纳米颗粒自组装技术
纳米材料自组装技术

纳米材料自组装技术纳米材料自组装技术是指利用纳米颗粒和分子之间的相互作用力,在特定外界条件下实现纳米材料自组装、自排列的一种技术。
在纳米领域中,纳米材料自组装技术具有许多优势,如可控性强、成本低、工艺简单等,因此在纳米技术研究和应用中得到广泛关注。
纳米材料自组装技术的基本原理是通过调节纳米颗粒和分子之间的相互作用力,使其按照设计的结构和排列方式进行自组装。
这种相互作用力可以是静电力、范德华力、磁性力、亲疏水力等。
在纳米颗粒之间的相互作用力中,范德华力是最常用的一种,通过调节范德华力的大小和方向,可以控制纳米颗粒的组装方式和排列方式。
纳米材料自组装技术有多种方法,其中较常见的方法包括溶液中的自组装、表面吸附的自组装和气-液界面的自组装等。
在溶液中的自组装中,纳米颗粒通过溶剂的挥发、溶液的浓缩等方式进行组装,形成二维或三维结构。
表面吸附的自组装是将纳米颗粒吸附到固体表面上,通过控制吸附位置和相互作用力,实现纳米颗粒的有序排列。
气-液界面的自组装是将纳米颗粒悬浮在液体中,然后通过气体的吹扫或挥发,使纳米颗粒在液体表面上组装成膜或排列成有序结构。
纳米材料自组装技术的应用范围非常广泛。
在材料科学中,可以利用纳米材料自组装技术制备具有特定结构和性能的材料,如纳米线阵列、纳米薄膜、纳米孔等。
这些材料具有许多独特的性能,如光学性能、电学性能、磁学性能等,有广泛的应用潜力。
此外,纳米材料自组装技术还可用于制备纳米器件、生物传感器、纳米催化剂等领域。
在生物医学中,纳米材料自组装技术可以用于制备纳米药物载体、纳米图案和纳米结构等,用于癌症治疗、疾病诊断和生物传感等应用。
纳米材料自组装技术的发展还面临一些挑战和难题。
首先,纳米颗粒之间的相互作用力非常微弱,容易受到外界环境的影响,导致组装结果不稳定。
其次,纳米颗粒的组装工艺复杂,需要精确控制多个参数,如温度、浓度、pH值等。
此外,纳米材料自组装技术在大规模制备和商业化应用方面还存在一些问题,如成本高、工艺不稳定等。
纳米颗粒的自组装技术及其应用研究

纳米颗粒的自组装技术及其应用研究纳米颗粒是指具有尺寸在1至100纳米的微小颗粒,由于其具有特殊的物理、化学和生物学性质,广泛应用于生物医学、能源、环境、材料等领域。
其中,自组装技术是一种重要的制备纳米颗粒的方法,它通过物理或化学手段,将纳米颗粒自发地组装成复杂的结构,从而实现对纳米材料的精细控制。
本文将介绍自组装技术的基本原理和应用研究进展。
一、自组装技术的基本原理及分类自组装技术是一种靠自然力量实现物质有序组装的方法,其基本原理是利用分子间的相互作用,使颗粒自发地组成具有稳定形态的结构。
根据自组装形成的物质结构,可以将其分为两类:一类是线性组装,即颗粒自发地沿着一定的方向排列成直线或链状结构;另一类是二维或三维组装,即颗粒自发地组成平面或立体结构。
其中,二维或三维组装是纳米颗粒自组装技术的核心研究方向,因其具有更多的应用前景。
二、纳米颗粒自组装技术的应用研究进展近年来,纳米颗粒自组装技术在各个领域都有着广泛的应用。
以下将分别从生物医学、能源、环境、材料等方面介绍其应用研究进展。
1. 生物医学领域纳米颗粒自组装技术在生物医学领域的应用主要包括智能控制药物释放、癌症细胞靶向检测、基因传递等方面。
例如,科学家们利用自组装技术制备出了可以迅速响应环境变化而释放药物的智能纳米粒子,可以更好地缓解患者痛苦;同时,利用自组装技术制备的靶向纳米颗粒可以将药物精确地传递到癌症细胞,发挥更好的治疗效果。
此外,自组装技术也被应用于制备具有明确目的的基因材料,从而更好地实现基因传递。
2. 能源领域纳米颗粒自组装技术在能源领域的应用主要和储能材料、太阳能电池、催化剂有关。
利用自组装技术制备的储能材料可以提高储能的效率,延长其使用寿命;而利用纳米颗粒自组装技术制备的太阳能电池可以提高电池的转换效率,具有非常广阔的应用前景。
此外,纳米颗粒自组装技术还可以制备出更为高效的催化剂,促进反应速率,开发新的清洁能源技术。
3. 环境领域纳米颗粒自组装技术在环境领域的应用主要和环境修复、环境检测等有关。
自组装纳米材料的制备和应用

自组装纳米材料的制备和应用随着科技的发展,纳米技术越来越成为研究热点,而纳米材料中的自组装纳米材料更是备受关注。
自组装纳米材料是指在一定条件下,由于自身的特殊性质而能够自我组装成结构复杂且功能独特的材料。
本篇文章将从自组装纳米材料的制备和应用方面进行讨论。
自组装纳米材料的制备常见的自组装纳米材料包括纳米颗粒、纳米结构、纳米片、纳米晶等等。
在制备过程中,常用的技术包括溶液法、界面法、化学合成等等。
以下重点介绍其中几种比较常见的制备方法:1. 溶液法溶液法是自组装纳米材料制备的常见方式。
通过选择适当的溶剂,对称等离子体、微乳液等等,可以实现自组装纳米材料的制备。
以适当的溶剂混合物为例,当混合物制备达到所需的浓度和温度时,过饱和度会达到一定的程度,此时就可以开始自组装纳米材料。
2. 界面法界面法是指利用两种相互不溶的液体界面上的物理、化学作用来制备自组装纳米材料的方法。
其中,正交自组装技术阻止了电子进入,因此界面法可以制备大约1到100 nm的自组装金属纳米材料。
3. 化学合成法化学合成法是指利用化学反应进行自组装纳米材料的制备。
在此过程中,通过调节反应的参数,不断地制备新的型号的自组装纳米材料。
化学合成法的优点在于可以控制所得自组装纳米材料的粒径、形态、组成等物理化学性质。
自组装纳米材料的应用自组装纳米材料由于其具有独特的电学、光学、磁学等物理特性,在化学、生物、材料科学等众多方面得到了广泛应用。
以下就举出几个例子来说明:1. 拓扑结构材料由于自组装材料具有独特的拓扑结构,因此可以用于其设计新型的拓扑结构材料。
例如,在某些条件下,通过二维反硅高分子薄膜自组装可以实现均一、可控的孔径,从而为电荷和超分子合成等方面的应用提供了很好的基础。
2. 生物传感器在生物领域中,自组装纳米材料可以用于制备生物传感器,从而能够实现高分辨率的生物检测。
例如,自组装纳米材料可以用于改进磁性共振成像(MRI)的高灵敏度探测器,有助于生物学和医学等领域的实用和应用。
材料工程中各类纳米材料自组装技术原理及其优势

材料工程中各类纳米材料自组装技术原理及其优势自组装技术是材料工程领域中一种重要的制备方法,它利用材料本身的物理化学性质,将分散的纳米颗粒按照一定的规则有序地排列和组装起来,形成有序的结构和功能。
在材料工程中,各类纳米材料自组装技术被广泛应用于制备高性能材料、纳米器件、纳米传感器等领域。
本文将依次介绍各类纳米材料自组装技术的原理及其优势。
首先,介绍一维纳米线自组装技术。
一维纳米线是具有高比表面积和优异电子、光学性能的纳米材料。
利用表面张力等力学效应,可以将一维纳米线有序地组装成各种特定结构。
一维纳米线自组装技术的原理是通过控制纳米线之间的相互作用力,使其在特定的溶剂中有序排布。
通过调整溶剂的溶剂效应和表面功能化等手段,可以进一步控制纳米线的组装方式和结构。
一维纳米线自组装技术具有高效、可扩展性强、结构可调控等优势,在纳米电子器件、柔性传感器等领域有着广泛的应用前景。
其次,介绍二维纳米薄膜自组装技术。
二维纳米薄膜是具有超薄厚度、大比表面积和高载流子迁移率等特性的纳米材料。
通过利用分子间的范德华力和静电作用力等相互作用力,可以将二维纳米材料有序地自组装成纳米薄膜。
二维纳米薄膜自组装技术的原理是通过将纳米材料悬浮在溶液中,利用自身的能量最小化原则,使纳米材料有序地排列在基底上。
通过调控溶液的pH值、离子浓度、温度等参数,可以控制纳米薄膜的厚度、晶格结构和电子输运性能。
二维纳米薄膜自组装技术具有制备简单、制备速度快、结构可调控等优势,被广泛应用于柔性显示器、光电器件等领域。
然后,介绍三维纳米结构自组装技术。
三维纳米结构是由纳米材料构成的具有复杂形状和特殊功能的结构。
通过利用纳米材料的自组装性质,可以将纳米颗粒按照一定的规则有序地组装成三维结构。
三维纳米结构自组装技术的原理是通过控制纳米颗粒之间的相互作用力,使其在特定的条件下进行自组装。
通过调控溶剂的溶剂效应、表面功能化和外界场等手段,可以控制纳米颗粒的位置、排列和连接方式。
纳米颗粒自组装技术方案

Langmuir, 2007, 23, 5757-5760.
无模板法
NPs的无模板定向自组 装(Template-free DLS): 通常采用刺激响应型分 子作为NPs的保护剂, 在受到环境刺激(如pH 、温度、光照、离子强 度等)时,修饰分子会作 出响应,带动NPs自组 装成相应的结构。
Fig 2. Schematic representation of template-free assemblies based on different stimuli-responsive
different aspect ratios.
Langmuir, 2008, 24:5233-5237.
然而在液相中,金属NPs的相互作用较弱且形式单一,难以定向自组装。所
以通常采用修饰法或施加外场,增强对金属NPs的定向调控能力。
分离是强化定向迁移和减小非定向扩散的过程
Table 1. Interactions potentials
of a region within the drop contact line, taken, for suspensions of spheres (a), ellipsoids (b), and
ellipsoids mixed with surfactant (SDS; 0.2 wt%) (c). Spheres pack closely at the contact line. Confocal
Adv. Funct. Mater., 2009, 19, 3271–3278.
其它物理组装法
• 自然沉降法:适用于300~550nm之间的纳米颗粒,不至于太轻太重。简单但不 可控,有序度不高;
• 旋涂法:利用离心力替代重力。离心力过大易出现裂痕,离心力太小容易多 层堆叠;
自组装技术在纳米材料合成中的应用

自组装技术在纳米材料合成中的应用随着科学技术的不断发展,人们对于更加精细化、高科技化的材料需求也日益增加。
在这一过程中,纳米技术逐渐成为了一种大势所趋。
纳米技术是一种能够控制物质结构在尺寸和性能等方面具有极高精度的技术,能够将材料的部分属性进行微观调整,从而制备出高性能、高可靠性、高抗冲击性、高热稳定性等各种材料。
而自组装技术则是纳米材料合成中的重要技术手段之一,可以使得不同类型、不同形态的纳米材料进行高效且精准的组装,最终实现了新材料的合成。
本文将重点探讨自组装技术在纳米材料合成中的应用。
一、自组装技术的基本原理自组装技术是指将材料的基本单元——分子、微粒子、纳米粒子、高分子等框架化功能单元在体系内自发组装为更大的结构形态的一种方法。
自组装技术能够将纳米材料进行精准合成,精益求精,通常是通过“两步法”来实现。
首先是选择合适的单元:在实际操作中,需要进行单元的筛选、择优等过程,选出最合适进行自组装的单元。
其次是设计合适的自组装方案:一方面,需要考虑单元从自己组装之后要达到的结构形态,另一方面,需要考虑形态组装的稳定性、可控性等影响因素。
当这些问题解决后,再对单元进行组装,即可得到所需要的新材料。
二、自组装技术的应用范围非常广泛,其中纳米材料合成是自组装技术的常见应用之一。
1、自组装技术在纳米材料的表面修饰中的应用纳米材料因其表面活性大、晶格缺陷多等特点,表面的化学修饰通常是将纳米材料应用在实际中的前提,通过化学修饰来改善纳米材料的使用性能和稳定性。
自组装技术可以将不同材料的化学单元组装成为表面修饰分子,将其固定在纳米材料表面,从而获得了一种新型的纳米修饰材料。
例如,自组装法可以修饰金属纳米粒子表面,例如原子层细分修饰,水相修饰,有机物基表面修饰等,也可以将自组装单元封装在纳米粒子中。
这些修饰材料具有良好的生物相容性、可溶性、可稳定性等特点,能够在纳米分析、纳米制药等多方面产生巨大的应用价值。
2、自组装技术在纳米材料的制备中的应用纳米材料在结构、形态、物理性质等方面都具有特殊的性质,利用自组装技术进行修饰和改变,能够得到新的性能更好的纳米材料。
纳米粒子自组装机制解析及其模拟算法

纳米粒子自组装机制解析及其模拟算法纳米技术是一门涉及到物质在纳米尺度上的控制与调控的技术,近年来备受瞩目。
纳米材料的合成、组装和应用是纳米技术的三个主要方面。
其中,纳米粒子的自组装技术在纳米材料应用中具有重要意义。
本文将深入解析纳米粒子的自组装机制,介绍相关模拟算法。
一、纳米粒子的自组装机制自组装是指由简单的构建单元组成的物质在不需外界干预的情况下,在一定条件下自发地形成有序的结构或功能性组装体。
纳米粒子的自组装具有以下几个主要机制:1. 亲疏水性自组装纳米粒子具有不同的亲疏水性,通过调控粒子表面的亲疏水性,可以实现粒子之间的组装。
亲水性粒子在水溶液中会集聚形成有序结构,而疏水性粒子则会自发聚集形成疏水性区域。
通过不同亲疏水性的粒子的组装可以构建出多种形态的结构,如核壳结构、多层结构等。
2. 电荷相互作用自组装带有正电荷和负电荷的纳米粒子之间存在静电相互作用,这种作用可以驱使纳米粒子之间相互组装。
正电荷与负电荷之间的相互吸引使得纳米粒子形成排列有序的结构。
3. 磁性自组装拥有磁性的纳米粒子可以被外加磁场引导,从而实现纳米粒子的自组装。
通过调节外加磁场的方向和强度,可以控制纳米粒子的排列方式和结构形态。
以上仅是纳米粒子自组装的一些基本机制,实际中还有许多其他的机制和因素可以影响纳米粒子的自组装过程。
通过深入研究这些机制,我们可以更好地控制纳米粒子的自组装过程,实现所需的结构和功能。
二、纳米粒子自组装的模拟算法为了更好地理解纳米粒子自组装的过程和性质,研究者们开发了一系列模拟算法。
这些算法通过数值模拟的方式,模拟纳米粒子的运动和相互作用,从而预测纳米粒子的自组装行为。
1. 分子动力学模拟分子动力学模拟是一种常用的模拟纳米粒子自组装的方法。
该方法通过建立纳米粒子间相互作用的势能函数,根据牛顿第二定律,模拟纳米粒子的运动轨迹。
通过大量的模拟实验,可以分析纳米粒子的组装过程和生成的结构形态。
2. 蒙特卡洛模拟蒙特卡洛模拟是一种基于随机采样的模拟方法。
纳米颗粒的自组装和结构控制

纳米颗粒的自组装和结构控制纳米颗粒是一种尺寸在纳米级别的微小物质,具有独特的物理和化学性质。
在纳米科技领域,纳米颗粒的自组装和结构控制是一个重要的研究方向。
通过自组装和结构控制,可以精确地调控纳米颗粒的形貌、大小、组合方式等特征,进而实现对其性能的调控和优化。
一、纳米颗粒的自组装纳米颗粒的自组装是指在一定条件下,纳米颗粒之间通过相互作用力的作用,自发地组装成特定的结构。
这种自组装现象在自然界中广泛存在,如蛋白质的折叠和DNA的双螺旋结构都是通过自组装形成的。
而在人工合成的纳米颗粒系统中,也可以通过控制各种相互作用力来实现自组装。
1. 范德华力的作用范德华力是纳米颗粒自组装中最常见的相互作用力之一。
范德华力是由于分子或原子之间的电荷分布不均匀而产生的吸引力或排斥力。
当纳米颗粒表面带有电荷时,范德华力会使颗粒之间相互吸引,从而促进自组装。
通过调节纳米颗粒表面的电荷性质和密度,可以控制范德华力的大小和方向,从而实现纳米颗粒的有序自组装。
2. 疏水性和亲水性的调控纳米颗粒的疏水性和亲水性也是影响自组装行为的重要因素。
疏水性的纳米颗粒在水中会聚集形成团簇,而亲水性的纳米颗粒则会分散在水中。
通过表面修饰或添加适当的表面活性剂,可以调控纳米颗粒的疏水性和亲水性,进而控制其自组装行为。
二、纳米颗粒的结构控制纳米颗粒的结构控制是指通过合理的方法和手段,精确地调控纳米颗粒的形貌、大小、组合方式等结构特征。
纳米颗粒的结构特征直接影响其物理、化学和生物性能,因此结构控制对于实现纳米颗粒的定向组装和功能化具有重要意义。
1. 模板法模板法是一种常用的纳米颗粒结构控制方法。
通过合成具有特定形状和尺寸的模板,将模板与所需材料反应,可以在模板内部或表面沉积纳米颗粒,从而实现对纳米颗粒形貌和大小的控制。
常见的模板包括胶体颗粒、纳米线、纳米孔等。
2. 电化学沉积法电化学沉积法是一种利用电化学反应控制纳米颗粒结构的方法。
通过调节电极电位和电解液成分,可以控制电化学沉积过程中的离子迁移速率和沉积速率,从而实现对纳米颗粒形貌和大小的控制。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
CONTENTS
01
纳米颗粒自组装基础知识
02
纳米颗粒自组装方法
03
文献报告
01
纳米颗粒自组装基础知识
自组装的概念
分子及纳米颗粒(nanoparticles, NPs)等结构单元在平衡条件下.通过非共价键作 用自发地缔结成热力学上稳定的、结构上确定的、性能上特殊的聚集体的过程。 自组装过程的特点是:一旦开始,将自动进行到某个预期终点,期间不需要外 力的干预。 自组装的本质是物理过程,归属于基于分子间弱相互作用(<100 kJ/mol)的超分 子化学范畴。
•
• •
电荷转移相互作用:Lewis酸碱之间的配位作用,遵循软硬酸碱理论;
非键电子排斥作用(1/r9-1/r12):强的非键电子对之间的排斥力; π-π堆叠作用:常常发生在芳香环之间的弱相互作用,通常存在于相对富电子和缺电子的两个 分子之间。
金属纳米颗粒
多用液相法制备单分散的金属NPs
Fig 1. Representative TEM images of Au nanoparticles of different shapes and sizes. (A) Nanospheres. (B) Nanocubes. (C) Nanobranches. (D, E, F) Nanorods of different aspect ratios. (G) Nanobipyramids of
无模板法
NPs的无模板定向自组
装(Template-free DLS):
通常采用刺激响应型分 子作为NPs的保护剂, 在受到环境刺激(如pH 、温度、光照、离子强 度等)时,修饰分子会作 出响应,带动NPs自组 装成相应的结构。
Fig 2. Schematic representation of template-free assemblies based on different stimuli-responsive mechanisms
ACS Nano, 2010, 4, 3591-3605.
外场定向法
NPs的外场定向自组装(Externally DLS):利用外场(如电场、磁场、流体场、表 面张力场等)控制单分散的NPs在液相中定向移动和排列,形成周期性排列的组装 体。
Fig 3. Externally directed selfassemblies. (a), the growth of microwires from gold NPs, assembly of micrometer diameter colloidal particles into hexagonally close-packed array in AC electric field, assembly of metallo-dielectric janus particles, and ellipsoidal particles. (b), flow-field induced self-assembly.
模板法 原理
NPs的位点,从而诱导NPs可控 形成与模板结构相关的组装体
无模板法
外场定向法
利用外场控制单分散的NPs
模板含有许多能选择性结合目标 刺激响应型分子作为NPs的保
护剂,在环境刺激下作出响应, 在液相中定向移动和排列, 带动NPs自组装成相应的结构 形成周期性排列的组装体
硬模板法:组装体形貌固定,过
Nature, 2011, 476, 308-311.
外场定向法
Adv. Mater., 2009, 21, 1936–1940.
Fig 5. Two recent examples where the assembly of anisotropic particles was directed through the combination of fields and flows. Such ordered structures have novel photonic and mechanical properties.
模板法
硬模板:通常为具有微纳米孔道结构的刚性材料的表面,如碳纳米管、阳极氧 化铝薄膜、聚苯乙烯微球等。
J. Mater. Chem, 2006, 16:22-25.
J. Phys. Chem. B, 2003, 107, 7426-7433.
Langmuir, 2007, 23, 5757-5760.
• • • •
疏水相互作用 巯基电荷转移 链强度大 带一个正电荷
AuΦ3 peptide sequence:TLLVIRGLPGAC
浓度比调控可逆自组装
Figure 6. UV−vis absorption spectra of peptide functionalized gold nanoparticles, in the beginning the sample was with high peptide loading (R = 5000) then was driven to very low peptide loading (R =80) and then again to the starting state (R =
5000).
缩氨酸浓度对AuNPs的带电量的影响
Points:
Au NPs通常带负电(柠檬酸根 作保护剂),而AuΦ3 缩氨酸带
正电(精氨酸);
AuΦ3 缩氨酸与Au NPs的吸附 曲线符合Langmuir 单层吸附等 温线方程。
Figure 7. ζ-Potential measurments of gold nanoparticles upon the addition of Au Φ3 peptide.
特殊结构
特殊性质
特殊功能
分子间作用力种类
• • • • 荷电基团静电作用(1/r):带电基团之间的相互作用力; 离子-偶极子作用(1/r2) 离子-诱导偶极子作用(1/r4) 范德华力:偶极子-偶极子作用(取向力)(1/r6) 偶极子-诱导偶极子作用(诱导力) (1/r6) 诱导偶极子-诱导偶极子(色散力)(1/r6) • • 氢键:氢原子同时与两个电负性大但半径小的的原子 (如O, F, N)相结合的作用力; 疏水基团相互作用:带电基团或极性基团彼此间的相互作用较强,再加上氢键的形成使它们 倾向于聚集在一起,而将非带电基团或非极性基团排挤在外。
different aspect ratios.
Langmuir, 2008, 24:5233-5237.
然而在液相中,金属NPs的相互作用较弱且形式单一,难以定向自组装。所 以通常采用修饰法或施加外场,增强对金属NPs的定向调控能力。 分离是强化定向迁移和减小非定向扩散的过程
Table 1. Interactions potentials
,关键工艺控制参数是基板和溶液的相对运动速度;
• 气液界面组装法(L-B膜, Langmuir-Blodgett membrane):利用悬浮在液面上的 单层胶体颗粒间的相互作用力及液体表面张力形成的胶粒单分子层,胶体颗
粒的用量很关键;
• · · · · · ·
Table 2. Comparison of three DLS methods
ACS Nano, 2010, 4, 3591-3605.
外场定向法
咖啡环效应 (coffee ring effect) :微粒悬浮液底在固
体表面蒸发过程中, 由于液滴边缘蒸发速 率快,诱导产生的毛
细补偿流推动微粒聚
集到液滴边缘的现象 。 Fig 4. High-magnification images of particles near the drop contact line. a–c, Top, microscope images of a region within the drop contact line, taken, for suspensions of spheres (a), ellipsoids (b), and ellipsoids mixed with surfactant (SDS; 0.2 wt%) (c). Spheres pack closely at the contact line. Confocal projections of suspensions of ellipsoids (d) and spheres (e).
loading calculated with fluorescence spectroscopy (down).
应用
SERS原位检测
生物分子分离
Figure 9. SERS spectra of adenine using AuΦ3 peptide for the gold nanoparticles aggregation−activation (top) and ELISA tests confirming the separation efficiency of the streptavidin from AuΦ3 -biotinylated gold nanoparticles (bottom).
Small, 2009, 5, No. 14, 1600–1630.
02
纳米颗粒自组装方法
模板法
纳米颗粒 自组装
无模板法
外场定向法
模板法
模板(Template):含有许多能选择性结合目标NPs的位点,从而诱导NPs可控形 成与模板结构相关的组装体的一维、二维或三维的基底(通常比NPs的尺寸大)。 软模板:通常为两亲性分子形成的有序聚集体,主要包括胶束、反相微乳液、液 晶等。
优点
程易于控制; 软模板法:易形成周期性结构, 定向能力强; 硬模板法:组装体机械性能差;
可控性强,且往往自组装过程 可逆