第3章 煤炭热解
洁净煤燃烧技术——煤的热解与气化ppt课件

26
2020年5月3日
27
一、简介
煤炭气化技术 煤炭气化是将固体(煤、半焦、焦炭)或液体燃料(水煤浆)与气化剂(空气、 氧气、富氧气、水蒸气或二氧化碳等)作用而转变成燃料煤气或合成煤气。
28
29
30
三、煤气化技术主要工艺
31
1、固定床气化
也称移动床气化。因为在气化过程中,煤料与气化剂 逆流接触,相对于气体的上升速度而言,煤料下降很 慢,甚至可视为固定不动,因此称之为固定气化床, 实际上,煤料在气化过程中的确是以很慢的速度向下 移动的,故以称为移动床气化
第一阶段:鼓空气燃烧煤蓄热,生产空气煤气
第二阶段:鼓水蒸气,生产热解煤气和水煤气
45
2、煤炭地下气化方法及工艺
46
47
48
总结
一、煤热解及意义 二、煤热解的分类及过程 三、煤炭热解技术与工艺 四、煤炭气化技术 五、煤炭地下气化技术
49
32
2、流化床气化(沸腾床气化)
以小颗粒煤为原料,并在气化炉内使其悬浮分散在垂 直上升的气流中,煤粒类似于沸腾的液体剧烈地运动 ,从而使得煤粒层几乎没有温度梯度和浓度梯度,从 而使得煤粒层内温度均一,易于控制,提高气化效率 。
33
3、气化床气化
34
Байду номын сангаас
4、熔浴床气化
也称熔融床气化,将煤粉和气化剂以切线方向 高速喷入一温度较高且高度稳定的熔池内,池 内熔融物保持高速旋转。作为粉煤与气化剂的 分散介质的熔融物可以是熔融的灰渣、熔盐等 可熔融的金属。
项目三 煤转化为燃料的技术
任务一 煤的热解与气化技术
1
任务一 煤的热解与气化技术
一、什么是煤热解及意义 二、煤热解的分类及过程 三、煤炭热解技术与工艺 四、煤炭气化技术 五、煤炭地下气化技术
煤的热解过程

特殊煤的热解速率曲线
(1)总体变化规律基本一致,但热解失重速率变化较大;(2)最大热 解失重速率峰值向前或向后推移;(3)碱土金属不同催化作用显现; (4)二次热解明显
煤热解特征参数
由热失重实验测定煤热解转化率时,可按下式计算:
W0—试样原始质量,mg;W—试样在某一时刻的质量,mg;Wf— 试样热解到规定终点时残余质量,mg;△W—试样在某一时刻的失 重,mg;△Wf—试样在规定热解终点的失重,mg。 定义如下几个热解特征温度:
热分析(thermal analysis)技术
热失重法的原理是:通过热天平测定煤热解中挥发分析出离开系统后 造成的质量损失,联用计算机自动收集和处理数据,从热分析曲线 上获得相关的动力学参数。
常用热分析技术包括:热重法(TG)、微商热重法(DTG)、差热分析 (DTA)、差示扫描量热法(DSC)、逸出气分析(GEA)。联用技术如: TG-DTA,TG-DTA-DTG,TG-MS和TG-FTIR联用等。 借用热分析技术来研究煤的热解及反应动力学,获得反应速度、反 应产物、反应控制因素、反应煤种及反应动力学常数。 煤热解常用热失重法来研究煤热解动力学。研究方法如:用程序升 温热重法,不同升温速率下的热天平研究了煤的热解及其动力学。 加热速度采用等温和程序升温两种,后者可以避免等温条件下热解 的不便,具有热解效果的可靠性,所以一般在实验中采用线性升温 的方法。
煤的热解过程或阶段
第一阶段,室温~300℃,干燥脱气阶段,煤的外形基本无变化。在120℃以前 脱水,CH4、CO2和N2等气体的脱除大致在200℃完成。褐煤在200℃以上发生 脱羧基反应,约300℃开始热解反应,烟煤和无烟煤一般不发生变化。 第二阶段,300℃~600℃,这一阶段以解聚和分解反应为主,形成半焦。生成 和排出大量挥发物,在450℃左右焦油量排出最大,在450℃~600℃气体析出量 最多。煤气成分主要包括气态烃和CO、CO2等;焦油主要是成分复杂的芳香和稠 环芳香化合物。烟煤约350℃开始软化、熔、融、流动和膨胀直到固化,出现一 系列特殊现象,形成气、液、固三相共存的胶质体。在500℃~600℃胶质体分 解、缩聚,固化形成半焦。煤化程度低的褐煤不存在胶质体形成阶段,仅发生激 烈分解,析出大量气体和焦油,形成粉状半焦。 第三阶段,600℃~1000℃,以缩聚反应为主,半焦变成焦炭。该阶段析出焦油 量极少,挥发分主要是煤气(H2和CH4),又成为二次脱气阶段。从半焦到焦炭, 一方面析出大量煤气,另一方面焦炭本身密度增加,体积收缩,形成具有一定强 度的碎块。
煤的热解与粘结成焦

等温研究和非等温研究
等温研究此法是尽量快地将煤加 热至预定温度丁,保持恒温,测 量失重,求出-dW/dt,直至dW/dt=0。两个参数是:温度T 下的失重速率(一dW/dt)随时间 的变化,最后降为零;温度T下 的最终失重(-ΔWe)
9.3.1 脱挥发分动力学 等温研究
前段为直线增加过程,后来越来越平缓,需要20-25h小时以上,达到 平衡。混合的慢反应负荷一级动力学方程
上式假设挥发物一旦产生,立刻离开。分解速率等于失重速率。所以整个恒温 过程的速度由反应速度控制。
有人提出恒温下挥发物析出是由扩散过程控制的。 理由(1)350-450℃之间任何温度下的失重速率比在其他温度下明显 地缓慢;(2)挥发物析出的初始速率永远比一级动力学定律推算的数值 大很多;(3)由阿累尼乌斯图计算的表观活化能很小。原因是反应刚开 始时,煤粒实际上处于温度急剧上升的过程,由于快速热解使煤的微孔 系统内产生了暂时的压力梯度,过程由扩散速度控制而不是反应速度控 制。 由此可见热解速度(反应速度)和脱挥发分速度(反应与扩散的总速 度)是两个不完全相等的概念。 从整体来看,脱挥发分主要是由扩散控制的,但在恒温下分解速度可 能控制脱挥发分的最初阶段。
假定时间t=0时,M=0,那么上式解为 在气体析出量到达最大量之前,可用下式计算G G G1 P0 P M
G P 1 Kt 1e 0
Kt
9.3.1 胶质体反应动力学
在恒定的加热速率下,如果温度可以用函数 T Vt t 0 表示,则微分方程不能简单求解 如果将线性温度-时间函数用新函数
非等温研究 Coast-Redfern
2RT/E近似为0,用上述两个等式左边对1/T作图,利用斜率和 截距可求出E和A。
煤的热分解-

2.3 影响煤热解过程的因素
终温/oC
600(低温干馏) <1 60 25 1~2 12 1~3 脂肪烃,芳烃 800(中温干馏) 1 50.5 15~20 1~2 30 ~5 脂肪烃,芳烃 1000(高温干馏) >1 35~40 1.5 ~2 57 4~10 芳烃
产品分布与性状 焦油 相对密度 中性油 酚类 焦油盐基 沥青 游离碳,% 中性油成分 煤气
2.3 影响煤热解过程的因素 煤的粒度的影响表现为,粒度越大,热失重率越低,半焦 产率越高,焦油产率越低,H2、CO和CO2的产率越高。例如, 某高挥发分烟煤粒度由l mm降为0.05 mm时,大粒子的失重比 小粒子的失重大约低3~4%。但具有大量开孔结构的褐煤则测 不出这种变化。这表明,当挥发物可以更自由地逸出时,二次 反应受到了抑制。
dvi k i (v i , 0 v i ) dt
式中 ki表示分解反应 i 的速度常数。在等温条件下积分上式得:
Ei vi ,0 vi vi ,0 exp[ k 0i t exp( )] RT vi、k0i、Ei 必须通过实验确定,在这种无穷多反应的情况下不 可能解析模型。
2.2 煤的热解机理及动力学
2.1 煤的热分解过程 第二阶段(Td~550oC) 活泼分解阶段,以解聚和分解反应为主,析出大量挥发物 (煤气和焦油),在450oC左右焦油量最大,在450~550oC气体 析出量最多。烟煤在350oC左右开始软化、粘结成半焦。烟煤 (尤其是中等煤阶的烟煤)在这一阶段经历了软化、熔融、流 动和膨胀直到再固化。形成气、液、固三相共存的胶质体。液 相中有液晶或中间相存在。胶质体的数量和质量决定了煤的粘 结性和结焦性。固体产物半焦与原煤相比,芳香层片的平均尺 寸和氦密度等变化不大,这表明半焦生成过程中缩聚反应并不 太明显。
煤炭资源的煤炭热解与煤制气技术

煤炭资源的煤炭热解与煤制气技术煤炭作为一种重要的能源资源,在现代工业发展中起到关键作用。
然而,传统的煤炭利用方式存在一些问题,如煤炭的高效利用以及对环境的污染等。
为了解决这些问题,煤炭热解与煤制气技术应运而生。
本文将重点介绍煤炭热解与煤制气技术的原理、应用及前景。
一、煤炭热解技术煤炭热解是指在高温(500-1000摄氏度)和缺氧(或无氧)条件下,将煤炭分解为气体、液体和固体产物的过程。
这种热解过程可以利用石油炼制过程的废气,或者通过专门设计的煤气化设备进行。
1. 煤炭热解的原理煤炭热解的原理是将煤炭中的有机成分分解为可燃气体、焦炭和液体产物。
在热解过程中,煤炭中的挥发分子和焦油分子被释放出来,而不可燃的矿物质则留在焦炭中。
这种反应可以通过控制热解温度和施加适当的压力来调节产物的比例。
2. 煤炭热解的应用煤炭热解技术具有广泛的应用前景。
首先,它可以将煤炭中的有机物质转化为可燃气体,用于供热和发电。
其次,通过热解后产生的焦炭可用于冶金和化工行业。
此外,煤炭热解还可以产生液体燃料,如煤油和煤焦油,用于交通运输和化工领域。
3. 煤炭热解技术的前景煤炭热解技术在能源转型和环境保护方面具有重要意义。
它可以提高煤炭利用效率,减少温室气体排放,并降低对环境的污染。
此外,煤炭热解技术还可以减轻对传统石油资源的依赖,并为煤炭行业带来新的发展机遇。
二、煤制气技术煤制气技术是指通过气化反应将煤炭转化为合成气的过程。
合成气主要由一氧化碳和氢气组成,可以作为燃料或原料用于化学工业的合成反应。
1. 煤制气的原理煤制气是通过将煤炭与氧气或蒸汽进行气化反应,生成一氧化碳和氢气。
气化过程需要高温和压力条件下进行,煤炭中的有机物质被转化为可燃气体。
反应过程可以分为两个阶段,首先是煤的干馏反应,生成挥发分子;然后是气化反应,将挥发分子转化为一氧化碳和水蒸气。
2. 煤制气的应用煤制气技术在化工和能源领域有广泛的应用。
合成气可以作为燃料供应给燃气锅炉、燃气轮机和内燃机等设备,用于供热和发电。
煤热解反应过程及影响因素

煤热解反应过程及影响因素摘要:介绍了煤热解的反应过程,并针对反应过程分析和总结了煤化程度、键断裂的速度和二次反应的程度、键断裂生成的自由基的稳定速度、催化作用对煤热解的影响。
关键词:煤热解;反应过程;影响因素1 煤热解简介煤的热解是指煤在惰性气氛下持续加热至较高温度时发生的一系列物理、化学变化的过程。
煤的热解过程可以形成煤气、焦油和半焦(或焦炭)三类产品,这三种形态的产物各具利用价值。
2 煤炭热解反应过程煤热解的一般过程为:煤受热后,煤结构中弱键断裂,生成气体、水和自由基,随着热解的进行,煤热解自由基会与氢自由基结合,形成稳定的挥发分;当温度继续升高时,部分挥发分蒸发,部分挥发分熔融,形成胶质体;紧接着胶质体受热分解成初级挥发产物——一次挥发物,一次挥发物在从颗粒内部传递到颗粒表面,再从颗粒表面传递到反应器外时,会发生二次缩聚和裂解反应,生成二次挥发物,同时伴随着半焦的生成。
进一步提高温度,半焦会继续缩聚,生成高强度的焦炭,同时伴随着少量热解气的产生。
上述描述的是炼焦煤的热解历程,低煤化程度的煤如褐煤,其热解历程也大致相似,但是褐煤热解过程中仅分解产生焦油、气体和粉状焦,不会形成胶质体。
3 影响煤炭热解的因素3.1 煤化程度煤化程度是煤热解过程最主要的影响因素之一。
煤化程度对煤热解产物分布的影响是因为不同煤种所具有的物理结构特征、化学结构特征、元素组成和含量不同,在热解过程中表现出的热塑性行为不同,以及这种热塑性对二次反应的影响也不同。
随煤化程度的增加,煤炭开始热解的温度逐渐升高。
3.2 键断裂的速度和二次反应的程度键断裂的速度和挥发分二次反应的程度主要与传热和传质有关。
在原料不变的情况下,影响传热、传质和二次反應的因素主要由煤热解工艺条件决定,包括:热解终温、加热速率、煤炭粒径、热解压力、停留时间等。
①热解温度不同,热解产物—焦油、半焦、煤气和水的比例不同,且差别较大,这是因为热是影响煤热解的首要因素。
煤炭加工中的煤炭热解气净化工艺

煤炭热解气净化工艺在煤炭加工中的应用
煤炭热解气净化工艺在能源领域的应用
煤炭热解气净化工艺在化工领域的应用
煤炭热解气净化工艺在环境保护中的应用
煤炭热解气净化工艺的应用范围
01
02
净化效果的评价指标
净化效果的实际案例分析
03
04
净化效果对环境和经济效益的影响
技术优势:高效、节能、环保,可有效去除煤炭热解气中的有害物质
政策支持:政府对环保产业的支持和鼓励,将为煤炭热解气净化工艺的发展提供有利的政策环境
国际合作:加强国际合作,引进国外先进技术和经验,推动煤炭热解气净化工艺的进步和发展
汇报人:
感谢您的观看
汇报人:
煤炭加工中的煤炭热解气净化工艺
目录
添加目录标题
煤炭热解气净化工艺概述
煤炭热解气净化工艺流程
煤炭热解气净化工艺技术参数
煤炭热解气净化工艺的应用与效果
Hale Waihona Puke 煤炭热解气净化工艺的未来发展与展望
添加章节标题
煤炭热解气净化工艺概述
煤炭热解气净化工艺是一种通过高温热解将煤炭转化为可燃性气体的技术。
工艺过程中,煤炭在高温下分解,产生可燃性气体和固体残渣。
温度控制策略:采用PID控制器进行温度控制,保证温度稳定在设定范围内
压力范围:0.1-0.5MPa
压力调节方式:自动调节
压力波动范围:±0.05MPa
压力测量精度:±0.01MPa
气体湿度:根据热解条件和环境湿度不同而有所差异
气体杂质:如硫化物、氮氧化物、粉尘等
气体浓度:根据煤炭种类和热解温度不同而有所差异
气体回收:将净化后的气体进行回收,用于后续利用或销售
煤热解反应过程及影响因素

煤热解反应过程及影响因素煤热解是指在缺氧或低氧条件下,煤在高温下发生化学反应,产生气体、液体和固体产物的过程。
煤热解反应过程是复杂的化学反应链,受到多种因素的影响。
本文将从煤热解反应机理、影响因素以及煤热解技术应用等方面进行探讨。
一、煤热解反应机理在缺氧或低氧条件下,煤热解反应主要包括干馏和热分解两种反应机理。
干馏是指在高温条件下煤内部分解,主要产物为气体和液体烃类化合物;热分解是指煤中的大分子化合物在高温条件下裂解成小分子化合物,主要产物为固体焦炭。
煤热解反应的总体过程可以用以下化学反应来表示:C + O2 → CO2 + HeatC + 1/2O2 → CO + HeatC + H2O → CO + H2以上反应所示,煤与氧气或水蒸气反应生成一氧化碳、二氧化碳和氢气等气体产物,并伴随着释放热能。
二、影响因素煤热解反应受到多种因素的影响,主要包括煤的性质、热解条件、反应动力学以及反应温度等。
1. 煤的性质煤的性质主要包括煤种、挥发分含量、灰分含量和固定碳含量等。
不同种类的煤在热解过程中产物组成和产率都会有所不同。
一般来说,热解性能较好的炼焦煤和无烟煤在热解过程中产生的焦炭较多,而液体和气体产物较少;而热解性能差的褐煤和煤泥在热解过程中产生的气体和液体产物较多,而产生的焦炭较少。
2. 热解条件热解条件包括反应温度、反应时间和反应压力等。
在高温条件下,煤热解产物中焦炭的产率会增加,而气体和液体产物的产率会减少;反之,在低温条件下,气体和液体产物的产率会增加,焦炭的产率会减少。
反应时间和反应压力也会对煤热解反应产物的组成和产率产生影响。
3. 反应动力学煤热解反应是一个复杂的动力学过程,受到反应速率和反应平衡的影响。
反应速率决定了反应的快慢,而反应平衡则决定了反应的终态。
通过研究煤热解反应的动力学参数,可以更好地控制煤热解反应过程,提高产物的质量和产率。
4. 反应温度反应温度是影响煤热解反应最重要的因素之一。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
490 中 约5
1 50.5 15~20 1~2 30 ~5 脂肪烃 芳烃 45 38 25 粗苯-汽油 1.0 芳烃50%
700 高 <2
>1 35~40 1.5 ~2 57 4~10 芳烃 55 25 19 粗苯 1~1.5 芳烃90%
煤气主要 成分(%)
甲烷 发热量(Mj/米3) 煤气中回收的轻油 产率(%) 组成
热解压力
气体停留时间
1 BTX 2 苯
1-H2 气氛 2-N2 气氛
3 PCX 4 二甲酚
干馏炉类型
组成(%)
芳烃 环烷烃 单烯烃 双烯烃 环烯烃 脂肪烃 茚 二硫化碳 噻吩 其它 炉型 低温干馏炉 15.56 8.00 16.26 1.36 9.55 46.53 0.15 0.06 0.66 1.07 连续直立式炉 63.04 3.62 2.33 2.58 1.16 22.37 0.72 0.06 0.33 3.19 焦炉 85.26 0.21 1.64 2.48 5.37 0.34 1.13 0.40 0.67 2.50
16 12 8 4 0 0
不同比例生物质与褐煤共热解
1:1 1:2 1:4
不同比例生物质与贫煤共热解
16
1:1
12 8 4 0 0 200
1:2
1:4
200
400
600 T/℃
400
600
T/℃
质量变化率/(%/min)
16
不同比例生物质混合物与烟煤共热解
12 8 4 0 0 200 400 600 T/ ℃
氢
– 加热速率
• 急速加热时产生的很强的热冲击 力,使大分子的缩合芳香族化合物
中具有不同键能的化学键同时被打
开、断裂,生成数量众多的自由基, 而氢气氛又提供了自由基的稳定条
件,使之生成气态或液态产物;
• 缓慢的加热过程中,化学键的断 裂主要发生在煤的颗粒结构内部, 由此引起聚合反应生成半焦,故导 致气相生成物产率降低。
累积失重(%)
脱气
主要 失重 量
0
200
400
600
800
温度(oC)
• Hypothetical structure for coal and its use in understanding thermal conversion
3.3.2 煤热解的主要化学反应
• 煤热解中的裂解反应;
– 结构单元之间的桥键断裂生成自由基; – 脂肪侧链受热易裂解,生成气态烃; – 含氧官能团的裂解-- —OH( 700~800℃ )
第3章 煤热解技术
周安宁 西安科技大学化学与化工学院
3.1 前 言
• 煤的热解的定义 –煤炭热解是煤炭在热解反应器中非氧化气氛下,受热发生系 列物理化学反应,形成气体、液体和固体产物的热转化过程, 是煤炭热转化加工的关键步骤,其气体产物为以氢气、一氧 化碳、甲烷等为主的低分子碳氢化合物,液体为以链烃和芳 烃为主的焦油,固体产物为半焦或焦炭。 –煤热解工艺的特点 –工艺过程简单; 加工条件温和投资少; 生产成本低; 易实现 多联产等优势。 • 工艺技术发展概况 –始于19 世纪:当时主要用于制取灯油和蜡。 –二次世界大战期间:德国,褐煤低温干馏工厂,低温煤焦油, 再高压加氢制取汽油和柴油 –上世纪70 年代:多种热解新工艺开发成功。 –上世纪70 年代以来:加氢热解,催化热解等。
1:1 1:2 1:4
生物质与不同煤化程度煤共热解特性参数
tv2/℃ tv1/℃ tb,max/℃ tc,max /℃ ts /℃ 生物质/ % 褐煤 烟煤 贫煤 褐煤 烟煤 贫煤 褐煤 烟煤 贫煤 褐煤 烟煤 贫煤 褐煤 烟煤 贫煤 20 33 302.6 304.3 302.1 392.5 389.3 443.5 368.3 366.8 366.8 472.2 479.7 535.4 548.3 513.1 462.2 302.2 303.5 302.0 405.9 433.0 446.5 366.8 368.3 360.7 470.8 475.2 526.4 478.6 473.6 434.4
50
300.7 300.0 300.2 437.5 451.7 461.6 366.4 363.7 365.3 469.1 467.6 512.8 439.8 429.4 418.4
V试验/% 生物质/ % 褐煤 烟煤 贫煤
V计算/% 褐煤 烟煤 贫煤 褐煤ຫໍສະໝຸດ C试验/% 烟煤 贫煤 褐煤
C计算/% 烟煤 贫煤
>—C=O( 400℃ )>—COOH( 200℃);
– 低分子化合物的裂解,是以脂肪结构的低分子化
合物为主,其受热后,可分解成挥发性产物。
一次热解产物的二次热解反应
裂解、脱氢反应:
加氢反应:
缩合反应:
桥键分解: —CH2—+H 2O → CO + 2H2 —CH2— + — O — →CO +H2
煤热解中的缩聚反应
• 胶质体固化过程的缩聚反应,主要是在热解生成的自由基之间的缩聚
,其结果生成半焦。半焦分解,残留物之间缩聚,生成焦炭。缩聚反
应是芳香结构脱氢。苯、萘、联苯和乙烯参加反应。
加成反应,具有共轭双烯及不饱和键的化合物,在加成时 进行环化反应。如:
CH2
煤热解机理及研究新进展
3.3.3 影响煤低温热解的关键因素 – 原料煤性质
按照热解终温的不同,煤的热解一般分为以下三类: 低温热解:500~700℃ 煤气、焦油和半焦; 中温热解:700~900℃,主要产品为城市煤气生产; 高温热解:1000℃左右,主要产品为焦炭。
• 第一阶段:干燥阶段,此时热解温度在300℃以下。原料煤在此阶段外 形没有变化,主要发生表面吸附、水蒸发,并放出原料中的吸附气体, 并有少量CO2、CH4、H2S及水蒸气产生。这个过程为吸热过程,主 要发生脱羰基反应。 • 第二阶段:低温热解阶段,此时热解温度为300~600℃。原料煤中有 机质开始发生变化,放出CO、CO2及水蒸气,生成热解水,产生焦 油,原料煤变软(??)并发生剧烈分解,放出大量挥发产物,绝大 部分焦油产生,形成半焦。这个过程主要发生解聚和分解反应。 • 第三阶段:中温热解阶段,此时热解温度为600~1000℃。在这个阶 段绝大部分焦油已经生成完毕,是焦炭的形成阶段。从半焦到焦炭, 析出大量的煤气,使固体产物的挥发分降低,密度增加,体积收缩, 形成碎块。700℃以下煤气的主要成分是CO、CO2和H2,当温度大于 700℃时,煤气的主要成分是氢气。这个过程以以缩聚反应为主。
高位发热量/ MJ/kg
元素分析w/%
Oad 35.57 Nad 0.85 Sad 0.14
生物质
65 40
293.3 569.3
17.85 20.20
褐煤
6.03
38.60
25.58
49.30
4.16
12.40
1.19
1.34
烟煤
40 40
645.5 575.3
25.41 23.78
5.79
34.81
• Carbonization is the process by which coal is heated and volatile products—both gaseous and liquid—are driven off, leaving a solid residue called char or coke.
100
质量百分含量/%
90 80 DTG 70 ty tmax ts 60 0 200 400 600 800 T/℃
质量变化率 /(%/min)
TG
8 6 4 2 0 0 200 400
褐煤
烟煤
贫煤
600
800
T/℃
生物质单独热解曲线
不同煤化程度煤单独热解曲线
质量变化率 /(%/min)
质量变化率/(%/min)
• 煤炭热解研究的重要性 • 煤炭热解发展的发展方向。
3.2 煤炭热解的分类
• 热解分类 – 按热解气氛分类:主要有惰性气氛热解、还原气氛(氢、甲烷、一氧化碳或 还原气体混合物等)热解,按是否存在催化剂,可以进一步分为催化热解、 催化加氢热解等。 – 按热解温度高低分类:主要有低温热解(500~650℃)、中温热解(650~ 800)、高温热解(900~1000)和超高温热解(>1200℃)。 – 按热源不同分类:主要有电加热热解、等离子体加热热解、微波加热热解、 热载体加热热解等。 – 按加热方式分类:主要有外热式热解,内热式热解和内外复合式热解。 – 按热载体类型不同分类:主要有固体热载体热解,气体热载体热解,以及固 体-气体复合载体热解等。 – 按反应器类型分类:主要有固定床、流化床、气流床,滚动床热解和输送床 热解等。 – 按反应器内压力大小分类:可分为常压热解和加压热解。 – 按热解速度高低分类:可分为慢速热解,快速热解(10~200℃/s)和闪速 热解(超过200℃/s升温速率)。
分解温度(oC)
10
20
30
40
挥发分(daf,%)
后期斜率接近
后期规律接近 初期差别明显 累积失重(%)
初期 斜率 差别 很大
煤质的影响
显微组分影响
– 入煤粒度:煤粒度的大小影响加热速度和挥发物
从煤粒内部的导出。
• 煤粒越小,则易于达到较快的加热速度,能增加初次
焦油产率,且煤粒内外温差小,挥发物从煤粒内部逸 出路径短,有利于减少焦油的二次裂解,从而提高初 次焦油的产率。 • 煤粒越大,对挥发物逸出阻力也有越大,则干馏过程 易于受传热或传质过程控制,靠强化外部传热难以实 现快速干馏,反而因内外温差增大,挥发物析出经过 温度较高的半焦壳层,致使焦油的二次裂解加剧,因
催化剂
煤与生物质等的共热解及耦合热解