高中物理总复习专题.

合集下载

高中物理知识点总结(7篇)

高中物理知识点总结(7篇)

高中物理知识点总结电场力做正功,电势能减小,电场力做负功,电势能增大,正电荷在电场中受力方向与场强方向一致,所以正电荷沿场强方向,电势能减小,负电荷在电场中受力方向与场强相反,所以负电荷沿场强方向,电势能增大,但电势都是沿场强方向减小。

1、原因电势能,电场力,功的关系与重力势能,重力,功的关系很相似。

E=mgh,重力做正功,重力势能减小。

电势能的原因就是电场力有做功的能力,凡是势能规律几乎都是如此,电场力正做功,电势能减小,电场力负做功,电势能增大,在做正功的过程中,电势能通过做功的形式把能量转化为其他形式的能,因而电势能减小。

静电力做的正功功=电势能的减小量,静电力做的负功=电势能的增加量(1)看电场力与带电粒子的位移方向夹角,小于____度为正功,大于____度为负功;(2)看电场力与带电粒子的速度方向夹角,小于____度为正功,大于____度为负功;(3)看电势能的变化,电势能增加,电场力做负功,电势能减小,电场力做正功。

怎么学习高中物理要想学好物理,第一条就要好好学习,就是要敢于吃苦,就是要珍惜时间,就是要不屈不挠地去学习。

____把“陌生”变成“透彻”!遇到陌生的概念,比如“势能”“电势”“电势差”等等先不要排斥,要先去真心接纳它,再通过听老师讲解、对比、应用理解它。

要有一种“不破楼兰誓不还”的决心和“打破沙锅问到底”的研究精神。

这样时间长了,应用多了,陌生的就变成了透彻的了。

3.要注意学习上的八个环节4.处理好听课和记笔记的关系有的同学从来就没有记笔记的习惯,这是不好的,特别是对于高中物理学习中是不行的。

俗话说“好脑子不如烂笔头”,听课时间有限,老师讲的内容转瞬即逝,我们对知识的记忆随时间延伸会逐渐遗忘,没有笔记我们以后就没有办法进行复习。

高中物理复习技巧1.模型归类做过一定量的物理题目之后,会发现很多题目其实思考方法是一样的,我们需要按物理模型进行分类,用一套方法解一类题目。

例如宏观的行星运动和微观的电荷在磁场中的偏转都属于匀速圆周运动,关键都是找出什么力提供了向心力;此外还有杠杆类的题目,要想象出力矩平衡的特殊情况,还有关于汽车启动问题的考虑方法其实同样适用于起重机吊重物等等。

高中物理复习资料

高中物理复习资料

高中物理复习资料精选高中物理复习资料高中物理专题复习资料专题复习(一)第一专题力与运动(1)知识梳理一、考点回顾1.物体怎么运动,取决于它的初始状态和受力情况。

牛顿运动定律揭示了力和运动的关系,关系如下表所示:2.力是物体运动状态变化的原因,反过来物体运动状态的改变反映出物体的受力情况。

从物体的受力情况去推断物体运动情况,或从物体运动情况去推断物体的受力情况,是动力学的两大基本问题。

3.处理动力学问题的一般思路和步骤是:①领会问题的情景,在问题给出的信息中,提取有用信息,构建出正确的物理模型;②合理选择研究对象;③分析研究对象的受力情况和运动情况;④正确建立坐标系;⑤运用牛顿运动定律和运动学的规律列式求解。

4.在分析具体问题时,要根据具体情况灵活运用隔离法和整体法,要善于捕捉隐含条件,要重视临界状态分析。

二、经典例题剖析1.长L的轻绳一端固定在O点,另一端拴一质量为m的小球,现使小球在竖直平面内作圆周运动,小球通过最低点和最高点时所受的绳拉力分别为T1和T2(速度分别为v0和v)。

求证:(1)T1-T2=6mg(2)v0≥gL证明:(1)由牛顿第二定律,在最低点和最高点分别有:T1-mg=mv0/L22 2T2+mg=mv/L 2 由机械能守恒得:mv0/2=mv/2+mg2L以上方程联立解得:T1-T2=6mg(2)由于绳拉力T2≥0,由T2+mg=mv/L可得v≥gL代入mv0/2=mv/2+mg2L得:v0≥gL点评:质点在竖直面内的圆周运动的问题是牛顿定律与机械能守恒应用的综合题。

加之小球通过最高点有极值限制。

这就构成了主要考查点。

2.质量为M的楔形木块静置在水平面上,其倾角为α的斜面上,一质量为m的物体正以加速度a下滑。

求水平面对楔形木块的弹力N 和摩擦力f。

222解析:首先以物体为研究对象,建立牛顿定律方程:N1‘=mgcosα mgsinα-f1’=ma,得:f1‘=m(gsinα-a)由牛顿第三定律,物体楔形木块有N1=N1’,f1=f1‘然后以楔形木块为研究对象,建立平衡方程:N=mg+N1cosα+f1sinα=Mg+mgcosα+mgsinα-masinα=(M+m)g-masinα 22f=N1sinα-f1cosα=mgcosαsinα-m(gsinα-a)cosα=macosα点评:质点在直线运动问题中应用牛顿定律,高考热点是物体沿斜面的运动和运动形式发生变化两类问题。

人教版高中物理必修2总复习课件3

人教版高中物理必修2总复习课件3

故可得
W
=
ma
×v22-v
2 2
2a
=
1 2
mv
2-
2
1 2
mv12


结论
定 1.内容: 合外力所做的功等于物体动能的变化。
理 2.表达式: W合=Ek2-Ek1
※ Ek2表示末动能,Ek1表示初动能
※ w:合外力所做的总功
方法一: w F合s cos
方法二: w w1 w2 w3 ...
vd v水

v
例 垂直于绳方向的旋转运动
2:

θ?

v⊥
滑 轮
?
θ
v
?
v∥
θ
v
沿绳方向的伸长或收缩运动
注意:沿绳的方向上各点
的速度大小相等
v
?


1、条件:

①具有一定的初速度;

②只受重力。
2、性质:
匀变速运动
3、处理方法:
分解为水平方向的匀速直线运动和 竖直方向的匀变速直线运动。


1、条件:

速 度
3、向心加速度的大小:
an=
v2 r
=

=
rω2 =
r4Tπ22


1、方向:始终指向圆心
力 向 2、向心力的大小:
心 力
3、Fr向n=心m力vr的2来= 源m:v沿ω半=径m方rω向的2 =协4Tmπ力22
匀速圆周运动:协力充当向心力

O圆


常 FT θ


的 匀
F合 O'

高中物理知识点总复习

高中物理知识点总复习

高中物理知识点总复习物理综合辅导有一位著名学者与青年学生谈起学习方法时,曾说过有名的两句话:“从薄到厚,从厚到薄”.如果把平时的教学以及单元复包等看作是从初步认识到逐渐深化、扩展的“从薄到厚”的过程,那么综合复习就是一个归纳、概括从厚到薄的过程。

通过综合复习,可以更完整地看到高中物理知识的全貌,掌握其主要内容、规律和方法,有利于从整体上提高分析问题、解决问题和研究问题的能力.Ⅰ、复习要点整理知识体系现行高中物理教材主要分:力、热、电、光、原子五个部分.综合复习中,既可以根据各部分的内容特点,分别整理出各自的体系或主要线索,也可以不受传统的五部分限制,重新归纳、整理。

例如,高中物理主要内容可概括为四大单元(物理实验与物理学史单元除外)。

(一)力和运动物体的运动变化(包括带电粒子在电场、磁场中的运动)与受力作用有关。

其中力的种类计有:重力(包括万有引力)、弹力、摩擦力、浮力、电场力、磁场力(分安培力和洛仑兹力)以及分子力(包括表面张力),核力等。

每种力有不同的产生原因及其特征。

物体的运动形式又可分为:平衡(包括静止、匀速直线运动、匀速转动)、匀变速运动(包括匀变速直线运动、平抛、斜抛)、匀速圆周运动、振动、波动等。

每一种运动形式有不同的物理条件及基本规律(或特征)。

力和运动的关系以五条重要规律为纽带联系起来。

(二)功和能1.功重力功、弹力功、摩擦力功、浮力功、电场力功、磁场力功、分子力功、核力功。

2. 能注意不同形式的能及能的转换与守恒。

3. 功能关系做功的过程就是能从一种形式转化为另一种形式的过程。

功是能的转化的量度。

(三)物质结构(四)应用技术的基础知识现行高中物理有关应用技术的基础知识有:声现象(乐音、噪声、共鸣等)、静电技术(静电平衡、静电屏蔽、电容储电等)、交流电应用(交流电产生、特征、规律、简单交流电路、三相交流电及其连接、变压器,远距离送电等)、无线电技术初步(电磁振荡产生、调制、发送、电谐振、检波、放大、整流等)、光路控制与成像(光的反射与折射定律、基本光学元件特性及常用光学仪器)、光谱与光谱分析、放射性及同位素、核反应堆等。

高中物理考试复习提纲

高中物理考试复习提纲

高中物理考试复习提纲1. 动力学
•牛顿第一定律和惯性
•牛顿第二定律和牛顿第三定律•加速度、力与质量的关系•简单机械系统和弹簧振子2. 能量与功
•功、能量与功率的概念
•动能与重力势能的转化
•弹性势能和机械能守恒定律•摩擦力对机械能的影响3. 光学
•光的直线传播和光线的反射•镜面反射和折射原理
•凸透镜成像规律
•光波的干涉、衍射和偏振4. 电学
•静电场与电荷分布
•库仑定律和电场强度计算
•平行板电容器及其容量计算
•安培环路定理和欧姆定律
5. 磁学
•磁感应强度与磁场线分布
•洛伦茨力及其应用
•右手螺旋法解决电流在磁场中受力问题•电磁感应与发电机原理
6. 热学
•热量和温度的概念
•能量守恒定律
•热平衡与热传导
•热力学第一、二定律
7. 原子物理
•原子结构和元素周期表
•辐射现象及其对物质的影响
•核反应和放射性衰变
•半衰期及其在实际中的应用
8. 波动
•机械波与电磁波的特点区别
•受迫振动与共振现象
•光的干涉和衍射规律
•声音与乐器的共鸣
以上是高中物理考试复习提纲的主要内容,包括了动力学、能量与功、光学、电学、磁学、热学、原子物理以及波动等重要知识点。

通过系统地复习这些内容,可以帮助同学们更好地准备物理考试,并取得良好成绩。

高中物理总复习提纲知识点超全

高中物理总复习提纲知识点超全

高中物理总复习提纲知识点超全力学:1.力和动力学:-力的定义和性质-牛顿三定律-力的合成和分解-质点的运动规律-牛顿运动定律-平衡和力的平衡条件-虚拟功和功率2.运动学:-位移、速度和加速度的概念和计算-直线运动的匀速和变速运动-抛体运动、自由落体运动-圆周运动、角速度和角加速度-力的作用下的运动3.力的合成和分解:-力的分解和合成的原理和方法-平面内的合力和分力-斜面上的力的分解-物体的平衡和力矩4.力学定律与公式:-牛顿第二定律和万有引力定律-弹力和摩擦力-弹簧振子和简谐振动-动量守恒定律和动量变化规律-势能、功和能量守恒定律热学:1.温度和热量:-温度的定义和测量-热平衡和热力学平衡状态-热量的传递和测量-热传导、热对流和热辐射2.热力学定律和热力学过程:-热力学第一定律和第二定律-等温、绝热和等容过程-理想气体的状态方程和理想气体定律-理想气体的内能和焓的改变-單純物质的相变3.热动平衡和热机:-热机的基本原理和热效率-卡诺循环和卡诺定理-热机的分类和工作原理光学:1.光的传播和反射:-光的传播和光速的测量-光的反射和反射率-镜面反射和球面镜原理-成像方程和光学仪器2.光的折射和透镜:-光的折射和折射定律-透明介质的折射率和全反射-薄透镜和球面透镜原理-成像方程和透镜组成像3.光的波动和光的干涉:-光的波动性和光的干涉-单缝干涉和多缝干涉-条纹间距和衍射极限-杨氏双缝干涉和牛顿环电学:1.静电场与电势:-电荷的性质和库仑定律-电场的概念和电场强度-静电场的叠加和电场线-电势能和电势差-等势线和电势的计算2.电流与电路:-电流的概念和电流强度-电阻、电压和电阻率-欧姆定律和电功率定律-简单电路的组成和分析-串联和并联电路的特性3.磁场与电磁感应:-磁场的概念和磁感应强度-磁场的叠加和磁力线-安培定律和洛仑兹力-磁场对电荷运动的影响-电磁感应和法拉第电磁感应定律以上是高中物理总复习提纲的一些主要知识点。

高三物理第二轮总复习全套精品(共10个专题)

高三物理第二轮总复习全套精品(共10个专题)

全册教案导学案说课稿试题高三物理二轮总复习全册教学案高三物理第二轮总复习目录第1专题力与运动 (1)第2专题动量和能量 (46)第3专题圆周运动、航天与星体问题 (76)第4专题带电粒子在电场和磁场中的运动 (94)第5专题电磁感应与电路的分析 (120)第6专题振动与波、光学、执掌、原子物理 (150)第7专题高考物理实验 (177)第8专题 (202)第9专题高中物理常见的物理模型 (221)第10专题计算题的答题规范与解析技巧 (240)第1专题 力与运动知识网络考点预测本专题复习三个模块的内容:运动的描述、受力分析与平衡、牛顿运动定律的运用.运动的描述与受力分析是两个相互独立的内容,它们通过牛顿运动定律才能连成一个有机的整体.虽然运动的描述、受力平衡在近几年都有独立的命题出现在高考中但由于理综考试题量的局限以及课改趋势,独立考查前两模块的命题在2013年高考中出现的概率很小,大部分高考卷中应该都会出现同时考查三个模块知识的试题,而且占不少分值.在综合复习这三个模块内容的时候,应该把握以下几点:1.运动的描述是物理学的重要基础,其理论体系为用数学函数或图象的方法来描述、推断质点的运动规律,公式和推论众多.其中,平抛运动、追及问题、实际运动的描述应为复习的重点和难点.2.无论是平衡问题,还是动力学问题,一般都需要进行受力分析,而正交分解法、隔离法与整体法相结合是最常用、最重要的思想方法,每年高考都会对其进行考查.3.牛顿运动定律的应用是高中物理的重要内容之一,与此有关的高考试题每年都有,题型有选择题、计算题等,趋向于运用牛顿运动定律解决生产、生活和科技中的实际问题.此外,它还经常与电场、磁场结合,构成难度较大的综合性试题.一、运动的描述 要点归纳(一)匀变速直线运动的几个重要推论和解题方法1.某段时间内的平均速度等于这段时间的中间时刻的瞬时速度,即v -t =v t 2. 2.在连续相等的时间间隔T 内的位移之差Δs 为恒量,且Δs =aT 2.3.在初速度为零的匀变速直线运动中,相等的时间T 内连续通过的位移之比为:s1∶s2∶s3∶…∶s n=1∶3∶5∶…∶(2n-1)通过连续相等的位移所用的时间之比为:t1∶t2∶t3∶…∶t n=1∶(2-1)∶(3-2)∶…∶(n-n-1).4.竖直上抛运动(1)对称性:上升阶段和下落阶段具有时间和速度等方面的对称性.(2)可逆性:上升过程做匀减速运动,可逆向看做初速度为零的匀加速运动来研究.(3)整体性:整个运动过程实质上是匀变速直线运动.5.解决匀变速直线运动问题的常用方法(1)公式法灵活运用匀变速直线运动的基本公式及一些有用的推导公式直接解决.(2)比例法在初速度为零的匀加速直线运动中,其速度、位移和时间都存在一定的比例关系,灵活利用这些关系可使解题过程简化.(3)逆向过程处理法逆向过程处理法是把运动过程的“末态”作为“初态”,将物体的运动过程倒过来进行研究的方法.(4)速度图象法速度图象法是力学中一种常见的重要方法,它能够将问题中的许多关系,特别是一些隐藏关系,在图象上明显地反映出来,从而得到正确、简捷的解题方法.(二)运动的合成与分解1.小船渡河设水流的速度为v1,船的航行速度为v2,河的宽度为d.(1)过河时间t仅由v2沿垂直于河岸方向的分量v⊥决定,即t=dv⊥,与v1无关,所以当v2垂直于河岸时,渡河所用的时间最短,最短时间t min=dv2.(2)渡河的路程由小船实际运动轨迹的方向决定.当v1<v2时,最短路程s min=d;当v1>v2时,最短路程s min=v1v2 d,如图1-1 所示.图1-12.轻绳、轻杆两末端速度的关系(1)分解法把绳子(包括连杆)两端的速度都沿绳子的方向和垂直于绳子的方向分解,沿绳子方向的分运动相等(垂直方向的分运动不相关),即v 1cos θ1=v 2cos_θ2.(2)功率法通过轻绳(轻杆)连接物体时,往往力拉轻绳(轻杆)做功的功率等于轻绳(轻杆)对物体做功的功率.3.平抛运动如图1-2所示,物体从O 处以水平初速度v 0抛出,经时间t 到达P 点.图1-2(1)加速度⎩⎪⎨⎪⎧ 水平方向:a x =0竖直方向:a y=g (2)速度⎩⎪⎨⎪⎧水平方向:v x =v 0竖直方向:v y =gt合速度的大小v =v 2x +v 2y =v 20+g 2t 2设合速度的方向与水平方向的夹角为θ,有:tan θ=v y v x =gt v 0,即θ=arctan gt v 0. (3)位移⎩⎪⎨⎪⎧ 水平方向:s x =v 0t 竖直方向:s y =12gt2 设合位移的大小s =s 2x +s 2y =(v 0t )2+(12gt 2)2 合位移的方向与水平方向的夹角为α,有: tan α=s y s x =12gt 2v 0t =gt 2v 0,即α=arctan gt 2v 0要注意合速度的方向与水平方向的夹角不是合位移的方向与水平方向的夹角的2倍,即θ≠2α,而是tan θ=2tan α.(4)时间:由s y =12gt 2得,t =2s y g,平抛物体在空中运动的时间t 只由物体抛出时离地的高度s y 决定,而与抛出时的初速度v 0无关.(5)速度变化:平抛运动是匀变速曲线运动,故在相等的时间内,速度的变化量(g =Δv Δt)相等,且必沿竖直方向,如图1-3所示.图1-3任意两时刻的速度与速度的变化量Δv 构成直角三角形,Δv 沿竖直方向.注意:平抛运动的速率随时间并不均匀变化,而速度随时间是均匀变化的.(6)带电粒子(只受电场力的作用)垂直进入匀强电场中的运动与平抛运动相似,出电场后做匀速直线运动,如图1-4所示.图1-4故有:y =(L ′+L 2)·tan α=(L ′+L 2)·qUL dm v 20. 热点、重点、难点(一)直线运动高考中对直线运动规律的考查一般以图象的应用或追及问题出现.这类题目侧重于考查学生应用数学知识处理物理问题的能力.对于追及问题,存在的困难在于选用哪些公式来列方程,作图求解,而熟记和运用好直线运动的重要推论往往是解决问题的捷径.●例1 如图1-5甲所示,A 、B 两辆汽车在笔直的公路上同向行驶.当B 车在A 车前s =84 m 处时,B 车的速度v B =4 m/s ,且正以a =2 m/s 2的加速度做匀加速运动;经过一段时间后,B 车的加速度突然变为零.A 车一直以v A =20 m/s 的速度做匀速运动,从最初相距84 m 时开始计时,经过t 0=12 s 后两车相遇.问B 车加速行驶的时间是多少?图1-5甲【解析】设B 车加速行驶的时间为t ,相遇时A 车的位移为:s A =v A t 0B 车加速阶段的位移为:s B 1=v B t +12at 2 匀速阶段的速度v =v B +at ,匀速阶段的位移为:s B 2=v (t 0-t )相遇时,依题意有:s A =s B 1+s B 2+s联立以上各式得:t 2-2t 0t -2[(v B -v A )t 0+s ]a =0 将题中数据v A =20 m/s ,v B =4 m/s ,a =2 m/s 2,t 0=12 s ,代入上式有:t 2-24t +108=解得:t 1=6 s ,t 2=18 s(不合题意,舍去)因此,B 车加速行驶的时间为6 s .[答案] 6 s【点评】①出现不符合实际的解(t 2=18 s)的原因是方程“s B 2=v (t 0-t )”并不完全描述B 车的位移,还需加一定义域t ≤12 s .②解析后可以作出v A -t 、v B -t 图象加以验证.图1-5乙根据v -t 图象与t 围成的面积等于位移可得,t =12 s 时,Δs =[12×(16+4)×6+4×6] m =84 m .(二)平抛运动平抛运动在高考试题中出现的几率相当高,或出现于力学综合题中,如2008年北京、山东理综卷第24题;或出现于带电粒子在匀强电场中的偏转一类问题中,如2008年宁夏理综卷第24题、天津理综卷第23题;或出现于此知识点的单独命题中,如2009年高考福建理综卷第20题、广东物理卷第17(1)题、2008年全国理综卷Ⅰ第14题.对于这一知识点的复习,除了要熟记两垂直方向上的分速度、分位移公式外,还要特别理解和运用好速度偏转角公式、位移偏转角公式以及两偏转角的关系式(即tan θ=2tan α).●例2 图1-6甲所示,m 为在水平传送带上被传送的小物体(可视为质点),A 为终端皮带轮.已知皮带轮的半径为r ,传送带与皮带轮间不会打滑.当m 可被水平抛出时,A 轮每秒的转数最少为( )图1-6甲A .12πg rB .g rC .grD .12πgr 【解析】解法一 m 到达皮带轮的顶端时,若m v 2r≥mg ,表示m 受到的重力小于(或等于)m 沿皮带轮表面做圆周运动的向心力,m 将离开皮带轮的外表面而做平抛运动又因为转数n =ω2π=v 2πr所以当v ≥gr ,即转数n ≥12πg r时,m 可被水平抛出,故选项A 正确. 解法二 建立如图1-6乙所示的直角坐标系.当m 到达皮带轮的顶端有一速度时,若没有皮带轮在下面,m 将做平抛运动,根据速度的大小可以作出平抛运动的轨迹.若轨迹在皮带轮的下方,说明m 将被皮带轮挡住,先沿皮带轮下滑;若轨迹在皮带轮的上方,说明m 立即离开皮带轮做平抛运动.图1-6乙又因为皮带轮圆弧在坐标系中的函数为:当y 2+x 2=r 2初速度为v 的平抛运动在坐标系中的函数为:y =r -12g (x v )2 平抛运动的轨迹在皮带轮上方的条件为:当x >0时,平抛运动的轨迹上各点与O 点间的距离大于r ,即y 2+x 2>r 即[r -12g (x v )2]2+x 2>r 解得:v ≥gr又因皮带轮的转速n 与v 的关系为:n =v 2πr 可得:当n ≥12πg r时,m 可被水平抛出. [答案] A【点评】“解法一”应用动力学的方法分析求解;“解法二”应用运动学的方法(数学方法)求解,由于加速度的定义式为a =Δv Δt ,而决定式为a =F m,故这两种方法殊途同归. ★同类拓展1 高台滑雪以其惊险刺激而闻名,运动员在空中的飞跃姿势具有很强的观赏性.某滑雪轨道的完整结构可以简化成如图1-7所示的示意图.其中AB 段是助滑雪道,倾角α=30°,BC 段是水平起跳台,CD 段是着陆雪道,AB 段与BC 段圆滑相连,DE 段是一小段圆弧(其长度可忽略),在D 、E 两点分别与CD 、EF 相切,EF 是减速雪道,倾角θ=37°.轨道各部分与滑雪板间的动摩擦因数均为μ=0.25,图中轨道最高点A 处的起滑台距起跳台BC 的竖直高度h =10 m .A 点与C 点的水平距离L 1=20 m ,C 点与D 点的距离为32.625 m .运动员连同滑雪板的总质量m =60 kg .滑雪运动员从A 点由静止开始起滑,通过起跳台从C 点水平飞出,在落到着陆雪道上时,运动员靠改变姿势进行缓冲使自己只保留沿着陆雪道的分速度而不弹起.除缓冲外运动员均可视为质点,设运动员在全过程中不使用雪杖助滑,忽略空气阻力的影响,取重力加速度g =10 m/s 2,sin 37°=0.6,cos 37°=0.8.求:图1-7(1)运动员在C 点水平飞出时的速度大小.(2)运动员在着陆雪道CD 上的着陆位置与C 点的距离. (3)运动员滑过D 点时的速度大小.【解析】(1)滑雪运动员从A 到C 的过程中,由动能定理得:mgh -μmg cos αhsin α-μmg (L 1-h cot α)=12m v 2C解得:v C =10 m/s .(2)滑雪运动员从C 点水平飞出到落到着陆雪道的过程中做平抛运动,有: x =v C t y =12gt 2 yx=tan θ 着陆位置与C 点的距离s =x cos θ解得:s =18.75 m ,t =1.5 s .(3)着陆位置到D 点的距离s ′=13.875 m ,滑雪运动员在着陆雪道上做匀加速直线运动.把平抛运动沿雪道和垂直雪道分解,可得着落后的初速度v 0=v C cos θ+gt sin θ加速度为:mg sin θ-μmg cos θ=ma运动到D 点的速度为:v 2D =v 20+2as ′ 解得:v D =20 m/s .[答案] (1)10 m/s (2)18.75 m (3)20 m/s 互动辨析 在斜面上的平抛问题较为常见,“位移与水平面的夹角等于倾角”为着落条件.同学们还要能总结出距斜面最远的时刻以及这一距离.二、受力分析要点归纳(一)常见的五种性质的力(二)力的运算、物体的平衡1.力的合成与分解遵循力的平行四边形定则(或力的三角形定则).2.平衡状态是指物体处于匀速直线运动或静止状态,物体处于平衡状态的动力学条件是:F合=0或F x=0、F y=0、F z=0.注意:静止状态是指速度和加速度都为零的状态,如做竖直上抛运动的物体到达最高点时速度为零,但加速度等于重力加速度,不为零,因此不是平衡状态.3.平衡条件的推论(1)物体处于平衡状态时,它所受的任何一个力与它所受的其余力的合力等大、反向.(2)物体在同一平面上的三个不平行的力的作用下处于平衡状态时,这三个力必为共点力.物体在三个共点力的作用下而处于平衡状态时,表示这三个力的有向线段组成一封闭的矢量三角形,如图1-8所示.图1-84.共点力作用下物体的平衡分析热点、重点、难点(一)正交分解法、平行四边形法则的应用1.正交分解法是分析平衡状态物体受力时最常用、最主要的方法.即当F合=0时有:F x合=0,F y合=0,F z合=0.2.平行四边形法有时可巧妙用于定性分析物体受力的变化或确定相关几个力之比.●例3举重运动员在抓举比赛中为了减小杠铃上升的高度和发力,抓杠铃的两手间要有较大的距离.某运动员成功抓举杠铃时,测得两手臂间的夹角为120°,运动员的质量为75 kg,举起的杠铃的质量为125 kg,如图1-9甲所示.求该运动员每只手臂对杠铃的作用力的大小.(取g=10 m/s2)图1-9甲【分析】由手臂的肌肉、骨骼构造以及平时的用力习惯可知,伸直的手臂主要沿手臂方向发力.取手腕、手掌为研究对象,握杠的手掌对杠有竖直向上的弹力和沿杠向外的静摩擦力,其合力沿手臂方向,如图1-9乙所示.图1-9乙【解析】手臂对杠铃的作用力的方向沿手臂的方向,设该作用力的大小为F,则杠铃的受力情况如图1-9丙所示图1-9丙由平衡条件得:2F cos 60°=mg解得:F=1250 N.[答案] 1250 N●例4两个可视为质点的小球a和b,用质量可忽略的刚性细杆相连放置在一个光滑的半球面内,如图1-10甲所示.已知小球a和b的质量之比为3,细杆长度是球面半径的 2 倍.两球处于平衡状态时,细杆与水平面的夹角θ是[2008年高考·四川延考区理综卷]()图1-10甲A.45°B.30°C.22.5°D.15°【解析】解法一设细杆对两球的弹力大小为T,小球a、b的受力情况如图1-10乙所示图1-10乙其中球面对两球的弹力方向指向圆心,即有: cos α=22R R =22解得:α=45°故F N a 的方向为向上偏右,即β1=π2-45°-θ=45°-θF N b 的方向为向上偏左,即β2=π2-(45°-θ)=45°+θ两球都受到重力、细杆的弹力和球面的弹力的作用,过O 作竖直线交ab 于c 点,设球面的半径为R ,由几何关系可得:m a g Oc =F N aR m b g Oc =F N bR解得:F N a =3F N b取a 、b 及细杆组成的整体为研究对象,由平衡条件得: F N a ·sin β1=F N b ·sin β2 即 3F N b ·sin(45°-θ)=F N b ·sin(45°+θ) 解得:θ=15°.解法二 由几何关系及细杆的长度知,平衡时有: sin ∠Oab =22R R =22故∠Oab =∠Oba =45°再设两小球及细杆组成的整体重心位于c 点,由悬挂法的原理知c 点位于O 点的正下方,且ac bc =m am b= 3即R ·sin(45°-θ)∶R ·sin(45°+θ)=1∶ 3解得:θ=15°. [答案] D【点评】①利用平行四边形(三角形)定则分析物体的受力情况在各类教辅中较常见.掌握好这种方法的关键在于深刻地理解好“在力的图示中,有向线段替代了力的矢量”.②在理论上,本题也可用隔离法分析小球a 、b 的受力情况,根据正交分解法分别列平衡方程进行求解,但是求解三角函数方程组时难度很大.③解法二较简便,但确定重心的公式ac bc =m am b=3超纲.(二)带电粒子在复合场中的平衡问题 在高考试题中,也常出现带电粒子在复合场中受力平衡的物理情境,出现概率较大的是在正交的电场和磁场中的平衡问题及在电场和重力场中的平衡问题.在如图1-11所示的速度选择器中,选择的速度v =EB ;在如图1-12所示的电磁流量计中,流速v =u Bd ,流量Q =πdu 4B.图1-11 图1-12●例5 在地面附近的空间中有水平方向的匀强电场和匀强磁场,已知磁场的方向垂直纸面向里,一个带电油滴沿着一条与竖直方向成α角的直线MN 运动,如图1-13所示.由此可判断下列说法正确的是( )图1-13A .如果油滴带正电,则油滴从M 点运动到N 点B .如果油滴带正电,则油滴从N 点运动到M 点C .如果电场方向水平向右,则油滴从N 点运动到M 点D .如果电场方向水平向左,则油滴从N 点运动到M 点【解析】油滴在运动过程中受到重力、电场力及洛伦兹力的作用,因洛伦兹力的方向始终与速度方向垂直,大小随速度的改变而改变,而电场力与重力的合力是恒力,所以物体做匀速直线运动;又因电场力一定在水平方向上,故洛伦兹力的方向是斜向上方的,因而当油滴带正电时,应该由M 点向N 点运动,故选项A 正确、B 错误.若电场方向水平向右,则油滴需带负电,此时斜向右上方与MN 垂直的洛伦兹力对应粒子从N 点运动到M 点,即选项C 正确.同理,电场方向水平向左时,油滴需带正电,油滴是从M 点运动到N 点的,故选项D 错误.[答案] AC 【点评】对于带电粒子在复合场中做直线运动的问题要注意受力分析.因为洛伦兹力的方向与速度的方向垂直,而且与磁场的方向、带电粒子的电性都有关,分析时更要注意.本题中重力和电场力均为恒力,要保证油滴做直线运动,两力的合力必须与洛伦兹力平衡,粒子的运动就只能是匀速直线运动.★同类拓展2 如图1-14甲所示,悬挂在O 点的一根不可伸长的绝缘细线下端挂有一个带电荷量不变的小球A .在两次实验中,均缓慢移动另一带同种电荷的小球B .当B 到达悬点O 的正下方并与A 在同一水平线上,A 处于受力平衡时,悬线偏离竖直方向的角度为θ.若两次实验中B 的电荷量分别为q 1和q 2,θ分别为30°和45°,则q 2q 1为 [2007年高考·重庆理综卷]( )图1-14甲A.2B.3C.23D.3 3【解析】对A球进行受力分析,如图1-14 乙所示,图1-14乙由于绳子的拉力和点电荷间的斥力的合力与A球的重力平衡,故有:F电=mg tan θ,又F电=k qQ Ar2.设绳子的长度为L,则A、B两球之间的距离r=L sin θ,联立可得:q=mL2g tan θsin2θkQ A,由此可见,q与tan θsin 2θ成正比,即q2q1=tan 45°sin245°tan 30°sin230°=23,故选项C正确.[答案] C互动辨析本题为带电体在重力场和电场中的平衡问题,解题的关键在于:先根据小球的受力情况画出平衡状态下的受力分析示意图;然后根据平衡条件和几何关系列式,得出电荷量的通解表达式,进而分析求解.本题体现了新课标在知识考查中重视方法渗透的思想.三、牛顿运动定律的应用要点归纳(一)深刻理解牛顿第一、第三定律1.牛顿第一定律(惯性定律)一切物体总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止.(1)理解要点①运动是物体的一种属性,物体的运动不需要力来维持.②它定性地揭示了运动与力的关系:力是改变物体运动状态的原因,是使物体产生加速度的原因.③牛顿第一定律是牛顿第二定律的基础,不能认为它是牛顿第二定律合外力为零时的特例.牛顿第一定律定性地给出了力与运动的关系,第二定律定量地给出力与运动的关系.(2)惯性:物体保持原来的匀速直线运动状态或静止状态的性质叫做惯性.①惯性是物体的固有属性,与物体的受力情况及运动状态无关.②质量是物体惯性大小的量度.2.牛顿第三定律(1)两个物体之间的作用力和反作用力总是大小相等,方向相反,作用在一条直线上,可用公式表示为F=-F′.(2)作用力与反作用力一定是同种性质的力,作用效果不能抵消.(3)牛顿第三定律的应用非常广泛,凡是涉及两个或两个以上物体的物理情境、过程的解答,往往都需要应用这一定律.(二)牛顿第二定律1.定律内容物体的加速度a跟物体所受的合外力F合成正比,跟物体的质量m成反比.2.公式:F合=ma理解要点①因果性:F合是产生加速度a的原因,它们同时产生,同时变化,同时存在,同时消失.②方向性:a与F合都是矢量,方向严格相同.③瞬时性和对应性:a为某时刻某物体的加速度,F合是该时刻作用在该物体上的合外力.3.应用牛顿第二定律解题的一般步骤:(1)确定研究对象;(2)分析研究对象的受力情况,画出受力分析图并找出加速度的方向;(3)建立直角坐标系,使尽可能多的力或加速度落在坐标轴上,并将其余的力或加速度分解到两坐标轴上;(4)分别沿x轴方向和y轴方向应用牛顿第二定律列出方程;(5)统一单位,计算数值.热点、重点、难点一、正交分解法在动力学问题中的应用当物体受到多个方向的外力作用产生加速度时,常要用到正交分解法.1.在适当的方向建立直角坐标系,使需要分解的矢量尽可能少.2.F x合=ma x合,F y合=ma y合,F z合=ma z合.3.正交分解法对本章各类问题,甚至对整个高中物理来说都是一重要的思想方法.●例6如图1-15甲所示,在风洞实验室里,一根足够长的细杆与水平面成θ=37°固定,质量m=1 kg的小球穿在细杆上静止于细杆底端O点.现有水平向右的风力F作用于小球上,经时间t 1=2 s 后停止,小球沿细杆运动的部分v -t 图象如图1-15乙所示.试求:(取g =10 m/s 2,sin 37°=0.6,cos 37°=0.8)图1-15(1)小球在0~2 s 内的加速度a 1和2~4 s 内的加速度a 2.(2)风对小球的作用力F 的大小.【解析】(1)由图象可知,在0~2 s 内小球的加速度为:a 1=v 2-v 1t 1=20 m/s 2,方向沿杆向上 在2~4 s 内小球的加速度为:a 2=v 3-v 2t 2=-10 m/s 2,负号表示方向沿杆向下. (2)有风力时的上升过程,小球的受力情况如图1-15丙所示图1-15丙在y 方向,由平衡条件得:F N1=F sin θ+mg cos θ在x 方向,由牛顿第二定律得:F cos θ-mg sin θ-μF N1=ma1停风后上升阶段,小球的受力情况如图1-15丁所示图1-15丁在y方向,由平衡条件得:F N2=mg cos θ在x方向,由牛顿第二定律得:-mg sin θ-μF N2=ma2联立以上各式可得:F=60 N.【点评】①斜面(或类斜面)问题是高中最常出现的物理模型.②正交分解法是求解高中物理题最重要的思想方法之一.二、连接体问题(整体法与隔离法)高考卷中常出现涉及两个研究对象的动力学问题,其中又包含两种情况:一是两对象的速度相同需分析它们之间的相互作用,二是两对象的加速度不同需分析各自的运动或受力.隔离(或与整体法相结合)的思想方法是处理这类问题的重要手段.1.整体法是指当连接体内(即系统内)各物体具有相同的加速度时,可以把连接体内所有物体组成的系统作为整体考虑,分析其受力情况,运用牛顿第二定律对整体列方程求解的方法.2.隔离法是指当研究对象涉及由多个物体组成的系统时,若要求连接体内物体间的相互作用力,则应把某个物体或某几个物体从系统中隔离出来,分析其受力情况及运动情况,再利用牛顿第二定律对隔离出来的物体列式求解的方法.3.当连接体中各物体运动的加速度相同或要求合外力时,优先考虑整体法;当连接体中各物体运动的加速度不相同或要求物体间的作用力时,优先考虑隔离法.有时一个问题要两种方法结合起来使用才能解决.●例7如图1-16所示,在光滑的水平地面上有两个质量相等的物体,中间用劲度系数为k的轻质弹簧相连,在外力F1、F2的作用下运动.已知F1>F2,当运动达到稳定时,弹簧的伸长量为()图1-16A .F 1-F 2kB .F 1-F 22kC .F 1+F 22kD .F 1+F 2k【解析】取A 、B 及弹簧整体为研究对象,由牛顿第二定律得:F 1-F 2=2ma取B 为研究对象:kx -F 2=ma(或取A 为研究对象:F 1-kx =ma )可解得:x =F 1+F 22k. [答案] C【点评】①解析中的三个方程任取两个求解都可以.②当地面粗糙时,只要两物体与地面的动摩擦因数相同,则A 、B 之间的拉力与地面光滑时相同.★同类拓展3 如图1-17所示,质量为m 的小物块A 放在质量为M 的木板B 的左端,B 在水平拉力的作用下沿水平地面匀速向右滑动,且A 、B 相对静止.某时刻撤去水平拉力,经过一段时间,B 在地面上滑行了一段距离x ,A 在B 上相对于B 向右滑行了一段距离L (设木板B 足够长)后A 和B 都停了下来.已知A 、B 间的动摩擦因数为μ1,B 与地面间的动摩擦因数为μ2,且μ2>μ1,则x 的表达式应为( )图1-17A .x =M m LB .x =(M +m )L mC .x =μ1ML (μ2-μ1)(m +M )D .x =μ1ML (μ2+μ1)(m +M ) 【解析】设A 、B 相对静止一起向右匀速运动时的速度为v ,撤去外力后至停止的过程中,A 受到的滑动摩擦力为:f 1=μ1mg其加速度大小a 1=f 1m=μ1g B 做减速运动的加速度大小a 2=μ2(m +M )g -μ1mg M由于μ2>μ1,所以a 2>μ2g >μ1g =a 1即木板B 先停止后,A 在木板上继续做匀减速运动,且其加速度大小不变对A 应用动能定理得:-f 1(L +x )=0-12m v 2 对B 应用动能定理得:μ1mgx -μ2(m +M )gx =0-12M v 2 解得:x =μ1ML (μ2-μ1)(m +M ). [答案] C【点评】①虽然使A 产生加速度的力由B 施加,但产生的加速度a 1=μ1g 是取大地为参照系的.加速度是相对速度而言的,所以加速度一定和速度取相同的参照系,与施力物体的速度无关.②动能定理可由牛顿第二定律推导,特别对于匀变速直线运动,两表达式很容易相互转换.三、临界问题●例8 如图1-18甲所示,滑块A 置于光滑的水平面上,一细线的一端固定于倾角为45°、质量为M 的光滑楔形滑块A 的顶端P 处,细线另一端拴一质量为m 的小球B .现对滑。

高中物理专题14热学总复习课件

高中物理专题14热学总复习课件

pA
3

T2=540K时,水银高度差为15.2cm
(2)从T0=300k升到T,体积为V0,压强为pA,等压过程
T=
V 0T 0 V A1
=
V0 300
2 3
V
0
=450K

T1=400K<450K,pA1=pA=p0,水银柱的高度差为0
从T=450K升高到T2=540K为等容过程
p A = p A2
(2010·广东)图1422是密闭的气缸,外力推动活塞P压缩 气体,对缸内气体做功800J,同时气体向外界放热200J, 缸内气体的() A.温度升高,内能增加600J B.温度升高,内能减少200J C.温度降低,内能增加600J D.温度降低,内能减少200J
图1422
由能量守恒,△E=Q+W=-200J+800J=600J,内能 增加600J,则温度一定升高.
分子动理论问题
(2010 湖 北 武 汉 模 拟 ) 已 知 地 球 的 半 径 为 6.4× 103km,水的摩尔质量为1.8×10-2 kg/mol,阿伏加德罗 常数为6.02×1023 mol,设想将1kg水均匀地分布在地球 表面,估算1cm2的地球表面上分布的水分子数目约为 () A.7×103个 B.7×103个 C.7×1010个 D. 7× 1012个
图 14-1-1
分子间距等于r0时分子势能最小,即r1=r2.当r小于r1时 分子力表现为斥力;当r大于r1小于r2时分子力表现为 斥力;当r大于r2时分子力表现为引力,A错BC对.在r 由r1变到r2的过程中,分子斥力做正功分子势能减小, D错误.
气体状态与内能的变化
用隔板将一绝热容器隔成A和B两部分,A 中盛有一定质量的理想气体,B为真空(如 图1421①).现把隔板抽去,A中的气体自
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3
牛顿第二定律主要讲的是: 物体在力的作用下产生加速
度,物体的质量﹑力﹑加速度三 者的关系为 F=ma。这里要注意 六点:瞬时性﹑矢量性﹑力是几 个力的合力﹑如有系统要会区分 内力和外力﹑物理量统一用国际 单位﹑牛顿定律的适用范围是宏 观低速。
4
牛顿第三定律主要讲的是: 两个相互作用的物体受到
的作用力和反作用力的关系。 除了大小相等,方向相反,作 用在同一直线的特征之外,要 注意是同时出现,同时消失, 同种性质,分别作用在两个物 体上,不是一对平衡力。
25
下面让我们一起分析三个综合性较强的例题。
例题一:在光滑的水平面上放着两块长度相同, 质量分别为M1和M2的木板,在两木板的左端 各放一个大小,形状,质量完全相同的物块 m,如图所示。开始均静止,若在两物块上 各作用一水平恒力F1和F2,当物块与木板分 离时,两木板所获得的速度分别为v1和v2, 又知物块与两木板的滑动摩擦系数相同,则 下列说法中正确的是:
大家好
1
高中物理总复习专题
第一讲:力和运动
主讲老师:陈伯英
2005.03.13
2
这部分内容主要是讲牛顿运动 三定律及其应用。
牛顿第一定律主要有三点含义: 物体如果不受力,就保持原 有的静止和匀速直线运动状 态;物体如果受到力,运动 状态就要发生改变;任何物 体在任何情况下都有惯性, 惯性的大小由质量决定。
A.若F1 = F2 , M1 > M2 B.若F1 = F2 , M1 < M2 C.若M1 = M2, F1 > F2 D.若M1 = M2, F1 < F2
则v1 > v2. 则v1 > v2. 则v1 > v2. 则v1 > v2.
26
分析与解答:该题的本质是探究v1 > v2的 条件。
m的加速度am=(F-μmg)/m,M的加 速度aM = μmg/M,且am > aM。
情景如图:如系统向右匀速,球受三个 力:重力G,拉力T,支持力N,三个 力的合力为零。当系统向右加速,且 a逐渐变大,则拉力T变大,支持力N 变小;当a大到某值,N减小至零;当 a再增大,球就要脱离斜面飘起,且 拉力T的方向和大小都要改变。
17
解题的思路是: 先要抓住质变,即临界状态,求出 N=0时的加速度a0大小。
长度改变,则弹力改变,侧壁的弹 力相当于是钢性绳,在形变极小时, 它的弹力大小可以在瞬间发生突变。 小车向右加速时,弹簧长度没有变, N2不变,N1变大,选项B正确。小车 向左加速时,要考虑两种情况,一 种是物块与左壁不脱离,一种是物 块与左壁脱离,根据题意,C,D选 项都正确。
8
在处理力和加速度的瞬时关系时, 要注意一点:绳和弹簧有区别。弹簧 内的弹力与形变的关系符合胡克定律, 绳受外力也要伸长,只是伸长量很微 小。绳相当于是一根劲度极大的钢质 硬弹簧。所以我们把绳可抽象为钢性 绳,它只要有极微小的形变,就可以 产生足够大的弹力。
两者的重要区别在于:钢性绳可 以在瞬间,长度不变的情况下,完成 弹力发生突变。而弹簧的弹力不能在 瞬间发生突变。
分析连接体问题一般采用的方法是:隔 离法和整体法。
22
比如在光滑的水平面上,有A,B两个 物体,质量分别为mA和mB,用细线相 连,在水平外力F作用下匀加速运动, 求加速度a和细线的拉力T。
以A为研究对象:F-T= mA a
以B为研究对象:T= mB a
以系统为研究对象:F=( mA+ mB)a
即a= F FTT
29
例题三:物体A如图所示,静止在台秤 的 质 弹秤量簧盘m的B=劲B上1度.,5系kAg数的,质K弹=量簧8m0的0A=N质/1m0量。.5忽现kg略给,不AB施的计, 加一个竖直向上的力F,使它向上做 匀加速直线运动。已知力F在t=0.2s 内是变力,在0.2s后是恒力。求F的 最大值与最小值。
20
例8,分析当系统分别向右, 向左,向上加速三种情况时, 两绳受力的变化情况。
分析与解答:
系统向右加速,斜绳拉力不变, 水平绳拉力变大。
系统向左加速,斜绳拉力不变, 水平绳拉力变小。
系统向上加速,合力向上,可 以分析得到,斜绳和水平绳 拉力都变大。
21
四.连接体问题
研究对象是两个以上的物体所组成的系 统就称之为连接体,凡是系统以外的 其他物体对系统的作用力都是外力, 系统内各物体之间的作用力就是内力, 内力不改变系统的运动状态。
分析与解答:超重与失重的一般题型为物 体的质量﹑重力不变,弹力的大小发生改 变。此题是一种变形,题意是举力不变, 物体的质量﹑重力改变。第一空是求质量,
应列式:800-F=80×2.5,得到F=
600N,m=60kg。第二空求加速度,应列 式:600-400=40a,得到a=5 m/s2。
16
三.量变﹑质变和临界状态
mAmB mA mB
TmBa mB F mAmB
23
例9:如图所示,在光滑的水平面上有甲,乙两个物 体,在水平力F1和F2的作用下运动,已知F1<F2, 以下说法中正确的是
(A)若撤去F1,则甲的加速度一定增大 (B)若撤去F2,则乙的加速度一定增大 (C) 若撤去F1,则甲对乙的作用力一定减小 (D)若撤去F2,则乙对甲的作用力一定减小
12
二.超重与失重
超重即视重大于实重,F>mg,合力向上, 加速度向上,分为向上加速和向下减速 两种。
失重即视重小于实重,F<mg,合力向下, 加速度向下,分为向下加速和向上减速 两种。
完全失重即视重为零,F=0,合力为mg, 加速度为a=g。
(F一般为弹力,大小即为视重)
13
例5,一重球从高处下落,如图所 示,到a点时接触弹簧,压缩弹 簧至最低点位置b,后又被弹簧 弹起,那么重球从a至b的运动 过程中,球受到的合力怎么变 化?加速度怎么变化?速度怎 么变化?
10
例4,如图所示,小车内左边有一物块被右边 的弹簧压紧。小车水平匀速时物块与小车左 壁的压力为N1,弹簧与小车右壁的压力为N2, 当小车水平变速运动时,下列几种情况可能 成立的是: A. 小车向右加速,N1变大,N2变小 B. 小车向右加速,N1变大,N2不变 C. 小车向左加速,N1变小,N2不变 D. 小车向左加速,N1为零,N2变大
根据m的 受力情况,受到恒定 的重力G和大小可以不断改变的N力, 合力产生加速度,它决定了M的加速 度。M的加速度方向有个范围,如图 中竖直向下与和斜面垂直向上之间 角范围内。(不包括与斜面垂直向 上的方向)M的加速度a的大小要随 方向的改变而改变,大小和方向之 间有一一对应的数量关系。只要M的 加速度满足以上条件,m和M就能一 起运动,又保持相对静止。
竖直方向Tsinθ=mg, 水平方向Tcosθ=ma0, 则tgθ=g/a0 , a0=g/tgθ
18
如则实应际按加受速三度个a力小列于式a0解,题球;受三个力,
竖直方向Tsinθ+Ncosθ=mg
水平方向Tcosθ-Nsinθ=ma 如要实按际受加两速个度力a列大式于解a0题,;球只受两个力,
竖直方向Tsin=mg 水平方向Tcos=ma
分析与解答:因为F1<F2,所以甲乙向左加速。撤去 F1,甲乙向左加速度变大,以乙为研究对象,乙所 受合力增大,F2不变,则甲对乙的作用力一定减小。 所以选项A,C正确。若撤去F2,甲乙向右加速,以 甲为研究对象,合力向右,F1不变,乙对甲的作用 力一定减小。所以选项D正确。若撤去F2,乙受的合 力变大,变小的可能都存在,所以选项B错误。
24
例10:如图所示,一根轻弹簧上端固定,下端 挂一质量为m的平盘,盘中有一物体质量为M。 盘静止时,弹簧的长度比其自然长度伸长了 L。现向下拉盘,使弹簧再伸长ΔL后停止。 然后松手放盘,设弹簧总处于弹性限度内, 则刚松手时,盘对物体的支持力等于多大?
分析与解答:∵向下再伸长ΔL则作用力为kΔL。松手后, kΔL=(m+M)a ∵kL=(m+M)g,∴ ΔL/L=a/g,则a=ΔL·g/L 对物体M而言,松手后向上作a的运动,得到N-Mg=Ma, N=M(g+a)=M(g+ ΔL·g/L)。
9
例3:如图,在F作用下,两球在光滑水平面上 向右匀加速运动。已知F=3N,mA=1kg,mB= 2kg。求:当撤去F力的瞬间两种情况中aA,aB 分别为多少?
分析与解答:在F力作用下,两球向右匀加速 的a=1m/s2,弹簧和绳的力都为2N。撤去F力 瞬时,弹簧的弹力仍为2N,aA大小为2 m/s2, 方向向左,而aB保持不变,大小为1m/s2,方 向向左;撤去F力瞬时,绳的弹力立刻发生突 变,从2N变为零,aA=aB=0。
a 面向下作加速度 =gsinθ的匀加速直线运
动。现在,让我们拓展思路,设想给M一个 加速度a,使得m和M一起运动,m和M又保持 相对静止。这个加速度a的大小和方向应该 怎样? 分析与解答:此题主要是把握力和加速度的矢 量关系,合力的方向就是加速度的方向,合 力的大小就决定了加速度的大小。
28
经过周密思考,可以归纳出结论:
14
分析与解答:
重球下落从a到b,重力G为恒 力,球受到弹簧对它向上的弹力F 逐渐变大,开始阶段F<G,合力向 下逐渐变小;某一瞬间F=G,合力 为零;以后F>G,合力向上逐渐变 大。加速度由合力决定,先向下变 小,后向上变大。速度先变大后减 小至零。
15
例6,在以2.5m/s2的加速度匀加速下降的升 降机里,某运动员最多能举起80kg的重物, 他在地面上能举起___kg的重物;若他在 匀加速上升的升降机中最多能举起40kg的 重物,则此升降机上升的加速度为___ m/s2。
19
例7,如图,两轻细线A和B成90o,线B与水平 成37o,球重100N,求(1)向右匀速 v=10m/s两线的拉力多大?(2)向右加速 时绳A拉力恰为0,向右加速度a=?B的拉 力=?(3)若向左加速时绳B拉力恰为0, 向左加速度a=?A的拉力=?
相关文档
最新文档