核辐射在育种方面的应用

合集下载

植物辐射诱变育种原理

植物辐射诱变育种原理

植物辐射诱变育种原理
植物辐射诱变育种原理是利用辐射能对植物基因进行诱变,通过筛选和选择获得新的品种。

辐射能可以通过人工辐射、放射性物质以及自然辐射等方式进行引入。

在植物体内,辐射能可以引发DNA分子的断裂和重组,导致基因突变,从而形成新的遗传差异。

辐射诱变育种的优点是可以创造出新的、有利于生产的植物品种。

通过辐射诱变,可以获得许多新的性状,如早熟、耐旱、耐病、高产等,从而提高了植物的适应性和产量。

同时,辐射诱变育种可以避免遗传改良过程中可能出现的后代不稳定性和环境污染问题,降低了成本和风险。

但是,辐射诱变育种也存在着一定的风险和局限性。

一方面,辐射能的引入可能会导致基因组的大片段删除和插入等不可控的基因
突变,从而影响植物的生长和发育。

另一方面,辐射诱变也会引入一些有害基因,如致癌基因等,从而给人类健康造成潜在威胁。

综上所述,植物辐射诱变育种是一种重要的遗传改良方法。

但是,在进行辐射诱变的过程中需要注意安全问题,避免对环境和人类健康造成潜在的危害。

- 1 -。

核技术在农业领域的应用

核技术在农业领域的应用

核技术在农业领域的应用
核技术在农业领域的应用
一、什么是核技术
核技术是指运用放射性元素和核反应堆,利用原子能来解决社会经济和科学研究问题的一种复杂的技术,其主要应用是放射治疗和放射诊断、放射性核素调查分析、核聚变能等领域。

二、核技术在农业领域的应用
1、土壤分析:利用示踪剂技术,可以快速、准确地确定土壤的养分和植物生长状况,从而指导农作物施肥,改善土壤质量。

2、放射性核素调查分析:可以利用放射性核素测量和分析技术,充分发挥核技术在农业中的作用,可用来检测各种农作物营养元素的含量,从而指导农田施肥,提高作物产量。

3、核技术在生物改造方面的应用:核技术可以用来改造农作物,提高作物抗逆性,增加农作物产量,改善作物品质,减少农业生产投入和改善农民生活水平。

三、核技术在农业领域的优势
1、核技术可以提高农作物的品质,增加农作物产量,减少农业生产投入,从而提高农民的收入和改善民众的生活水平。

2、核技术的使用能够提高农业的生产效率,减少农业生产的投入,从而节约社会资源,降低农业生产成本,提高农作物品质,提高农民收入。

3、核技术的应用能够改善土壤质量,减少水土污染,改善环境
质量,保护生物多样性,改善农田环境,提高资源利用率,实现可持续农业发展。

四、结论
核技术在农业领域的应用具有许多优势,可以提高农作物的品质、增加农作物产量,改善土壤质量,减少水土污染,改善环境质量,保护生物多样性,改善农田环境,提高资源利用率,实现可持续农业发展。

核辐射在育种方面的应用

核辐射在育种方面的应用

辐射育种的应用学院:园艺学院姓名:朱代强李志宁学号:107331612173107331612171核辐射在农业育种方面的应用及发展辐射育种是近年来发展起来的一种新奇的种植技术。

它利用射线、x射线或者是中子、激光和离子束等照射农作物的种子、植株或某些器官和组织,促使它们产生各种变异,再从中选择需要的可遗传优良变异,从而在短时间内获得有利用价值的突变体,以供直接生产利用或者是在此基础上培育出新的种质资源的一种新兴的育种技术。

经过这样的技术种植,一个青椒重量可以达到500克,玉米能够结出7个棒,黄瓜可以长到半米高,而美丽的花卉也都神话般地发生变异,“一串红”本是一串串地开花,在这里可以满株开花,如同一座小塔。

“万寿菊”本是单层的四瓣花,这时开出的花却变成了多层的六瓣花。

“矮牵牛”也会由原本开红色的小花,培育后花朵变大,而且一株可以开出红、白、粉等多种颜色的花朵。

辐射技术在植物育种方面有重要的作用,在植物遗传改良上有独特的作用,该技术可大大提高基因突变频率,在较短的时间里,创造出育种目标所需要的种质材料,有时能诱发产生自然界稀有的、未曾出现过的或用一般方法难以获得的新类型、新性状、新基因,对已消失的基因进行人工再创造,能够在原有遗传背景不变的情况下,直接使植物体出现新的有用性状的变异,可在较短时间内使植物改良,缩短育种过程,提高作物改良效率,具有突变的“创新”优势。

辐射诱变育种技术在中国兴起虽然只有数十年的历史,但因有其自身的特点与优势,所以发展以水稻、小麦、大豆、花卉和林木等材料所做的辐照试验为依托,综述了国内外在辐射诱变育种方面所取得的成就,分析了该技术的作用机理、特点、优势、适用范围及其发展历程并对其发展方向和应用前景做出了展望。

其主旨在于提高人们对辐射诱变育种技术在农业生产中应用的价值、意义及其前景的认识,并为该技术的进一步发展和应用提供参考与借鉴,以期促进现代化农业育种的发展和应用,提高人民的生活水平与质量。

核技术在农业领域的应用

核技术在农业领域的应用

核技术在农业领域的应用引言核技术,指通过利用和研究原子核及其变化特性而应用于各个领域的技术。

在农业领域,核技术的应用已经取得了显著的成果。

本文将介绍核技术在农业领域的应用及其对农业发展的贡献。

核技术在种植业中的应用核辐照技术核辐照技术是一种利用辐射对作物进行杀虫、杀菌和贮藏保鲜的方法。

它通过照射作物或种子,使得该作物或种子的DNA发生突变,从而达到改良作物品质的目的。

核辐照技术可以提高作物的产量和品质,抑制作物疾病的发生,延长作物的保鲜期等。

核示踪技术核示踪技术是一种利用放射性同位素标记物质,通过检测标记物质在作物中的分布和迁移情况,从而研究作物的养分吸收、传输和转化过程。

核示踪技术可以帮助农民了解作物的养分需求,优化施肥方案,提高施肥效率,减少农作物对环境的污染。

核能肥料核能肥料是一种利用放射性同位素标记氮肥或磷肥,通过测定标记同位素在作物体内的分布情况,从而研究作物对肥料的吸收和利用效率。

核能肥料可以帮助农民科学施肥,提高氮肥或磷肥的利用率,减少肥料的浪费和环境污染。

核技术在畜牧业中的应用核素标记技术核素标记技术是一种利用放射性同位素标记饲料或药物,通过测定标记同位素在动物体内的分布和代谢情况,从而研究动物的饲料消化、代谢和药物利用情况。

核素标记技术可以帮助畜牧业者科学饲养动物,优化饲料配方,改善饲料利用效率,提高动物生产性能。

核医学影像技术核医学影像技术是一种利用放射性同位素标记药物,通过检测标记药物在动物体内的分布和代谢情况,从而研究动物的器官功能和疾病诊断。

核医学影像技术可以帮助兽医科学诊断动物疾病,指导治疗措施,提高兽医诊断水平。

核技术在农业环境保护中的应用核能测土仪核能测土仪是一种利用放射性同位素检测土壤中的养分含量和污染物含量的仪器。

它可以帮助农民了解土壤的养分水平,调整土壤施肥方案,减少肥料的过量施用和土壤养分的流失。

此外,核能测土仪还可以检测土壤中的重金属等有害物质,帮助农民进行农产品安全检测。

拓展资料:核技术诱变育种

拓展资料:核技术诱变育种

核技术诱变育种核技术诱变育种是近些年来高新技术应用于植物新品种改良成效显著的新途径之一。

研究和实践证明,核辐射诱变技术可大大提高基因突变频率,在较短的时间里,创造出为育种目标所需要的种质材料,有的可直接利用成为新品种,有的则间接利用,成为杂交育种、杂种优势育种的亲本材料。

以核技术为核心植物诱变遗传操作技术,在植物遗传改良上有其独特的作用。

首先,这项技术能够诱发出各种有用的突变基因,有时能诱发产生自然界稀有的或未曾有过的或用一般常规方法难以获得的新类型、新性状、新基因,特别是在现在种群资源库中极为缺乏新的基因、当前遗传资源日益枯竭的状况下,采用诱发突变的方法来对已消失的有用的基因进行人工再创造,显得尤为重要。

第二,能够在原有遗传背景基本不变的情况下,直接使植物体出现新的有用性状的变异,也就是较易诱发点突变,可在较短时间内使植物改良,从而缩短育种进程,提高作物改良效率。

第三,能够适用于杂交育种所不能适用的营养繁殖植物、无融合生殖植物。

第四,能够诱发出现染色体结构和数目上的变异,促成易位系及非速倍体的发生。

第五,与转基因技术,细胞融合技术结合,可促成原生质体非对称细胞融合,提高外源基因整合程度,提高转化效率。

所以说,植物诱变遗传操作技术是创造新种质、选育新品种的有效途径,因其具有突变的“创新”优势,是常规技术难以替代的育种新手段,是现代育种技术的有力拓展,在作物品种遗传改进上占有重要地位。

随着生物技术、分子生物学的兴起和发展,核辐射诱变技术的研究也有了拓宽和发展。

比如国际原子能机构就非常重视利用核技术与现代生物技术的结合进行植株遗传改良,近年来他们组织的20多项国际协作研究项目,大多数是核技术与远缘杂交、离体诱变、DNA分子标记辅助育种等生物技术结合,进行以高产、优质、多抗为目标的遗传改良或对主要和重要的突变基因进行鉴定、分离与克隆研究,利用离体与突变技术进行种间或属间的基因转移,利用分子生物学技术研究与绘制突变体的基因图、定位突变基因等。

辐射育种实例

辐射育种实例

辐射育种实例辐射育种是一种通过辐射处理改变植物或动物的遗传特性的育种方法。

它利用辐射能量对生物体的DNA分子进行破坏或改变,从而诱发突变。

这种方法可以加速育种过程,培育出具有新特性的植物品种或动物品种。

下面以辐射育种实例为例,介绍几种成功的辐射育种案例。

1.辐射育种在小麦育种中的应用小麦是我国主要的粮食作物之一,为了提高小麦的产量和品质,科学家们进行了大量的辐射育种研究。

其中,辐射诱变育种是一种常用的方法。

科学家们通过将小麦种子暴露在特定剂量的辐射源下,如X射线或伽马射线,使其产生突变。

然后再选择具有良好特性的变异体进行培育。

通过这种方法,科学家们培育出了多个抗病性强、产量高的小麦品种,为我国的农业生产作出了重要贡献。

2.辐射育种在花卉育种中的应用花卉是人们生活中重要的观赏植物,为了培育出更加美丽、多样化的花卉品种,辐射育种技术被广泛应用。

以玫瑰花为例,科学家们利用辐射育种技术对玫瑰花进行了突变诱导。

通过将玫瑰花的种子暴露在适当剂量的辐射源下,使其产生突变。

经过多年选择和培育,科学家们培育出了多个新品种,如花瓣颜色更加鲜艳、花朵更加丰满的玫瑰花品种。

这些新品种不仅丰富了人们的生活,也促进了花卉产业的发展。

3.辐射育种在果树育种中的应用果树是人们日常饮食中重要的水果来源,为了改良果树的品质和产量,辐射育种技术也在果树育种中得到了应用。

例如,柑橘是一种重要的柑橘类水果,为了培育出更加甜美、耐贮藏的柑橘品种,科学家们利用辐射育种技术对柑橘进行了诱变。

他们将柑橘种子暴露在适当剂量的辐射源下,诱发其产生突变。

经过多年的选择和培育,科学家们培育出了多个新品种,如果实更大、口感更好的柑橘品种。

这些新品种不仅满足了人们对水果品质的需求,也促进了柑橘产业的发展。

辐射育种技术在不同领域的育种中都得到了广泛应用并取得了良好的效果。

通过辐射育种,科学家们成功培育出了许多具有良好特性的新品种,为农业生产和观赏植物领域的发展做出了重要贡献。

原子能技术在农业领域的应用

原子能技术在农业领域的应用

原子能技术在农业领域的应用随着科技的不断发展,原子能技术在农业领域的应用日益成为研究的热点。

原子能技术利用放射性同位素和核辐射的特性,可以提供农业生产所需的多种应用。

本文将探讨原子能技术在农业领域的应用,包括辐射育种、放射性同位素示踪技术和放射性同位素探测技术。

一、辐射育种辐射育种是指利用辐射来诱变作物基因,以获得新的优良品种的育种方法。

通过辐射,可以引起作物基因发生突变,从而产生新的特性,如抗病性、耐旱性等。

原子能技术中的离子束辐照、γ射线辐照和中子辐照等方法被广泛应用于辐射育种。

辐射育种不仅缩短了育种周期,还提高了品种的稳定性和产量。

例如,中国的食用菌种植业就广泛应用辐射育种技术,成功研发出多种高产、高品质的食用菌新品种。

二、放射性同位素示踪技术放射性同位素示踪技术是利用放射性同位素的特性,追踪农作物中的营养元素的吸收、转运和分配过程。

通过加入放射性同位素到土壤或者施加于作物上,可以追踪养分的运动路径和积累情况。

例如,氮同位素示踪技术可以用来研究作物对氮肥的利用效率,帮助优化氮肥的使用。

研究表明,通过放射性同位素示踪技术,农民可以根据作物对养分的需求,合理施肥,从而提高作物的产量和质量。

三、放射性同位素探测技术放射性同位素探测技术是利用放射性同位素的特性,通过测量其在作物或土壤中的浓度来评估环境污染程度和作物生长的影响。

例如,氚同位素被广泛用于监测水稻田中的水分运动和水分利用效率。

通过测量氚同位素在土壤和作物中的浓度变化,可以评估灌溉水分流动情况和作物对水分的利用效率。

这种技术可以帮助农民科学合理地管理灌溉水,有效节约水资源,提高灌溉效率。

总结起来,原子能技术在农业领域的应用主要包括辐射育种、放射性同位素示踪技术和放射性同位素探测技术。

这些应用为农业生产提供了新的手段和工具,可以提高作物的产量和质量,改善农业生产的可持续发展。

然而,原子能技术的应用也需要注意安全风险和环境保护等问题,必须在科学管理和合理使用的前提下推动其发展和应用。

核科学在农业中的应用

核科学在农业中的应用

核科学在农业中的应用
nuclear agricultural science
• 1896 年,法国科学家贝克勒尔(Becquerel H) 发现了铀的天然放射性,揭开了原子能时代 的序幕. 随后,核辐射的生物学效应立即引起 了科学家们的关注,开始了核技术在生物学 和农业科学中的应用研究……
植物辐射诱变育种
食品的辐照储藏和保鲜
• 从1943 年美国Proctor B E 博士首次利用辐 射来处理汉堡包至今,食品辐照技术的研究 已经有半个多世纪的历史. 食品辐照就是利 用电离辐射的方法,杀死食品中的微生物与 害虫,抑制农产品的代谢过程,减少食品败坏 变质的各种因素,达到延长储藏时间和保鲜 的效果.据IAEA 统计,到1994 年全世界有27 个国家已经建立了用于食品辐照的商业化 装置.
低剂量辐照刺激生物生长
• 经过长期试验人们发现,直接或者间接的致电离辐 射以低剂量照射生物体,可以像激素一样刺激生物 生长发育,即具有“刺激效应”.核辐射刺激生物生 长研究也就是探索这种效应发生的规律,以便加以 应用.在种植业和养殖业采用低剂量核辐射处理播 种前的种子和饲养的幼苗一般都能增产10 %左右, 有很好的经济效益. 低剂量核辐射刺激生物生长是 基于激活生物体内的同工酶,促进新陈代谢,加快生 长发育达到提高抗病能力和增长的目的,所以它的 使用可以节省农药和化肥,具有很好的生态效益.
害虫辐射不育技术
• 人们用一定剂量的电离射线照射害虫的某 一个虫态,破坏它们生殖细胞的遗传物质,使 受辐照害虫与正常害虫交配后形成的合子 致死,使得害虫能够“自灭”,这就是辐射不 育防治害虫技术.最近国内,路大光等人就开 展了昆虫辐射不育技术防治光肩星天牛的 研究,祝增荣等开展了应用辐射不育技术 根治桑给巴尔采采蝇的研究
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

辐射育种的应用学院:园艺学院姓名:朱代强李志宁学号:107331612173107331612171核辐射在农业育种方面的应用及发展辐射育种是近年来发展起来的一种新奇的种植技术。

它利用射线、x射线或者是中子、激光和离子束等照射农作物的种子、植株或某些器官和组织,促使它们产生各种变异,再从中选择需要的可遗传优良变异,从而在短时间内获得有利用价值的突变体,以供直接生产利用或者是在此基础上培育出新的种质资源的一种新兴的育种技术。

经过这样的技术种植,一个青椒重量可以达到500克,玉米能够结出7个棒,黄瓜可以长到半米高,而美丽的花卉也都神话般地发生变异,“一串红”本是一串串地开花,在这里可以满株开花,如同一座小塔。

“万寿菊”本是单层的四瓣花,这时开出的花却变成了多层的六瓣花。

“矮牵牛”也会由原本开红色的小花,培育后花朵变大,而且一株可以开出红、白、粉等多种颜色的花朵。

辐射技术在植物育种方面有重要的作用,在植物遗传改良上有独特的作用,该技术可大大提高基因突变频率,在较短的时间里,创造出育种目标所需要的种质材料,有时能诱发产生自然界稀有的、未曾出现过的或用一般方法难以获得的新类型、新性状、新基因,对已消失的基因进行人工再创造,能够在原有遗传背景不变的情况下,直接使植物体出现新的有用性状的变异,可在较短时间内使植物改良,缩短育种过程,提高作物改良效率,具有突变的“创新”优势。

辐射诱变育种技术在中国兴起虽然只有数十年的历史,但因有其自身的特点与优势,所以发展以水稻、小麦、大豆、花卉和林木等材料所做的辐照试验为依托,综述了国内外在辐射诱变育种方面所取得的成就,分析了该技术的作用机理、特点、优势、适用范围及其发展历程并对其发展方向和应用前景做出了展望。

其主旨在于提高人们对辐射诱变育种技术在农业生产中应用的价值、意义及其前景的认识,并为该技术的进一步发展和应用提供参考与借鉴,以期促进现代化农业育种的发展和应用,提高人民的生活水平与质量。

诱变源的种类及特性1,紫外线:辐射源是紫外光灯,能量和穿透力低,能成功地用于处理花粉粒。

2,电磁辐射和中子:容易穿透植物组织。

3,X射线:辐射源是X光机。

X射线又称阴极射线,是一种电磁辐射,它不带电核,是一种中性射线。

4,伽马(γ)射线:辐射源是钴60(60Co)和铯137(137Cs)(放射性核素Cs-137是日本福岛第一核电站泄露出的放射性污染中的一种。

)及核反应堆。

伽马(γ)射线也是一种不带电荷的中性射线。

5,中子:辐射源为核反应堆、加速器或中子发生器。

根据中子能量大小分为超快中子、快中子、中能中子、慢中子、热中子。

6,β射线:辐射源为磷32(32P)和硫35(35S)。

β射线是一束电子流,产生与X或γ射线相似的作用。

辐射诱变育种技术的起源与发展1927年,美国的研究人员相继发现了x射线对玉米和大麦的诱变效应,并随之开始了将这种诱变应用于植物育种的试验研究;1934年,世界上运用辐射诱变技术人工培育出突变品种的第一例是用x射线的诱变效应成功地培育出了烟草突变品种。

进入20世纪50年代后,人类对核能的研究有了长足的进展,核技术也逐渐被广泛地应用到了医学、军事、工业和农业,辐射诱变育种技术也随之在植物的性状改良方面得以应用。

从60年代起,人们对辐射诱变的规律有了进一步的认识,促成了辐射育种技术的逐步成熟。

1969年,联合国农粮组织(FAO)与国际原子能机构(IAEA)出版发行了《突变育种手册》,这是辐射诱变育种技术由初期的基础研究阶段走向实际应用的标志性转折。

实际上,20世纪70年代,辐射诱变育种已经成为一种新兴的技术和有效的手段得到了迅速的发展并被广泛应用,并且其技术重点已经转向了早熟、抗病、高产、无籽变异和突变体的杂交利用。

我国辐射诱变育种的研究起始于20世纪5O年代,从70年代后期进入了快速的发展阶段。

中国农业科学院原子能利用研究所利用辐射诱变技术育成国内第一个粮饲兼用玉米新品种———中原单32号。

该品种产量高、品质好、绿杆成熟,适于青储、氨化和微生物发酵处理。

江苏里下河地区农业科学研究所选育的水稻新品种扬稻6号,是一个具有非常突出优点的优质、高产、多抗新品种,大面积的亩产水平达600公斤,高产田块达826.2公斤;解决了长期以来水稻生产中大面积丰产与优质、多抗难以兼顾的矛盾。

目前国家水稻超级863计划中的育种研究,均以该品种作为核心材料。

黑龙江省农业科学院作物育种研究所选育的龙辐麦系列专用小麦品种,不仅在黑龙江省占有较大比例的播种面积,而且在产业化运作方面也进行了积极探索。

加快了科研成果的转化,收到了较好的经济效益。

浙江大学核农学研究所经过多年研究,利用诱变技术选育出白化转绿型叶色突变体,首次建立起利用辐射诱变培育带叶色标记的杂交水稻不育系技术体系,并首先育成一批带叶色标记的实用不育系。

该不育系具有苗期白化、后期转绿的叶色标记功能。

这一遗传育种工具材料的创制,大大提高了农作物种子生产过程中剔除假种、杂种的可操作性,为生产放心种子提供了可靠的技术支撑。

1987年以来,我国的诱变育种专家在航天育种机理研究、地面模拟实验和新品种选育方面开展了一系列科研工作。

到目前为止,已有50多个利用航天育种技术育成的农作物优异新种质、新品系进入省级以上品种区域试验,包括水稻、小麦、番茄、青椒和芝麻等10多个农作物新品种或新组合通过品种审定。

杂交水稻新组合特优航1号,实现了优质与高产的有机结合,是中国水稻航天育种的重大突破。

在福建省晚杂优区试中,其产量比对照水稻平均增产9.61%,达到极显著水平,创“六五”攻关以来该省所有区试品种组合产量的最高纪录,且品质达到国家优质米二级标准。

该品种已通过福建省及国家农作物品种审定。

太空5号小麦是第一个利用航天技术育成并通过审定的优质、高产小麦新品种。

该品种比对照小麦平均增产9.67%,品质达到国标优质弱筋小麦标准。

现已通过河南省农作物品种审定,并获国家“十五”新品种后补助二等奖。

中芝1号芝麻是利用航天技术育成的集高产、高含油量、抗病、抗倒伏等多个优良性状于一体的突破性芝麻新品种。

该品种在全国12个试验点进行区域试验时全面增产,比对照组平均增产12.7%,增产幅度居“九五”以来全国所有参加区试品种的首位。

该品种已通过湖北省农作物品种审定和全国芝麻鉴定委员会的鉴定。

与此同时,我国的诱变育种专家在航天育种关键技术的创新研究方面也取得重要进展。

从粒子生物学、物理场生物学和重力生物学等不同角度研究了空间环境各因素的诱变特异性;开创了地面模拟空间环境诱变农作物遗传改良的新途径,为全面探索航天诱变育种机理和建立航天育种技术体系奠定了坚实的基础。

近年来,在植物突变本品种的育成数量、种植面积和经济效益等方面,均以较大优势领先于世界其它国家。

据国际原子能机构2008年的不完全统计,在全世界利用辐射诱变技术成的2 320个新品种中,中国育成的多达623个,占世界总量的26.85%,每年为国家增加可创经济效益40亿元,辐射育种技术为我国农业生产的发展起到了巨大的促进作用。

辐射诱变的作用机理在细胞水平上,辐射诱变的作用机理主要是围绕染色体畸变和突变关系进行的。

染色体畸变是植物辐射损伤典型的表现特征,在辐射处理材料的有丝分裂和减数分裂细胞中都观察到了染色体畸变(比如畸变类型、畸变行为及其遗传效应)。

当通过辐射将能量传递到生物体内时,生物体内各种分子便产生电离和激发,接着产生许多化学性质十分活跃的自由原子或自由基团。

它们继续相互反应,并与其周围物质特别是大分子核酸和蛋白质反应,引起分子结构的改变。

由此又影响到细胞内的一些生化过程,如DNA合成的各种酶活性的改变等,使各部分结构进一步深刻变化,其中尤其重要的是染色体损伤。

由于染色体断裂和重接而产生的染色体结构和数目的变异即染色体突变,而DNA分子结构中碱基的变化则造成基因突变。

那些带有染色体突变或基因突变的细胞,经过细胞世代将变异了的遗传物质传至性细胞或无性繁殖器官(用射线照射无性繁殖器官,可以提高芽率,是加速选育新品种的有效途径之一),即可产生生物体的遗传变异。

注:碱基是核酸、核苷、核苷酸的成分。

换言之,辐射诱变就是使处理材料的DNA因发生断裂、损伤和碱基缺失等多种生物学效应而促使其产生大的突变。

另外,在射线促使细胞染色体发生改变的同时,还会引起生物体与细胞质有关的遗传性核外变异。

辐射诱变的方法•照射方法:–外照射–内照射–间接照射外照射:指放射性元素不进入植物体内,而是利用其射线(X射线、γ射线、中子)照射植物各个器官。

这种方法简便,在诱变育种中比较常用。

•根据照射时间的长短,分为急性照射和慢性照射。

急性照射指采用较高的剂量率进行短时间处理。

慢性照射是在长时间内进行低剂量率的缓慢照射。

慢照射比急照射对材料的损伤轻,形态畸变少,而且诱变效果稳定。

•根据照射植物的器官组织不同可分为:种子照射、花粉照射、子房照射、营养器官照射、植株照射、其他植物器官组织的照射等等。

内照射:将放射性元素引入植物体内,由它放射出的射线在体内进行照射。

•内照射优点:剂量低、持续时间长、多数植物可在生育阶段进行处理等。

•方式:1 浸种法:浸泡种子和枝条2 施入法:施入土壤,使植物吸收3 涂抹法:4 注射法等:注射入茎杆、枝条、芽等部位适宜剂量和剂量率的选择•概念◎致死剂量:全部致死的剂量值◎适宜剂量:(半致死剂量):50%存活时的剂量值•剂量的选择原则:活:后代要有一定的成活植株变:在一定的成活植株中,有较大的变异效应优:产生的变异有较多的有利突变。

剂量率:P=D/TP(剂量强度)、D(放射剂量)、T(照射时间)辐射对照辐射量辐射量SI单位SI单位专名专用单位照射量库伦·千克^-1(C·kg^-1)未定伦琴(R)1伦=2.58×10^-4库伦·千克^-1(1R=2.58×10^-4C·kg^-1)吸收剂量焦耳·千克^-1(J·kg^-1)戈瑞(Gy)1戈瑞=1焦耳·千克^-1=100拉德(1Gy=1J·kg^-1=102rad)拉德(rad)1拉德=10-2焦耳·千克^-1=100尔格·克^-1(1rad=10^-2J·kg^-1=102erg·g^-1)当量剂量焦耳·千克^-1(J·kg^-1)希沃特(Sv)1希沃特=1焦耳·千克^-1=10雷姆(rem)1雷姆=10^-2焦耳·千克^-1(1rem=10-2J·kg^-1)放射性活度秒^-1(s^-1)贝可勒尔(Bq)1贝可勒尔=1秒-1(1Bq=1s^-1)居里(Ci)1居里=3.7×1010·秒^-1(1Ci=3.7×1010s^-1)个人辐射育种的程序•处理材料的选择•突变世代的划分•分离世代群体数量的估计•突变体鉴定和选择突变体鉴定和选择•形态鉴定•实验室鉴定•遗传学鉴定•生物化学鉴定•抗性突变体的离体筛选鉴定辐射育种的材料•以种子为辐射处理材料•以花粉为辐射材料•以营养器官为辐射材料选择材料的原则:1、综合性状好,个别性状有待改善;2、杂合子材料;3、易产生不定芽;4、对辐射较为敏感的材料。

相关文档
最新文档