关注。

纳米材料自组装技术的基本原理是通过调节纳米颗粒和分子之间的相互作用力,使其按照设计的结构和排列方式进行自组装。

这种相互作用力可以是静电力、范德华力、磁性力、亲疏水力等。

在纳米颗粒之间的相互作用力中,范德华力是最常用的一种,通过调节范德华力的大小和方向,可以控制纳米颗粒的组装方式和排列方式。

纳米材料自组装技术有多种方法,其中较常见的方法包括溶液中的自组装、表面吸附的自组装和气-液界面的自组装等。

在溶液中的自组装中,纳米颗粒通过溶剂的挥发、溶液的浓缩等方式进行组装,形成二维或三维结构。

表面吸附的自组装是将纳米颗粒吸附到固体表面上,通过控制吸附位置和相互作用力,实现纳米颗粒的有序排列。

气-液界面的自组装是将纳米颗粒悬浮在液体中,然后通过气体的吹扫或挥发,使纳米颗粒在液体表面上组装成膜或排列成有序结构。

纳米材料自组装技术的应用范围非常广泛。

在材料科学中,可以利用纳米材料自组装技术制备具有特定结构和性能的材料,如纳米线阵列、纳米薄膜、纳米孔等。

这些材料具有许多独特的性能,如光学性能、电学性能、磁学性能等,有广泛的应用潜力。

此外,纳米材料自组装技术还可用于制备纳米器件、生物传感器、纳米催化剂等领域。

在生物医学中,纳米材料自组装技术可以用于制备纳米药物载体、纳米图案和纳米结构等,用于癌症治疗、疾病诊断和生物传感等应用。

纳米材料自组装技术的发展还面临一些挑战和难题。

首先,纳米颗粒之间的相互作用力非常微弱,容易受到外界环境的影响,导致组装结果不稳定。

其次,纳米颗粒的组装工艺复杂,需要精确控制多个参数,如温度、浓度、pH值等。

此外,纳米材料自组装技术在大规模制备和商业化应用方面还存在一些问题,如成本高、工艺不稳定等。

材料工程中各类纳米材料自组装技术原理及其优势

材料工程中各类纳米材料自组装技术原理及其优势

材料工程中各类纳米材料自组装技术原理及其优势自组装技术是材料工程领域中一种重要的制备方法,它利用材料本身的物理化学性质,将分散的纳米颗粒按照一定的规则有序地排列和组装起来,形成有序的结构和功能。

在材料工程中,各类纳米材料自组装技术被广泛应用于制备高性能材料、纳米器件、纳米传感器等领域。

本文将依次介绍各类纳米材料自组装技术的原理及其优势。

首先,介绍一维纳米线自组装技术。

一维纳米线是具有高比表面积和优异电子、光学性能的纳米材料。

利用表面张力等力学效应,可以将一维纳米线有序地组装成各种特定结构。

一维纳米线自组装技术的原理是通过控制纳米线之间的相互作用力,使其在特定的溶剂中有序排布。

通过调整溶剂的溶剂效应和表面功能化等手段,可以进一步控制纳米线的组装方式和结构。

一维纳米线自组装技术具有高效、可扩展性强、结构可调控等优势,在纳米电子器件、柔性传感器等领域有着广泛的应用前景。

其次,介绍二维纳米薄膜自组装技术。

二维纳米薄膜是具有超薄厚度、大比表面积和高载流子迁移率等特性的纳米材料。

通过利用分子间的范德华力和静电作用力等相互作用力,可以将二维纳米材料有序地自组装成纳米薄膜。

二维纳米薄膜自组装技术的原理是通过将纳米材料悬浮在溶液中,利用自身的能量最小化原则,使纳米材料有序地排列在基底上。

通过调控溶液的pH值、离子浓度、温度等参数,可以控制纳米薄膜的厚度、晶格结构和电子输运性能。

二维纳米薄膜自组装技术具有制备简单、制备速度快、结构可调控等优势,被广泛应用于柔性显示器、光电器件等领域。

然后,介绍三维纳米结构自组装技术。

三维纳米结构是由纳米材料构成的具有复杂形状和特殊功能的结构。

通过利用纳米材料的自组装性质,可以将纳米颗粒按照一定的规则有序地组装成三维结构。

三维纳米结构自组装技术的原理是通过控制纳米颗粒之间的相互作用力,使其在特定的条件下进行自组装。

通过调控溶剂的溶剂效应、表面功能化和外界场等手段,可以控制纳米颗粒的位置、排列和连接方式。

纳米颗粒自组装原理及应用展望

纳米颗粒自组装原理及应用展望

纳米颗粒自组装原理及应用展望摘要:纳米颗粒自组装是一种基于纳米颗粒自发地排列和组合形成各种结构的技术,其原理可通过不同的力驱动。

本文将介绍纳米颗粒自组装的原理,涉及到的力包括范德华力、电荷相互作用力、磁性力以及表面张力等。

此外,本文还将展望纳米颗粒自组装在材料科学、药物传递和生物传感器等领域的应用前景。

1. 引言纳米颗粒自组装是一种通过纳米颗粒自行排列和组合形成特定结构的现象。

纳米颗粒具有大量的特殊性质,如尺寸效应、表面效应和量子效应,这些特性使得纳米颗粒在多个领域拥有广泛应用。

纳米颗粒自组装作为一种用于在纳米尺度上构建结构和功能的方法,引起了广泛的关注。

本文将讨论纳米颗粒自组装的原理以及其在材料科学、药物传递和生物传感器等领域的应用前景。

2. 纳米颗粒自组装的原理2.1 范德华力范德华力是一种分子之间的吸引力,可用于纳米颗粒之间的自组装。

纳米颗粒表面上的分子之间会发生范德华力的相互作用,使得纳米颗粒倾向于彼此靠近,并形成有序结构。

这种力的强度取决于颗粒间的距离和其表面性质。

2.2 电荷相互作用力纳米颗粒表面可能带有正电荷或负电荷,这些电荷之间的相互作用力也可以推动纳米颗粒的自组装。

相同电荷的纳米颗粒会互相排斥,而不同电荷的纳米颗粒会相互吸引。

通过调节纳米颗粒表面的电荷性质,可以实现不同的自组装结构。

2.3 磁性力带有磁性的纳米颗粒可以通过外部磁场的作用而定向自组装。

当外部磁场施加在含有磁性纳米颗粒的溶液中时,纳米颗粒将受到磁力的影响而排列成特定的结构。

2.4 表面张力表面张力是液体界面上的一种力,可用于驱动纳米颗粒的自组装。

当纳米颗粒浸入液体中时,液体的表面张力将使得纳米颗粒自发地排列和组装成稳定的结构。

3. 纳米颗粒自组装的应用展望3.1 材料科学纳米颗粒自组装可用于构建具有精确结构和特定功能的材料。

通过调节纳米颗粒之间的相互作用力,可以控制自组装过程中的结构和形状。

这种方法可以应用于构建高效的催化剂、光电材料和传感器等,为材料科学领域的研究和应用提供新的途径。

纳米粒子自组装机制解析及其模拟算法

纳米粒子自组装机制解析及其模拟算法

纳米粒子自组装机制解析及其模拟算法纳米技术是一门涉及到物质在纳米尺度上的控制与调控的技术,近年来备受瞩目。

纳米材料的合成、组装和应用是纳米技术的三个主要方面。

其中,纳米粒子的自组装技术在纳米材料应用中具有重要意义。

本文将深入解析纳米粒子的自组装机制,介绍相关模拟算法。

一、纳米粒子的自组装机制自组装是指由简单的构建单元组成的物质在不需外界干预的情况下,在一定条件下自发地形成有序的结构或功能性组装体。

纳米粒子的自组装具有以下几个主要机制:1. 亲疏水性自组装纳米粒子具有不同的亲疏水性,通过调控粒子表面的亲疏水性,可以实现粒子之间的组装。

亲水性粒子在水溶液中会集聚形成有序结构,而疏水性粒子则会自发聚集形成疏水性区域。

通过不同亲疏水性的粒子的组装可以构建出多种形态的结构,如核壳结构、多层结构等。

2. 电荷相互作用自组装带有正电荷和负电荷的纳米粒子之间存在静电相互作用,这种作用可以驱使纳米粒子之间相互组装。

正电荷与负电荷之间的相互吸引使得纳米粒子形成排列有序的结构。

3. 磁性自组装拥有磁性的纳米粒子可以被外加磁场引导,从而实现纳米粒子的自组装。

通过调节外加磁场的方向和强度,可以控制纳米粒子的排列方式和结构形态。

以上仅是纳米粒子自组装的一些基本机制,实际中还有许多其他的机制和因素可以影响纳米粒子的自组装过程。

通过深入研究这些机制,我们可以更好地控制纳米粒子的自组装过程,实现所需的结构和功能。

二、纳米粒子自组装的模拟算法为了更好地理解纳米粒子自组装的过程和性质,研究者们开发了一系列模拟算法。

这些算法通过数值模拟的方式,模拟纳米粒子的运动和相互作用,从而预测纳米粒子的自组装行为。

1. 分子动力学模拟分子动力学模拟是一种常用的模拟纳米粒子自组装的方法。

该方法通过建立纳米粒子间相互作用的势能函数,根据牛顿第二定律,模拟纳米粒子的运动轨迹。

通过大量的模拟实验,可以分析纳米粒子的组装过程和生成的结构形态。

2. 蒙特卡洛模拟蒙特卡洛模拟是一种基于随机采样的模拟方法。

纳米颗粒的自组装和结构控制

纳米颗粒的自组装和结构控制

纳米颗粒的自组装和结构控制纳米颗粒是一种尺寸在纳米级别的微小物质,具有独特的物理和化学性质。

在纳米科技领域,纳米颗粒的自组装和结构控制是一个重要的研究方向。

通过自组装和结构控制,可以精确地调控纳米颗粒的形貌、大小、组合方式等特征,进而实现对其性能的调控和优化。

一、纳米颗粒的自组装纳米颗粒的自组装是指在一定条件下,纳米颗粒之间通过相互作用力的作用,自发地组装成特定的结构。

这种自组装现象在自然界中广泛存在,如蛋白质的折叠和DNA的双螺旋结构都是通过自组装形成的。

而在人工合成的纳米颗粒系统中,也可以通过控制各种相互作用力来实现自组装。

1. 范德华力的作用范德华力是纳米颗粒自组装中最常见的相互作用力之一。

范德华力是由于分子或原子之间的电荷分布不均匀而产生的吸引力或排斥力。

当纳米颗粒表面带有电荷时,范德华力会使颗粒之间相互吸引,从而促进自组装。

通过调节纳米颗粒表面的电荷性质和密度,可以控制范德华力的大小和方向,从而实现纳米颗粒的有序自组装。

2. 疏水性和亲水性的调控纳米颗粒的疏水性和亲水性也是影响自组装行为的重要因素。

疏水性的纳米颗粒在水中会聚集形成团簇,而亲水性的纳米颗粒则会分散在水中。

通过表面修饰或添加适当的表面活性剂,可以调控纳米颗粒的疏水性和亲水性,进而控制其自组装行为。

二、纳米颗粒的结构控制纳米颗粒的结构控制是指通过合理的方法和手段,精确地调控纳米颗粒的形貌、大小、组合方式等结构特征。

纳米颗粒的结构特征直接影响其物理、化学和生物性能,因此结构控制对于实现纳米颗粒的定向组装和功能化具有重要意义。

1. 模板法模板法是一种常用的纳米颗粒结构控制方法。

通过合成具有特定形状和尺寸的模板,将模板与所需材料反应,可以在模板内部或表面沉积纳米颗粒,从而实现对纳米颗粒形貌和大小的控制。

常见的模板包括胶体颗粒、纳米线、纳米孔等。

2. 电化学沉积法电化学沉积法是一种利用电化学反应控制纳米颗粒结构的方法。

通过调节电极电位和电解液成分,可以控制电化学沉积过程中的离子迁移速率和沉积速率,从而实现对纳米颗粒形貌和大小的控制。

纳米材料的自组装综述

纳米材料的自组装综述

纳米材料的自组装综述纳米材料的自组装是一种具有巨大潜力的新兴领域,通过利用分子间的相互作用和动力学行为来自组装出具有特殊结构和性质的纳米材料。

自组装方法不仅能够制备出高度有序的纳米结构,还能够在纳米尺度上控制物质的形貌、结构和性能,因此被广泛应用于纳米科学、纳米技术和材料科学等领域。

自发性自组装是指纳米材料在适当条件下,由于分子间的相互作用和动力学行为,自行组装形成特定的纳米结构。

自发性自组装方法包括溶液中的自组装、蒸发结晶法、自组装膜的自发生成等。

其中,溶液中的自组装是一种常见的方法,通过溶液中的分子之间的静电相互作用、范德华力、水合作用等力来实现自组装。

在适当的溶剂和浓度条件下,纳米材料可以通过纳米粒子的互相吸引和排斥形成特定结构。

蒸发结晶法是一种将溶液中的纳米材料通过蒸发水分使其自行形成纳米结构的方法。

自组装膜的自发生成是指将自组装分子散布在固体基底上,通过控制其组装行为,使其在固体基底上形成自组装膜。

外界控制下的自组装是指通过外界参数的调控来实现纳米材料的自组装。

外界控制下的自组装方法包括利用电场、磁场、光场、温度等外界参数的调控来实现纳米材料的组装行为。

例如,电场可以通过调控分子之间的电荷来实现纳米材料的组装行为;磁场可以通过控制磁性纳米材料的相互作用来实现纳米材料的组装行为;光场可以通过控制光的强度、波长和方向来实现纳米材料的组装行为;温度可以通过调控纳米材料的热运动来实现纳米材料的组装行为。

纳米材料的自组装不仅能够制备出具有特殊结构和性能的纳米材料,还能够为纳米技术和材料科学的发展提供新的方法和途径。

自组装方法可以实现纳米材料的可控制备和自组装膜的可控形成,为纳米技术的实现和材料科学的发展提供了重要的基础。

此外,纳米材料的自组装还具有很多独特的优势,例如可以在大面积上实现纳米尺度的组装、可以制备出高度有序的纳米结构、可以通过改变组装条件来调控纳米材料的性能等。

总之,纳米材料的自组装是一种具有巨大潜力的新兴领域,通过自发性自组装和外界控制下的自组装方法,可以实现纳米材料的有序组装和控制形貌、结构和性能。

纳米自组装技术的原理及特点

纳米自组装技术的原理及特点

纳米自组装技术的原理及特点你想了解纳米自组装技术的原理和特点,对吧?那我们就从头说起,看看这项技术到底是怎么回事,为什么那么牛逼。

1. 纳米自组装技术概述1.1 什么是纳米自组装?纳米自组装技术,说白了,就是让小小的纳米级别的材料在特定条件下“自动”地组成各种复杂结构。

就像拼图一样,材料自己找准位置,组合成我们想要的模样。

这种技术真的很神奇,完全不用人动手,就能自己组装出各种精巧的结构,像微型机器、药物输送系统、甚至是电子器件。

1.2 纳米自组装的应用这项技术的应用范围广泛,几乎涵盖了科技、医学、材料等多个领域。

比如说,在医学上,我们可以用它来设计靶向药物输送系统,让药物能精准地到达病灶部位,提高治疗效果。

而在材料科学中,纳米自组装技术可以用来制造超级轻又超级强的材料,简直就像是为未来量身定制的魔法道具。

2. 纳米自组装的原理2.1 自组装的基础原理自组装的原理其实很简单,就是利用材料本身的物理化学性质,让它们在一定条件下自动组合。

就好像你把很多积木放在一起,随着时间的推移,这些积木会自动拼成你预期的样子。

这里面主要靠的是分子之间的相互作用力,比如静电力、范德华力等。

它们就像是一对对无形的“手”,把不同的纳米颗粒拉到一起,组成复杂的结构。

2.2 自组装的关键技术自组装技术中有几个关键点是我们需要了解的。

首先是材料的选择,选择合适的材料可以决定最终的结构效果。

其次,环境的控制也很重要,比如温度、溶液的pH值等,这些都可能影响自组装的结果。

最后,就是如何控制组装的精度和稳定性,这就需要我们在实验中不断调整和优化,直到达到理想效果。

3. 纳米自组装的特点3.1 高效和经济纳米自组装的一个重要特点就是高效。

传统的制造方法往往需要复杂的工艺和设备,而自组装技术则可以大大简化这些过程,节省时间和成本。

这就好比你用拼图玩具组装一个模型,比起动手打造一个复杂的模型省事多了。

3.2 可控性和灵活性自组装技术还具有很高的可控性和灵活性。

自组装技术在纳米器件领域制造前景分析

自组装技术在纳米器件领域制造前景分析

自组装技术在纳米器件领域制造前景分析随着科技的不断进步,纳米技术已经成为许多领域的热门话题,包括纳米电子、纳米光学、纳米生物学等。

而纳米器件的制造是纳米技术的核心,其中自组装技术作为一种新兴的制造方法在纳米器件领域备受关注。

本文将从自组装技术的基本原理、应用前景以及面临的挑战等方面进行分析,以期全面了解自组装技术在纳米器件制造中的潜力与局限。

自组装技术是指通过分子间相互作用力驱动,将原子、分子或颗粒等组装成有序的结构的过程。

与传统的制造方法相比,自组装技术具有许多独特的优势。

首先,自组装技术可以实现高效、低成本的纳米器件制造。

它不需要昂贵的设备和复杂的加工工艺,仅需要利用分子间的相互作用力,就可以在纳米尺度上自发地实现器件的组装。

其次,自组装技术具有高度精准的制造能力。

由于原子、分子和颗粒在自组装过程中具有自发的有序性,可以实现纳米器件的高精度制造,提高器件的性能和稳定性。

此外,自组装技术还具有可扩展性和灵活性,能够适应不同形状、尺寸和性能要求的纳米器件制造。

在纳米器件领域,自组装技术已经取得了一些显著的成果,并展示了广阔的应用前景。

其中之一就是纳米电子器件的制造。

利用自组装技术,可以在导电材料和绝缘材料之间形成纳米级别的通道,制造出高性能的纳米晶体管和存储器件。

另外,自组装技术还可以用于纳米光学器件的制造。

通过控制光子晶体的自组装结构,可以实现光的纳米传输和调控,从而开辟出新型的纳米光学器件。

此外,在纳米生物学领域,自组装技术还可以应用于药物传输系统的制造,通过自组装纳米颗粒载体,精确控制药物的释放和靶向传输。

尽管自组装技术在纳米器件制造中具有广阔的应用前景,但仍面临着一些挑战。

首先,自组装过程的可控性仍然需要改进。

由于分子间的相互作用力很复杂,难以精确地控制自组装过程的动力学和结构演化,这限制了器件的精度和可靠性。

其次,自组装技术的可扩展性有待提高。

目前,自组装技术主要适应于小规模的器件制造,难以满足大规模、高效率的工业化制造需求。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

最典型的代表是在金或银纳米粒子的表面用硫醇进行单分子层的修饰,通过硫醇 分子间氢键来诱导自组装。 例子:以四齿硫醚小分子化合物修饰的金纳米粒子自组装为球状聚集体
例子:基于π-π相互作用而自组装形成的磁性Fe3O4 纳 米粒子
Fig.2 (a) TEM image of self-assembled microspheres prepared by dropping the as-prepared TTP-COOH-coated Fe3O4 solution (b) Structure model proposed for the self-assembly process of individual nanoparticles to form microspheres(微球 ) through π-πinteractions

1.1、单分子层薄膜修饰的无机纳米粒子的自 组装


如,单分子层保护的纳米粒子在一定条件可以 在基体上通过体系溶剂的挥发或者在水/空气界 面通过Langmuir-Blodgett技术自组装形成高度有 序的二维/三维超晶格 最典型的代表是在金或银纳米粒子的表面用硫 醇进行单分子层的修饰,通过硫醇分子间氢键 来诱导自组装。
自组装特点

不管是何种自组装,都有一些共同的特点,或者 可称为自组装原理。 首先,自组装必须有组分。组分可以是一群分 子或者是彼此相互作用的超快分子(同异),自组 装反映了每个组分中的信息码,比如形状、表面 特性、电荷极性、磁矩和质量等称为设计的关键


其次,自组装分子中必须有相互作用力 组分必须能相互移动,产生质量迁移(溶液热 运动促进接触) 自组装的环境(液相、表面、模板) 自组装的可逆性或可调性
3
自组装的概念
所谓自组装是指分子及纳米
颗粒等结构在平衡条件下,通 过非共价键作用自发地缔结成 热力学上稳定的,结构上确定 的,性能上特殊的聚集体的过 程。
ห้องสมุดไป่ตู้
5

原子与原子通过共价键连结起来形成分子,属 于传统的分子化学,而不在自组装所界定的范 畴之内。自组装归属于分子间非共价键弱作用 的超分子化学,有机分子及其他单元在一定条 件下自发地通过非共价键缔结成为具有确定结 构的点,线,单分子层,多层膜,块,囊泡, 胶束,微管小棒等各种形态的功能体系的物理 化学过程都是自组装。
Fig. Schematic illustrations for the TTE-mediated assembling of TOAAunm particles into a spherical assembly,and the Thiol-initiated disassembling process

静态自组装 (种类)

所谓静态自组装是指系统处于局部或者整体平衡 而不消耗能量的自组装 。在静态自组装中,有 序结构的形成可能需要能量,比如通过搅拌,但 是一旦形成后,就稳定了 。绝大多数的自组装 属于此类静态形式
动态自组装

动态自组装是指组分在通过相互作用组装而成 为结构或花样是必定消耗能量的自组装。下图 列出了动态自组装的一些例子。图中A是荧光标 示细胞骨架和细胞核的一个细胞的光学照片, 红色的是直径约为24nm的微管;B是3.5英寸的 Peter盘(即皮氏培养基皿,Peter是德国微生物 学家)中形成的反应扩散波



● 第三层次的结构描述超分子如何通过相 互作用而形成较 高有序的聚合体或者结晶材料,这方面虽然没有设计和预测材 料结构有了很有意义的进展,但仍在发展之中。 ●最后一个层次的结构是描述自组装材料如何自发地合并 而成为器件或器件集合体,可能包括了通过自组装内连接而成 为宏观物质。这个层次的结构发展很不够,特别是纳米材料方 面的研究还相当缺乏。
6

自组装是自然界普遍存在的现象,DNA 的合成, RNA的转录,调控及蛋白质的合成与折叠这样的 生物化学过程都是自组装所形成的产物
DNA复制
分类
通过自组装得到纳米功能材料可以分 为以下四个层次来考虑: ● 初级结构是分子结构,通过有机化 学的一些原理可以精确控制。 ● 第二层次的结构是超分子结构,这 方面运用已经熟知的原理也有较充分 的了解。
例子:二元纳米粒子自组装为超晶格结构
TEM image of the characteristic projections of the binary superlattices, selfassembled from different nanoparticles,and modeled unit cells of the
自组装制备各种纳米材料

自组装可以制备各种纳米晶,纳米丝和杆、单层和多层 膜、纳米管、各种3D形状的纳米结构、超分子聚集体以 及生物材料等。组分可以是金属、合金、氧化物、半导 体、各种极性分子以及超分子。下面就一些主要的组分 自组装成纳米材料加以讨论。
表面活性剂和亲水性分子

两性分子,像共聚物、蛋白质这样的表面活性剂,在很多自组装现象中有重 要作用。这些两性分子的性质是由独特的分子内作用决定的:尾部基团的疏 水作用、头部基团的亲水作用或静电作用。生活中如清洁剂、肥皂、泡沫剂 等。 表面活性剂也称作表面活性试剂,至少头部有一个 亲水基团,尾部有一个疏 水性分子。在低浓度下,这些分子能够吸附在表面或界面上来大大降低表面 能。它分阳极、阴极、两性、中性。
1.2、大分子修饰的无机纳米粒子的自组装


在一个小的外场刺激下,高分子体系会产生相 对大的响应。因此设计和选择适当的有机高分 子可以很好的导向无机纳米粒子,从而实现结 构可控的自组装。 美国Russell研究小组设计了一些列具有氢键识别 功能的大分子,实现了纳米粒子在两种不相容 液体界面的自组装。在流体的界面,纳米粒子 会快速运动,并很快达到组装的平衡态。
纳米自组装
纲要
2
此模板的格式设置为 16:9 宽屏纵横比。利 用配备有宽屏显示器的 便携式计算机、电视和 投影仪时,这是一个很 好的选择。
即使没有宽屏显示器,您 也可以创建和呈现 16:9 幻 灯片。PowerPoint 的幻灯 片放映总是会调整您的幻 灯片大小以使其适合任意 屏幕。
什么是纳米自组装?
相关文档
最新文档