核辐射在农业育种方面的应用及发展

合集下载

核技术在农业领域的应用

核技术在农业领域的应用

核技术在农业领域的应用
核技术在农业领域的应用
一、什么是核技术
核技术是指运用放射性元素和核反应堆,利用原子能来解决社会经济和科学研究问题的一种复杂的技术,其主要应用是放射治疗和放射诊断、放射性核素调查分析、核聚变能等领域。

二、核技术在农业领域的应用
1、土壤分析:利用示踪剂技术,可以快速、准确地确定土壤的养分和植物生长状况,从而指导农作物施肥,改善土壤质量。

2、放射性核素调查分析:可以利用放射性核素测量和分析技术,充分发挥核技术在农业中的作用,可用来检测各种农作物营养元素的含量,从而指导农田施肥,提高作物产量。

3、核技术在生物改造方面的应用:核技术可以用来改造农作物,提高作物抗逆性,增加农作物产量,改善作物品质,减少农业生产投入和改善农民生活水平。

三、核技术在农业领域的优势
1、核技术可以提高农作物的品质,增加农作物产量,减少农业生产投入,从而提高农民的收入和改善民众的生活水平。

2、核技术的使用能够提高农业的生产效率,减少农业生产的投入,从而节约社会资源,降低农业生产成本,提高农作物品质,提高农民收入。

3、核技术的应用能够改善土壤质量,减少水土污染,改善环境
质量,保护生物多样性,改善农田环境,提高资源利用率,实现可持续农业发展。

四、结论
核技术在农业领域的应用具有许多优势,可以提高农作物的品质、增加农作物产量,改善土壤质量,减少水土污染,改善环境质量,保护生物多样性,改善农田环境,提高资源利用率,实现可持续农业发展。

核技术在农业领域的应用

核技术在农业领域的应用

核技术在农业领域的应用引言核技术,指通过利用和研究原子核及其变化特性而应用于各个领域的技术。

在农业领域,核技术的应用已经取得了显著的成果。

本文将介绍核技术在农业领域的应用及其对农业发展的贡献。

核技术在种植业中的应用核辐照技术核辐照技术是一种利用辐射对作物进行杀虫、杀菌和贮藏保鲜的方法。

它通过照射作物或种子,使得该作物或种子的DNA发生突变,从而达到改良作物品质的目的。

核辐照技术可以提高作物的产量和品质,抑制作物疾病的发生,延长作物的保鲜期等。

核示踪技术核示踪技术是一种利用放射性同位素标记物质,通过检测标记物质在作物中的分布和迁移情况,从而研究作物的养分吸收、传输和转化过程。

核示踪技术可以帮助农民了解作物的养分需求,优化施肥方案,提高施肥效率,减少农作物对环境的污染。

核能肥料核能肥料是一种利用放射性同位素标记氮肥或磷肥,通过测定标记同位素在作物体内的分布情况,从而研究作物对肥料的吸收和利用效率。

核能肥料可以帮助农民科学施肥,提高氮肥或磷肥的利用率,减少肥料的浪费和环境污染。

核技术在畜牧业中的应用核素标记技术核素标记技术是一种利用放射性同位素标记饲料或药物,通过测定标记同位素在动物体内的分布和代谢情况,从而研究动物的饲料消化、代谢和药物利用情况。

核素标记技术可以帮助畜牧业者科学饲养动物,优化饲料配方,改善饲料利用效率,提高动物生产性能。

核医学影像技术核医学影像技术是一种利用放射性同位素标记药物,通过检测标记药物在动物体内的分布和代谢情况,从而研究动物的器官功能和疾病诊断。

核医学影像技术可以帮助兽医科学诊断动物疾病,指导治疗措施,提高兽医诊断水平。

核技术在农业环境保护中的应用核能测土仪核能测土仪是一种利用放射性同位素检测土壤中的养分含量和污染物含量的仪器。

它可以帮助农民了解土壤的养分水平,调整土壤施肥方案,减少肥料的过量施用和土壤养分的流失。

此外,核能测土仪还可以检测土壤中的重金属等有害物质,帮助农民进行农产品安全检测。

辐射育种实例

辐射育种实例

辐射育种实例辐射育种是一种通过辐射处理改变植物或动物的遗传特性的育种方法。

它利用辐射能量对生物体的DNA分子进行破坏或改变,从而诱发突变。

这种方法可以加速育种过程,培育出具有新特性的植物品种或动物品种。

下面以辐射育种实例为例,介绍几种成功的辐射育种案例。

1.辐射育种在小麦育种中的应用小麦是我国主要的粮食作物之一,为了提高小麦的产量和品质,科学家们进行了大量的辐射育种研究。

其中,辐射诱变育种是一种常用的方法。

科学家们通过将小麦种子暴露在特定剂量的辐射源下,如X射线或伽马射线,使其产生突变。

然后再选择具有良好特性的变异体进行培育。

通过这种方法,科学家们培育出了多个抗病性强、产量高的小麦品种,为我国的农业生产作出了重要贡献。

2.辐射育种在花卉育种中的应用花卉是人们生活中重要的观赏植物,为了培育出更加美丽、多样化的花卉品种,辐射育种技术被广泛应用。

以玫瑰花为例,科学家们利用辐射育种技术对玫瑰花进行了突变诱导。

通过将玫瑰花的种子暴露在适当剂量的辐射源下,使其产生突变。

经过多年选择和培育,科学家们培育出了多个新品种,如花瓣颜色更加鲜艳、花朵更加丰满的玫瑰花品种。

这些新品种不仅丰富了人们的生活,也促进了花卉产业的发展。

3.辐射育种在果树育种中的应用果树是人们日常饮食中重要的水果来源,为了改良果树的品质和产量,辐射育种技术也在果树育种中得到了应用。

例如,柑橘是一种重要的柑橘类水果,为了培育出更加甜美、耐贮藏的柑橘品种,科学家们利用辐射育种技术对柑橘进行了诱变。

他们将柑橘种子暴露在适当剂量的辐射源下,诱发其产生突变。

经过多年的选择和培育,科学家们培育出了多个新品种,如果实更大、口感更好的柑橘品种。

这些新品种不仅满足了人们对水果品质的需求,也促进了柑橘产业的发展。

辐射育种技术在不同领域的育种中都得到了广泛应用并取得了良好的效果。

通过辐射育种,科学家们成功培育出了许多具有良好特性的新品种,为农业生产和观赏植物领域的发展做出了重要贡献。

原子能技术在农业领域的应用

原子能技术在农业领域的应用

原子能技术在农业领域的应用随着科技的不断发展,原子能技术在农业领域的应用日益成为研究的热点。

原子能技术利用放射性同位素和核辐射的特性,可以提供农业生产所需的多种应用。

本文将探讨原子能技术在农业领域的应用,包括辐射育种、放射性同位素示踪技术和放射性同位素探测技术。

一、辐射育种辐射育种是指利用辐射来诱变作物基因,以获得新的优良品种的育种方法。

通过辐射,可以引起作物基因发生突变,从而产生新的特性,如抗病性、耐旱性等。

原子能技术中的离子束辐照、γ射线辐照和中子辐照等方法被广泛应用于辐射育种。

辐射育种不仅缩短了育种周期,还提高了品种的稳定性和产量。

例如,中国的食用菌种植业就广泛应用辐射育种技术,成功研发出多种高产、高品质的食用菌新品种。

二、放射性同位素示踪技术放射性同位素示踪技术是利用放射性同位素的特性,追踪农作物中的营养元素的吸收、转运和分配过程。

通过加入放射性同位素到土壤或者施加于作物上,可以追踪养分的运动路径和积累情况。

例如,氮同位素示踪技术可以用来研究作物对氮肥的利用效率,帮助优化氮肥的使用。

研究表明,通过放射性同位素示踪技术,农民可以根据作物对养分的需求,合理施肥,从而提高作物的产量和质量。

三、放射性同位素探测技术放射性同位素探测技术是利用放射性同位素的特性,通过测量其在作物或土壤中的浓度来评估环境污染程度和作物生长的影响。

例如,氚同位素被广泛用于监测水稻田中的水分运动和水分利用效率。

通过测量氚同位素在土壤和作物中的浓度变化,可以评估灌溉水分流动情况和作物对水分的利用效率。

这种技术可以帮助农民科学合理地管理灌溉水,有效节约水资源,提高灌溉效率。

总结起来,原子能技术在农业领域的应用主要包括辐射育种、放射性同位素示踪技术和放射性同位素探测技术。

这些应用为农业生产提供了新的手段和工具,可以提高作物的产量和质量,改善农业生产的可持续发展。

然而,原子能技术的应用也需要注意安全风险和环境保护等问题,必须在科学管理和合理使用的前提下推动其发展和应用。

核科学在农业中的应用

核科学在农业中的应用

核科学在农业中的应用
nuclear agricultural science
• 1896 年,法国科学家贝克勒尔(Becquerel H) 发现了铀的天然放射性,揭开了原子能时代 的序幕. 随后,核辐射的生物学效应立即引起 了科学家们的关注,开始了核技术在生物学 和农业科学中的应用研究……
植物辐射诱变育种
食品的辐照储藏和保鲜
• 从1943 年美国Proctor B E 博士首次利用辐 射来处理汉堡包至今,食品辐照技术的研究 已经有半个多世纪的历史. 食品辐照就是利 用电离辐射的方法,杀死食品中的微生物与 害虫,抑制农产品的代谢过程,减少食品败坏 变质的各种因素,达到延长储藏时间和保鲜 的效果.据IAEA 统计,到1994 年全世界有27 个国家已经建立了用于食品辐照的商业化 装置.
低剂量辐照刺激生物生长
• 经过长期试验人们发现,直接或者间接的致电离辐 射以低剂量照射生物体,可以像激素一样刺激生物 生长发育,即具有“刺激效应”.核辐射刺激生物生 长研究也就是探索这种效应发生的规律,以便加以 应用.在种植业和养殖业采用低剂量核辐射处理播 种前的种子和饲养的幼苗一般都能增产10 %左右, 有很好的经济效益. 低剂量核辐射刺激生物生长是 基于激活生物体内的同工酶,促进新陈代谢,加快生 长发育达到提高抗病能力和增长的目的,所以它的 使用可以节省农药和化肥,具有很好的生态效益.
害虫辐射不育技术
• 人们用一定剂量的电离射线照射害虫的某 一个虫态,破坏它们生殖细胞的遗传物质,使 受辐照害虫与正常害虫交配后形成的合子 致死,使得害虫能够“自灭”,这就是辐射不 育防治害虫技术.最近国内,路大光等人就开 展了昆虫辐射不育技术防治光肩星天牛的 研究,祝增荣等开展了应用辐射不育技术 根治桑给巴尔采采蝇的研究

核能在农业和食品生产中的应用

核能在农业和食品生产中的应用

核能在农业和食品生产中的应用核能作为一种清洁、高效的能源形式,其在农业和食品生产领域的应用正逐渐引起人们的关注。

本文将探讨核能在农业和食品生产中的应用方式,并分析其优势和潜在问题。

一、核能在育种和基因改良中的应用核能技术可以通过辐射诱变来加速植物和动物的进化过程,从而实现育种和基因改良。

辐射诱变是指利用核能辐射把生物体的基因结构改变,使其在性状上发生突变。

这一技术可以提高作物的产量和抗性,改善品质和耐候性,从而增加农作物的种植效益。

二、核能在水资源利用中的应用核能驱动的海水淡化设施可以将咸水转化为淡水,从而提供更多的饮用水和灌溉水资源,改善水资源短缺问题。

核能海水淡化技术相比传统方法具有更高的能效和更低的成本,能够有效应对全球水资源紧张形势。

三、核能在农业生产和食品加工中的应用核能技术可以应用于农业生产的多个环节,比如土壤改良、农作物储藏和保鲜以及食品加工等。

通过利用核能辐射杀灭害虫和病菌,可以降低农药使用量,减少对环境和人体健康的不良影响。

同时,核能技术还可以用于食品辐照处理,延长食物的保鲜期并有效杀灭细菌,从而减少食品损耗和食源性疾病的发生率。

四、核能在温室农业和养殖业中的应用核能可以为温室农业和养殖业提供所需的供热和供电。

核能供热系统可以稳定供应温室养殖环境所需的温度,提高作物和动物的生产效率。

同时,核能供电可以保证温室和养殖场的正常运行,提供稳定的电力资源。

五、核能应用中的问题和挑战尽管核能在农业和食品生产领域具有诸多优势,但其应用也面临一些问题和挑战。

首先,核能技术的成本较高,需要大规模的投资和建设。

其次,核能的安全性和环境影响也是人们关注的焦点。

核能事故可能会对农田和水源造成污染,并对人类健康产生潜在风险。

因此,在核能应用中应加强相关技术的安全性和环境保护措施,并建立有效的监管体系。

综上所述,核能在农业和食品生产中的应用具有广阔的前景和巨大的发展潜力。

通过推动核能技术的创新和应用,可以提高农业生产效率、改善食品安全质量并减少环境污染,为可持续发展做出积极贡献。

辐照育种情况汇报

辐照育种情况汇报

辐照育种情况汇报
辐照育种是一种利用辐射技术进行作物育种改良的方法,通过辐射诱变和选择
育种新品种。

本文将对我们进行的辐照育种工作进行情况汇报。

首先,我们选择了水稻、小麦、玉米等重要农作物作为研究对象,通过辐射诱
变技术对其进行育种改良。

在辐照处理后,我们对辐照后的种子进行了大量的田间试验和筛选工作,以筛选出具有优良性状的新品种。

经过多年的努力,我们已经成功培育出多个抗病、高产、优质的新品种,并取得了显著的经济效益。

其次,我们在辐照育种过程中,注重了对育种材料的选择和辐照处理条件的优化。

我们通过对不同基因型的材料进行辐照处理,并结合分子标记技术对辐照诱变体进行筛选和鉴定,以提高育种效率和育种质量。

同时,我们不断优化辐照处理的剂量、时间和方式,以最大限度地发挥辐射诱变的作用,提高变异频率和育种效果。

另外,我们还加强了与相关研究机构和企业的合作,共同开展辐照育种工作。

通过合作,我们得以共享资源、技术和信息,加快了新品种的选育和推广进程。

同时,我们还与农业部门和种植大户进行合作,开展示范推广,以验证新品种的适应性和经济效益,促进新品种的大面积种植和应用。

最后,我们还进行了广泛的宣传和推广工作,以提高辐照育种技术的知名度和
影响力。

我们通过举办学术研讨会、撰写科普文章、参与科普活动等方式,向社会大众介绍辐照育种的原理、方法和应用前景,增强社会对辐照育种的认知和支持。

综上所述,我们在辐照育种工作中取得了一系列的成果,为我国农业生产和粮
食安全做出了积极贡献。

我们将继续深入开展辐照育种研究,不断提高育种效率和育种质量,为我国农业的可持续发展贡献力量。

当前应用辐射在农业育种需注意挑战

当前应用辐射在农业育种需注意挑战

当前应用辐射在农业育种需注意挑战辐射技术是近年来在农业领域得到广泛应用的一种技术手段,它可以通过改变生物体的遗传结构,促进农作物的成长和改良品种的培育。

然而,虽然辐射技术在农业育种中具备巨大的潜力,但也面临一些值得关注的挑战。

本文将以当前应用辐射在农业育种中的挑战为话题展开讨论。

首先,一个值得注意的挑战是辐射技术对环境的影响。

辐射技术使用的是电离辐射,它可能对周围的生物体和生态系统产生负面影响。

辐射对生物体的突变作用不仅可能引发有益的倒转突变,还可能引起有害的突变,对环境造成不可逆的损害。

大规模应用辐射技术可能导致放射性物质的积累,从而对土壤和水体产生长期污染。

因此,在应用辐射技术时,必须加强对环境影响的评估,采取有效的措施防止辐射泄漏和保护生态系统。

其次,辐射技术应用在农业育种中面临的另一个挑战是遗传安全问题。

辐射技术对生物体的遗传结构进行改变,但这些改变是随机和不可控的。

这意味着辐射育种中产生的新品种可能会携带未知的突变,导致不可预测的遗传风险。

因此,在进行辐射育种时,需要对育种目标进行准确定义,并对引入的突变进行精确的遗传分析,以确保所选育种品种的遗传稳定性和安全性。

此外,辐射技术在农业育种中的挑战还包括品质改良和品种稳定性的问题。

尽管辐射技术可以导致农作物的突变和遗传多样性增加,但不可避免地也会引入一些负面效应。

有时辐射诱导的突变会导致农作物的不良性状或无法适应环境的特性。

此外,辐射技术产生的突变往往是随机的,而且难以稳定。

因此,克服这些挑战需要在众多辐射诱导的突变中筛选出具有良好性状和稳定遗传性的品种,这对农业育种工作者来说是一项复杂且需要耐心的工作。

最后,辐射技术在农业育种中的推广和应用还需要克服社会接受度和风险沟通的挑战。

公众对辐射技术存在着普遍的担忧和负面观念,而农业育种正是与人们的饮食安全和环境生态紧密相关的领域。

因此,农业育种工作者需要与公众进行积极的沟通,加强风险传播的科学解释和社会影响的评估,以增强公众对辐射技术在农业育种中的理解和接受度,推动其应用的进一步发展。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

核辐射在农业育种方面的应用及发展学院:水建学院班级:水工112班姓名:***学号;**********核辐射在农业育种方面的应用及发展【摘要】辐射诱变育种是在人工控制的条件下,利用中子、质子或者射线等物理辐射诱变因素对种子进行辐照,诱发其染色体的数量、结构和行为变异,从而得到可供利用的突变体,并在此基础上进一步培育出新的种质资源的一种新兴的育种技术。

本文以水稻、小麦、大豆、花卉和林木等材料所做的辐照试验为依托,综述了国内外在辐射诱变育种方面所取得的成就,分析了该技术的作用机理、特点、优势、适用范围及其发展历程,并对其发展方向和应用前景做出了展望。

其主旨在于提高人们对辐射诱变育种技术在农业生产中应用的价值、意义及其前景的认识,并为该技术的进一步发展和应用提供参考与借鉴,以期促进现代化物理农业工程的发展和应用,提高人民的生活水平与质量。

【关键词】辐射诱变,育种,机理,应用【正文】辐射诱变育种是人为地利用射线、x射线或者是中了、激光和离子束等物理诱变因素,诱发植物遗传变异,从而在短时问内获得有利用价值的突变体,以供直接生产利用或者是在此基础上培育出新的种质资源的一种新兴的育种技术f张小静和陈富,2008,现代农业科技,(13):14.15,17)。

该技术的问世,虽然只有数十年的历史(程薇,2007,湖北农业科学,45(5):660.663),但因有其自身的特点与优势,所以发展迅以水稻、小麦、大豆、花卉(王丹等,2009)和林木(刘刚等,2009)等材料所做的辐照试验为依托,综述了国内外在辐射诱变育种方面所取得的成就,分析了该技术的作用机理、特点、优势、适用范围及其发展历程,术的作用机理、特点、优势、适用范围及其发展历程并对其发展方向和应用前景做出了展望。

其主旨在,于提高人们对辐射诱变育种技术在农业生产中应用的价值、意义及其前景的认识,并为该技术的进一步发展和应用提供参考与借鉴,以期促进现代化物理农业工程的发展和应用,提高人民的生活水平与质量。

诱变源的种类及特性✧紫外线:辐射源是紫外光灯,能量和穿透力低,能成功地用于处理花粉粒。

✧电磁辐射和中子:容易穿透植物组织。

✧X射线:辐射源是X光机。

X射线又称阴极射线,是一种电磁辐射,它不带电核,是一种中性射线。

✧γ射线:辐射源是60Co和137Cs及核反应堆。

γ射线也是一种不带电荷的中性射线。

✧中子:辐射源为核反应堆、加速器或中子发生器。

根据中子能量大小分为超快中子、快中子、中能中子、慢中子、热中子。

✧β射线:辐射源为32P和35S。

β射线是一束电子流,产生与X或γ射线相似的作用。

辐射诱变育种技术的起源与发展1927年,美国的Muller教授(白成科等,2003)发家Stadler又相继发现了x射线对玉米和大麦的诱变效应,并随之开始了将这种诱变应用于植物育种的试验研究;1934年,育种专家D.Tollenear(张小静和陈富,2008,现代农业科技,(13):14—15,17)用x射线的诱变效应成功地培育出了烟草突变品种,这是世界上运用辐射诱变技术人工培育出突变品种的第一例。

进入20世纪50年代后,人类对核能的研究有了长足的进展,核技术也逐渐被广泛地应用到了医学、军事、工业和农业,辐射诱变育种技术也随之在植物的性状改良方面得以应用。

从60年代起,人们对辐射诱变的规律有了进一步的认识,促成了辐射育种技术的逐步成熟。

1969年,联合国农粮组织(FAO)与国际原子能机构(IAEA)出版发行了《突变育种手册》(Manualon Mutation Breed—in ,这是辐射诱变育种技术由初期的基础研究阶段走向实际应用的标志性转折。

实际上,20世纪70年代,辐射诱变育种已经成为一种新兴的技术和有效的手段得到了迅速的发展并被广泛应用,并且其技术重点已经转向了早熟、抗病、高产、无籽变异和突变体的杂交利用。

如周绛香等用2.58 c/kg的^v射线照射锦橙的干种子,最终育出了中育7号和中育8号2个无核早熟的突变系(刘继红等,1999,中国果树,(4):49—51);进入20世纪80年代之后,由于分子生物学和分子遗传学的广泛应用,又为辐射育种注入了新的活力,促使植物诱变育种与常规育种方法、杂交优势育种技术和生物技术等相互渗透、结合、交叉,形成了一种综合性的育种技术。

尤其是在20世纪90年代的中叶,随着分子标记法的诞生和应用,使分子定向诱变成为可能(陈青华等,2005,落叶果树,37(6) 12—14)。

如马卉等(2010)选用我国的7个栽培玉米亚种材料,用分子标记法和荧光原位杂交技术相结合,并在生物素标记的探针杂交流程中参照Li和Aru.muganathan(2001)的方法,进行5S rDNA非转录间隔区(nontranscribed intergenic spacerNTS)f~序列分析,从中发现了具有重要价值的规律;林同香等应用AFLP分子标记技术与部分r6cz基因系列分析中国龙眼的遗传多样性,结果发现所有的龙眼品种与荔枝的遗传距离都比较远(Lin et a1.,2005);陈虎等(2010)通过深入研究和分析,而后认定分子标记技术的发展和应用,为龙眼研究提供了一条有效的途径。

我国辐射诱变育种的研究起始于20世纪5O年代,从70年代后期进入了快速的发展阶段。

近年来,在植物突变本品种的育成数量、种植面积和经济效益等方面,均以较大优势领先于世界其它国家。

据国际原子能机构2008年的不完全统计,在全世界利用辐射诱变技术成的2 320个新品种中,中国育成的多达623个,占世界总量的26.85%,年推广种植面积达9.0xlO hm ,每年为国家增加粮食3.0x109-4.OxlO kg、棉花1.5x108M.8xlO kg、油料0.75x10 kg,可创经济效益40亿元(温贤芳,2009),辐射育种技术为我国农业生产的发展起到了巨大的促进作用。

1927年美国H.J.马勒发现X射线能引起果蝇发生可遗传的变异。

1928年美国L.J.斯塔特勒证实X射线对玉米和大麦有诱变效应。

此后,瑞典H.尼尔松-埃赫勒和A.古斯塔夫森在1930年利用辐射得到了有实用价值的大麦突变体;D.托伦纳在1934年利用X射线育成了优质的烟草品种“赫洛里纳”。

1942年,C.奥尔巴克发现芥子气能导致类似X射线所产生的各种突变,1948年A.古斯塔夫森用芥子气诱发大麦产生突变体。

50年代以后,诱变育种方法得到改进,成效更为显著,如美国用X 射线和中子引变,育成了用杂交方法未获成功的抗枯萎病的胡椒薄荷品种Todd's Mitcham等。

70年代以来,诱变因素从早期的X射线发展到γ射线、中子、多种化学诱变剂和生理活性物质,诱变方法从单一处理发展到复合处理,同时,诱变育种与杂交育种、组织培养等密切结合,大大提高了诱变育种的实际意义。

应用较多的是辐射诱变,即用α射线、β射线、γ射线、Χ射线、中子和其他粒子、紫外辐射以及微波辐射等物理因素诱发变异。

当通过辐射将能量传递到生物体内时,生物体内各种分子便产生电离和激发,接着产生许多化学性质十分活跃的自由原子或自由基团。

它们继续相互反应,并与其周围物质特别是大分子核酸和蛋白质反应,引起分子结构的改变。

由此又影响到细胞内的一些生化过程,如DNA合成的中止、各种酶活性的改变等,使各部分结构进一步深刻变化,其中尤其重要的是染色体损伤。

由于染色体断裂和重接而产生的染色体结构和数目的变异即染色体突变,而DNA分子结构中碱基的变化则造成基因突变。

那些带有染色体突变或基因突变的细胞,经过细胞世代将变异了的遗传物质传至性细胞或无性繁殖器官,即可产生生物体的遗传变异。

辐射诱变的作用机理在细胞水平上,辐射诱变的作用机理主要是围绕染色体畸变和突变关系进行的。

染色体畸变是植物辐射损伤典型的表现特征,在辐射处理材料的有丝分裂和减数分裂细胞中都观察到了染色体畸变(畸变类型、畸变行为及其遗传效应)。

在高能量和强穿透力的射线辐照下,可诱发染色体数量、结构和行为畸变,而染色体数量的变化,往往会导致单倍体及非整倍体类型的出现。

例如,在花卉辐射诱变育种研究中发现,月见草属(香待屑草,月见草以及美丽月见草等)和金鱼草经辐射诱变处理,均发生了单倍体的产生、染色体断裂和结构重排f高健和卢惠萍,2000)。

在分子水平上诱变机理的研究主要是围绕DNA 损伤、修复及其与突变形成的关系展开的。

研究表明(王少平,2008),干扰DNA的修复合成可使作物产生更多的突变,如株高突变和抗病毒基因突变等。

辐射诱变就是使处理材料的DNA因发生断裂、损伤和碱基缺失等多种生物学效应而促使其产生大的突变。

另外,在射线促使细胞染色体发生改变的同时,还会引起生物体与细胞质有关的遗传性核外变异,多种作用的汇聚,即可促成辐射育种中材料奇特的特性变异。

辐射诱变的方法•照射方法:–外照射–内照射–间接照射•适宜剂量和剂量率的选择外照射:指放射性元素不进入植物体内,而是利用其射线(X射线、γ射线、中子)照射植物各个器官。

这种方法简便,在诱变育种中比较常用。

•根据照射时间的长短,分为急性照射和慢性照射。

急性照射指采用较高的剂量率进行短时间处理。

慢性照射是在长时间内进行低剂量率的缓慢照射。

慢照射比急照射对材料的损伤轻,形态畸变少,而且诱变效果稳定。

•根据照射植物的器官组织不同可分为:种子照射、花粉照射、子房照射、营养器官照射、植株照射、其他植物器官组织的照射等等。

内照射:将放射性元素引入植物体内,由它放射出的射线在体内进行照射。

•内照射优点:剂量低、持续时间长、多数植物可在生育阶段进行处理等。

•方式:1 浸种法2 施入法3 涂抹法4 注射法5 在示踪研究的植株上采取种子或枝条等适宜剂量和剂量率的选择•概念◎适宜剂量◎致死剂量:◎半致死剂量:•剂量的选择原则:活:后代要有一定的成活植株变:在一定的成活植株中,有较大的变异效应优:产生的变异有较多的有利突变。

辐射育种的程序•处理材料的选择•突变世代的划分•分离世代群体数量的估计•突变体鉴定和选择•辐射育种的基本程序突变体鉴定和选择•形态鉴定•实验室鉴定•遗传学鉴定•生物化学鉴定•抗性突变体的离体筛选鉴定辐射育种的基本程序•以种子为辐射处理材料•以花粉为辐射材料•以营养器官为辐射材料辐射育种的突变特点及其超常优势通过在水稻育种中所进行的辐射诱变试验发现,通过辐射处理的水稻细胞会发生多种突变,其中包括染色体突变、基因突变和核外突变。

在这些突变中,多数为基因突变。

这种突变的特点为:(1)多数为隐性突变,该突变一般在M 不明显,只有到M 隐性突变基因趋于纯合时才会表现出来。

因此,往往把M 作为选择的起始代。

(2)不同性状的基因突变频率不同,叶绿素突变、矮杆突变、早熟或晚熟突变等较易发生,因此,不同的突变育种性状应有不同大小的M 群体以供选择。

相关文档
最新文档