水性聚氨酯
水性聚氨酯

水性聚氨酯 Waterborne polyurethane
08/22
1. 水性聚氨酯的基本原料与合成
1. 2 水性聚氨酯的合成
(2) 扩链反应
小分子二元醇扩链
小分子二元胺扩链 水性聚氨酯 Waterborne polyurethane
09/22
1. 水性聚氨酯的基本原料与合成
1. 2 水性聚氨酯的合成
05/22
1. 水性聚氨酯的基本原料与合成
1. 1 水性聚氨酯的基本原料 1.1.3 亲水扩链剂
(1) 阴离子型 (2) 阳离子型 (2) 非离子型
水性聚氨酯 Waterborne polyurethane
06/22
1. 水性聚氨酯的基本原料与合成
1. 2 水性聚氨酯的合成
外乳化法(外加乳化剂)
水
水溶性原料法
性
化 方
熔融分散法
法
固体自分散法
自乳化法
相转变法
—NCO封端法
水中扩链
水性聚氨酯 Waterborne polyurethane
07/22
1. 水性聚氨酯的基本原料与合成
1. 2 水性聚氨酯的合成39; OH
O
O
OCN R NH C O R' O C NH R NCO
方式、反应时间)。 3.2 不同点: 复鞣剂:
(1)分子量适宜皮内渗透,一般不加交联剂,呈线形; (2)对成膜无要求。 涂饰剂:
(1)分子量较大,要加交联剂,呈体型; (2)成膜性能有很高的要求(粘着性好、抗张强度高、反弹性好、耐溶剂、
耐干湿擦、耐水性好、耐磨性好等)。
水性聚氨酯 Waterborne polyurethane
2.3.1 硬段对性能的影响 (1)异氰酸酯 (2)扩链剂或交联剂 (3)亲水扩链剂
水性聚氨酯

水性聚氨酯引言为了减少涂料对环境的污染和对消费者健康的损害, 许多国家对溶剂型涂料的限制越来越严格, 从而使涂料由溶剂型向水基型的转变成为必然。
早在2005 年我国就已开始控制新的溶剂型涂料生产企业的审批, 到2008 年将对溶剂型涂料的生产和销售实行控制。
低污染涂料的发展方向有水性化、高固体分化和粉末化三种。
与其他两种涂料相比, 水性涂料因为具有来源方便、易于净化、成本低、黏度低、良好的涂布适应性、无毒性、无刺激及不燃性等特点, 已成为环境友好型涂料的主要发展方向。
一、水性聚氨酯涂料的性能聚氨酯( PU) 涂料是涂料业中增长速度最快的品种之一。
水性聚氨酯( WPU) 涂料是以水性聚氨酯树脂为基础, 以水为分散介质配制的涂料, 除具有水性涂料的特点以外, 它还有以下突出的优点:1)涂膜对塑料、木材、金属及混凝土等表面的附着力好, 抗磨性、耐冲击性好。
脂肪族聚氨酯水性涂料的户外耐久性好, 综合性能接近溶剂型聚氨酯涂料2) 和其他乳胶涂料相比, 其低温成膜性好, 不需要成膜助剂, 也不需要外加增塑剂、乳化剂或分散剂。
3) 容易通过交联反应进行改性, 可提高耐溶剂性和抗化学性, 改进耐水性, 对颜料( 包括金属颜料) 有良好的适应性, 也可提供高光泽涂膜。
所含羟基可以适用一些交联剂和固化剂, 可进一步改进涂膜性能。
4) PU 分子具有可裁剪性, 结合新的合成和交联技术可有效控制涂料的组成和结构, 为改进其性能提供了更多的途径。
WPU 诸多的优点, 使其成为目前发展最快的涂料品种之一。
2 水性聚氨酯涂料的研究进展WPU 分为单组分和双组分。
单组分WPU 涂料聚合物的对分子质量较大, 成膜过程中一般不发生交联反应, 具有施工方便的优点; 双组分WPU涂料由含羟基的水性树脂和含异氰酸酯基的固化剂组成, 施工前将两者混合, 成膜过程中发生交联反应, 涂膜性能好。
由于在水性聚氨酯分子中引入了亲水基团, 所以耐水性、耐溶剂性和耐候性等较差是WPU 涂料存在的主要问题, 为此, 近几年来国内外学者对WPU 的改性进行了大量研究, 并取得了很大进展。
水性聚氨酯

原理一:外乳化法
其原理与自由基乳液聚合的乳化原理相似,是先制备一定分子量 的聚氨酯预聚体,在搅拌下加入适当的乳化剂,在强烈搅拌下经强力 剪切作用将其分散于水中依靠外部机械力制成聚氨酯乳。但此法制得 的聚氨酯乳液粒径大,分布宽,稳定性较差,限制了其使用范围。所 以目前已基本不在使用。
原理二:自乳化法
低温性能与结构的关系:
低温弹性通常用玻璃化温度和耐寒系数来衡量。玻璃化 温度的高低取决于大分子链和链段的柔顺性。
耐水性能与结构的关系:
聚氨酯的水解作用与聚氨酯结构中的水解稳定性有一定 的关系,但具体的机理还有待于进一步的探讨。
水性聚氨酯配方设计考虑因数
设计因数 软硬段比例
根据分子结构中亲水基团的类型,自乳化型水性PU可分为 阳离子型,阴离子型,两性型和非离子型。 亲水性基团的引入方法可采用亲水单体扩链法、聚合物反 应接枝法以及将亲水性基团直接引入大分子聚合物多元醇 中等方法。其中,亲水单体扩链法具有方法简便、应用范 围广等优点,是目前制备离子型水性聚氨酯的主要方法其 反应原理如下:
概述
聚氨酯的含义:
聚氨酯也叫聚氨基甲酸酯(Polyurethane 简称PU)它是分子 结构中含有重复的氨基甲酸酯基团(-NHCOO-)的高分子聚合物的总 称,是一种性能优异的高分子材料。 聚氨酯是一种含有软段和硬段的嵌段共聚物,其中软段由低聚物 多元醇 (通常是聚醚、聚酷或聚烯烃二醇)组成,而硬段由多异氰酸 酷或其与小分子扩链剂组成。由于两种链段的热力学不相容性,形成 了聚氨酷独特的微相分子结构,这种化学结构决定了它具有软硬度可 调节范围广、耐低温、耐摩擦耐脆化、柔韧性好、附着力强、拉伸强 度高、弹性好等优点。因此聚氨酯有着相当广泛的应用,被誉为万能 聚合物。
水性聚氨酯检测标准

水性聚氨酯检测标准水性聚氨酯(PU)是一种广泛应用于涂料、胶粘剂、弹性体和密封材料等领域的重要材料。
随着环保意识的提高,水性PU在市场上的应用越来越广泛。
然而,由于水性PU的特殊性质,其检测标准也显得尤为重要。
本文将针对水性PU的检测标准进行详细介绍,以期为相关行业提供参考。
首先,水性PU的检测标准主要包括以下几个方面:1. 物理性能测试,包括涂层的硬度、耐磨性、拉伸强度、弹性模量等物理性能的测试。
这些测试可以通过一系列标准化的测试方法来进行,例如GB/T、ISO、ASTM等国际标准。
2. 化学成分测试,包括涂层中各种成分的含量、分子结构、化学稳定性等方面的测试。
这些测试需要借助于化学分析仪器,如质谱仪、红外光谱仪等,以确保水性PU产品的化学成分符合相关标准要求。
3. 环境适应性测试,包括水性PU在不同环境条件下的性能表现,如耐候性、耐腐蚀性、耐化学品性等方面的测试。
这些测试可以通过模拟实际使用环境的试验来进行,以评估水性PU在实际使用中的性能表现。
4. 生产工艺控制,包括水性PU生产过程中各个环节的控制要求,如原料质量控制、生产工艺参数控制、产品质量检验等方面的要求。
这些要求可以通过建立标准化的生产工艺流程和质量控制体系来实现。
总的来说,水性PU的检测标准是保证产品质量和性能稳定的重要手段。
只有严格遵循相关标准要求,并通过专业的检测手段进行验证,才能确保水性PU产品在市场上的竞争力和可靠性。
在实际生产中,企业应该重视水性PU检测标准的执行,建立完善的质量管理体系,加强对生产工艺和产品质量的控制,提高产品的稳定性和可靠性。
同时,还应加强与检测机构和研究机构的合作,不断优化产品检测方法和技术,提高产品的检测水平和技术含量。
总之,水性PU的检测标准是保证产品质量和性能稳定的重要保障。
只有严格遵循相关标准要求,并通过专业的检测手段进行验证,才能确保水性PU产品在市场上的竞争力和可靠性。
希望本文能对相关行业有所帮助,谢谢阅读。
水性聚氨酯及其改性方法

水性聚氨酯及其改性方法水性聚氨酯(Waterborne Polyurethane,WPU)是一种以水为分散介质的聚氨酯树脂。
相比于传统的有机溶剂型聚氨酯树脂,水性聚氨酯具有环保、无毒、低挥发性、易操作以及涂膜性能优良等特点。
因此,在目前的涂料、胶黏剂、纺织品等领域得到了广泛的应用。
水性聚氨酯的制备方法主要有两种:溶剂法和水分散法。
溶剂法是先将聚合物和有机溶剂混合,然后加入异氰酸酯单体进行反应,最后除去有机溶剂得到产品。
溶剂法制备的水性聚氨酯具有分散性好、颗粒细、粘度低等特点。
而水分散法是利用乳化剂或分散剂使聚合过程发生在水中,再通过蒸发水分形成聚氨酯分散体,最后通过过滤去除杂质得到产品。
水分散法制备的水性聚氨酯无需有机溶剂,更加环保。
1.交联改性:通过引入交联剂,如多异氰酸酯、多醇等,使聚氨酯形成三维网络结构,增强其耐磨性、耐化学品性、耐温性等性能。
2.聚合物分散法:将其他合成树脂或聚合物分散到水性聚氨酯中,形成复合体系,提高涂膜的性能,如增强耐候性、耐刮擦性、硬度等。
3.功能性改性:在水性聚氨酯体系中引入改性剂,如改善流平性和润湿性的表面活性剂、增强抗静电的导电剂等,以增强涂膜的特殊性能。
4.纳米增强:通过引入纳米颗粒,如氧化锌、氧化硅等,以增加涂层的硬度和耐用性。
5.共聚改性:将其他具有特殊功能的单体引入水的聚氨酯反应体系中,并进行聚合,以获得具有特殊性能的共聚物。
综上所述,水性聚氨酯作为一种环保、优良性能的树脂,广泛应用于各个领域。
通过不同的改性方法,可以进一步提高水性聚氨酯的性能,满足不同应用领域的需求。
随着技术的进步,水性聚氨酯的制备方法和改性方法也将不断创新和发展。
水性聚氨酯简介

水性聚氨酯胶黏剂简介一、水性聚氨酯胶黏剂分类到目前为止,水性聚氨酯的研究已有60多年,其有各种各样的分类方式,通常采用的分类方式有以下六种。
1、按使用形式分类按使用形式分类,可分为单组份与双组分水性聚氨酯。
(1)单组份水性聚氨酯单组份水性聚氨酯应用最早,一般指可直接投入生产使用的或者无需交联剂的水性聚氨酯,有着耐水性较差的缺点,但通过交联改性可以获得较高的稳定性、力学性能、耐水性的提升。
(2)双组分水性聚氨酯双组分水性聚氨酯是指多异氰酸酯预聚体与多元醇两个组分,其单独使用时不能直接投入生产,必须添加交联剂。
使用时将两组分混合,多异氰酸酯与多元醇和空气中的水反应,生成聚脲与聚氨酯,从而产生交联。
双组分水性聚氨酯的耐水性较好,但多异氰酸酯与水反应生成CO2,导致聚氨酯胶膜气泡较多,外观较差,且不环保。
2、按亲水基团分类根据水性聚氨酯分子主链或者侧链上的离子基团性质或是否携带离子基团,可将其分为阴离子、阳离子和非离子型。
(1)阴离子型水性聚氨酯因为反应完全、综合性能好而最为常用,可以分为羧酸型和磺酸型,其离子基团一般在侧链上。
(2)阳离子型水性聚氨酯为主链或侧链上含有锍离子或铵离子的水性聚氨酯,亲水的铵离子一般由含氨基的扩链剂经酸化或者烷基化的反应形成,也可以将含氨基的聚氨酯与环氧氯丙烷以及酸反应生成,阳离子型水性聚氨酯的主要缺点是热稳定性与力学性能较差。
(3)非离子型水性聚氨酯的分子主链或侧链中不带有亲水离子基团。
要使非离子型水性聚氨酯乳化,就必须加入乳化剂并在高速旋转的剪切乳化机下乳化,也可以通过形成非离子亲水基团来进行乳化,如羟甲基,非离子型的水性聚氨酯耐水性较差。
3、按原料分类水性聚氨酯的主要原料为低聚多元醇和多异氰酸酯。
(1)低聚多元醇按主要原料多元醇分类,有聚酯多元醇、聚醚多元醇、聚四氢呋喃、聚丙烯酸多元醇、丙烯酸酯、聚碳酸酯多元醇、聚己内酯二醇、蓖麻油、聚酯酰胺、聚丁二烯二醇等,主要使用的是聚酯型二元醇和聚醚型二元醇。
水性聚氨酯的用途

Байду номын сангаас 录
• 引言 • 水性聚氨酯的特性 • 水性聚氨酯的应用领域 • 水性聚氨酯的优势与挑战 • 水性聚氨酯的发展趋势 • 结论
01 引言
主题简介
• 水性聚氨酯是一种以水为分散介质的聚氨酯材料,具有环保、 低VOC排放等优点,广泛应用于涂料、胶粘剂、皮革涂饰等领 域。
聚氨酯简介
03
随着技术的不断进步和市场需 求的变化,水性聚氨酯的应用 领域将进一步拓展,市场前景 广阔。
未来展望
01
针对水性聚氨酯的性能和应用领域,需要加强基础研究,提高 材料性能和稳定性,以满足更广泛的应用需求。
02
探索水性聚氨酯与其他高分子材料的复合技术,以实现性能互
补,拓展应用领域。
推动水性聚氨酯在绿色建筑、新能源、生物医疗等领域的应用,
纳米复合材料的应用
将纳米材料与水性聚氨酯结合,制备出具有优异性能的纳米复合材 料,如增强耐磨性、提高阻隔性能和改善导电性等。
市场前景
1 2
市场需求持续增长
随着环保意识的增强和工业领域对高性能涂料的 不断需求,水性聚氨酯的市场需求将持续增长。
拓展应用领域
水性聚氨酯在建筑、汽车、家具、纺织等领域的 应用逐渐扩大,将进一步推动其市场发展。
环保性
低VOC排放
水性聚氨酯以水为分散介质,不含有害的 有机溶剂,因此对环境友好,减少了对空 气和水的污染。
水性聚氨酯在生产和使用过程中VOC排放 量极低,符合现代绿色环保的要求。
高附着力
优异的物理性能
水性聚氨酯对各种基材如金属、塑料、木 材等都具有优良的附着力,可广泛应用于 各种材料的涂装和保护。
应用领域有限
由于水性聚氨酯的性能和应用 领域有限,其应用范围受到一
水性聚氨酯材料

水性聚氨酯材料水性聚氨酯材料是一种新型的环保型高分子材料,它具有优异的性能和广泛的应用领域。
水性聚氨酯材料以水作为溶剂,不含有机溶剂,具有低挥发性和低毒性,对环境和人体健康无害,是一种绿色环保的材料。
本文将从水性聚氨酯材料的性能特点、制备工艺、应用领域等方面进行介绍。
一、水性聚氨酯材料的性能特点。
1. 环保性,水性聚氨酯材料以水为溶剂,不含有机溶剂,不会产生挥发性有机化合物,对环境无污染,符合环保要求。
2. 耐候性,水性聚氨酯材料具有优异的耐候性,能够在室外环境下长期使用而不发生老化、褪色等现象。
3. 耐化学性,水性聚氨酯材料具有良好的耐化学性,能够抵抗酸碱、溶剂等化学物质的侵蚀,具有较强的耐腐蚀性。
4. 耐磨性,水性聚氨酯材料具有良好的耐磨性,能够承受一定的摩擦和冲击而不易损坏。
5. 耐温性,水性聚氨酯材料具有较高的耐温性,能够在一定温度范围内保持稳定的性能。
6. 耐水性,水性聚氨酯材料具有良好的耐水性,能够在潮湿环境下长期使用而不发生变形、腐蚀等现象。
二、水性聚氨酯材料的制备工艺。
水性聚氨酯材料的制备工艺主要包括原料准备、反应制备、加工成型等步骤。
其主要原料包括聚醚多元醇、异氰酸酯、交联剂、助剂等。
制备工艺流程一般包括以下几个步骤:1. 原料准备,将所需的聚醚多元醇、异氰酸酯、交联剂、助剂等原料按一定配方准备好,保证原料的质量和比例。
2. 反应制备,将聚醚多元醇、异氰酸酯等原料按一定比例混合,在一定条件下进行反应,生成水性聚氨酯树脂。
3. 加工成型,将制备好的水性聚氨酯树脂进行加工成型,可以通过涂覆、浸渍、喷涂、注塑等方式进行加工成各种形状的制品。
三、水性聚氨酯材料的应用领域。
水性聚氨酯材料具有广泛的应用领域,主要包括涂料、胶粘剂、印刷油墨、合成革、纺织品涂层、建筑防水材料等。
具体包括以下几个方面:1. 涂料,水性聚氨酯涂料具有优异的耐候性、耐磨性和耐化学性,广泛应用于汽车、家具、建筑等领域。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
纺织印染水性聚氨酯应用发布时间:2011-11-14 | 阅读次数:803 水性聚氨酯不含甲醛,APEO等有害物质,能够减少对环境的污染,也因此广泛应用于纺织印染行业。
水性聚氨酯整理剂分类水性聚氨酯的形态对其流动性、成膜性及加工织物的性能有重要影响。
一般分为3种类型,即水溶型、胶体分散型和乳液型。
由于它们对纤维织物的浸透性和亲和力不同,因此在纺织品染整加工中的用途也有差别,其中以水溶型和乳液型产品较为常用。
另外,水系聚氨酯又有反应型和非反应型之分,虽然它们的共同特点是分子结构中含有异氰酸酯基,但前者是用封闭剂将异氰酸酯基暂时封闭,在纺织品整理时复出,相互交链反应形成三维网状结构而固着在织物表面。
根据乳化系列分类,水性聚氨酯可分为外乳化型和自乳化型。
外乳化型又称为强制乳化型,系将疏水性聚氨酯用外加乳化剂强制乳化而成。
自乳化型又称内乳化型,在制备时不必另加乳化剂,而是采用称为内乳化剂的亲水性单体,赋予聚氨酯若干亲水基团,使其自行乳化而成水性产品。
按固化特性分类,聚氨酯可分为热固性和热塑性;按离子性分类,可分为阴离子、阳离子、非离子和两性型;按低聚物多元醇分类,可分为聚酯型和聚醚型;按异氰酸酯的母体结构,可分为脂肪族和芳香族;按整理功能可分为水性聚氨酯防皱剂、固色剂、胶粘剂、防水透湿涂层剂、仿麂皮整理剂及抗静电剂等。
水性聚氨酯在染整加工中的应用进展染色印花助剂水性聚氨酯可作为涂料轧染、涂料印花及特种印花(主要是透明印花和消光印花)粘合剂。
目前有报导用亚硫酸氢钠作封闭剂的水性热反应型涂料染色粘合剂。
利用水性聚氨酯上的活泼基团可与纤维及染料反应的特性,作为显著改善染色牢度的固色剂(东华大学有研究报道)。
以阳离子型水分散性聚氨酯作为染前处理剂,可改进织物和无纺布的可染性。
功能整理助剂水性聚氨酯无甲醛,成膜又具有较好的弹性,是替代或部分替代氨基树脂的一种较好的无甲醛防皱整理剂。
近年来,出现水溶性热反应型产品,浸轧在棉布上后经烘干、焙烘,可显著提高加工织物的折皱回复角。
采用2种不同水性聚氨酯的混合物浸渍TC混纺织物,可使其同时获得柔软性、抗皱性和拒水性。
有报导通过对水溶性有机硅柔软剂进行封端PU改性,产品的应用性能明显改善,特别是织物的弹性和耐久性效果尤佳。
在蛋白质纤维的整理中,用于丝织物,可达到柔软、耐磨和抗皱等优良服用性能。
用作羊毛加法防毡整理剂,工艺简单,不需氯化或氯化预处理,与毛用染料及助剂具有较好的配伍性,具有极佳的防毡缩效果,而且能改善羊毛织物的弹性和起毛起球性。
离子型聚氨酯含有大量的极性基团,是良好的织物抗静电和亲水整理剂。
有报导用水溶性聚氨酯与含活泼氢的阳离子表面活性剂反应生成高分子化合物,是一种新耐久性抗静电剂,具有良好的渗透性,适用于涤纶、锦纶的抗静电和亲水整理。
可作为仿真整理剂。
用于仿麂皮整理,其加工织物皮感强、丰满厚实、韧性好且通气透湿。
还可用于仿麻整理,最大的特点是耐洗性强,这是由于其分子量低,对织物渗透性强,可与纤维反应和自身交联反应成膜,可作防水透湿涂层整理剂。
如用水性聚氨酯涂饰的尼龙产品,具有高透湿性和排水性能。
这是由于水性聚氨酯结构中含有大量的极性基团,成膜性好,可在织物上形成耐久性拒水薄膜。
也正是由于这些极性基团的“化学阶梯石”作用,以及水分子通过聚氨酯结构中无定形区迁移和扩散,而使涂层织物具有透湿性。
作为纺织品纳米整理材料的分散介质。
纳米材料具有特殊的抗紫外线、吸收和反射红外线、抗老化、高强度和韧性、良好的导电和静电屏蔽效应、强的抗菌消臭和吸附能力等特性,因此将纳米材料与纺织品进行复合可以制成各种功能纺织品,是纺织品功能整理的发展方向,要把具有这些特定功能的纳米级材料牢固地整理到纤维或纺织品上需要一种介质,这种介质要既能很好地分散纳米级功能材料,防止纳米级材料在介质中进行团聚,即纳米微粒的团聚(这是纳米材料应用于纺织品中一个比较棘手的问题),又能与纺织品有很好的结合力,还要不改变纺织品原有的风格手感。
目前对这种用于纺织品纳米整理材料的分散介质(连续相)研究还比较少。
我们通过分析和资料的查阅,发现带有端基活性经过改性的水溶性聚氨酯能作为纳米材料的分散介质,因为聚氨酯具有优良的手感,聚氨酯中的—NCO具有很高的反应活性,本身分子能够聚合形成大分子,同时又能与纤维上的—NH2、—NH、—OH、—COOH等基团反应,其本身就是能赋予织物各种功能的整理剂;另一方面,有资料表明,纳米材料能够很好地分散在水溶性聚氨酯溶液中而不改变纳米材料原有的性质。
我们正在进行有关改性水溶性聚氨酯及其对纺织品纳米整理材料分散性能方面的研究,以促进纳米功能材料在纺织品染整加工领域的实际应用。
水性聚氨酯能满足纺织品功能性和流行性整理的要求,并且无污染问题,是具有强劲发展势头的纺织品整理剂。
与国外相比,国内研究起步晚,发展缓慢,存在原料品种少、理论研究不足和开发应用不够等问题。
例如,许多亲水性单体(2,2-双羟甲基丙酸等)国内无生产;国产聚醚和聚多元醇品种少,活性不稳定,使预聚反应难以控制,缺乏专门用于合成水性聚氨酯的大分子多元醇。
今后,应加强化工基础配套工作和理论研究,开发品种多样化、结构功能化的复合型聚氨酯纺织助剂,满足纺织品多功能高质量的整理要求。
摘要:综述了常见聚氨酯类纺织化学品的结构特点及其特性。
重点就原理、结构及性能等方面讨论了水性聚氨酯在纺织品印染加工中的应用,指出目前聚氨酯类印染助剂存在的不足,提出了其发展方向。
关键词:聚氨酯;纺织化学品;印染助剂聚氨酯(Polyurethane,PU)即聚氨基甲酸酯,是一种杨氏模量介于橡胶与塑料之间的新型高分子合成材料。
其合成是以含有高度不饱和键的异氰酸酯基与活泼氢化合物之间的化学反应为基础的。
聚氨酯具有优异的耐磨、柔韧和耐化学品性。
溶剂型(油溶性)聚氨酯,由于大量溶剂(二甲基甲酰胺、甲苯、丙酮、丁酮、醋酸乙酯等)的使用会不可避免地带来高额的生产成本和严重的环境污染,从应用的角度来看,也较为不便,与其他水性化学品的配伍性也极差,这些都极大地限制了其在纺织领域的应用。
通过向聚氨酯大分子结构中引入亲水/离子性基团制备的水性聚氨酯,弥补了溶剂型聚氨酯的不足。
水性聚氨酯可赋予纺织品柔软而丰满的皮质手感和耐磨性、抗皱防缩性、回弹性、挠曲性及透气吸湿性等,作为一类印染助剂用于织物的整理、染色和印花等方面已显示出广阔的前景。
1水性封端聚氨酯封闭型水性聚氨酯是指对聚氨酯预聚体中的部分或全部的高活性异氰酸酯基(-NCO)进行钝化,并通过引入亲水性成分或采用外乳化的方法制得的活性基被暂时封闭并在适当的热处理条件下可再次恢复其活性的聚氨酯乳液或溶液。
对这种聚氨酯在130~160℃下进行热处理时,其中的-NCO基团可恢复活性并与体系中存在的含有活泼氢的基团(羟基、氨基、脲基、羧基、氨酯基、水等)反应而产生交联。
由于纺织纤维上通常也含有能够与异氰酸酯基反应的含活泼氢的基团,因此这种“活性”聚氨酯对织物一般具有较强的黏附牢度。
1.1水性封端聚氨酯的特点反应型水性聚氨酯(即水性封端聚氨酯)一般为水溶性高分子预聚体。
与常用于纺织品后处理的树脂相比,热反应型水溶性聚氨酯既保持了聚氨酯的弹性,又具有极好的反应活性,能够与纤维及各种纺织化学品上的活泼氢基团同时发生化学结合或自身产生网状交联,因而可赋予织物各种持久耐洗的功能,提高纺织品的附加价值[1]。
另外,由于它通常是一种分子量较低的齐聚物,因而对织物及纤维的渗透、扩散性高;经适当的工艺处理后,可在纤维表面形成一层耐久性的交联膜。
1.2水性封端聚氨酯的应用该类整理剂可广泛用于棉织物的耐洗防水和阻燃、涤纶织物的持久抗静电、羊毛及棉针织物的防缩和抗起毛起球整理,并可用于提高梭织物撕破强力等方面[1]。
作为一种潜在的固化剂或交联剂,水性封端聚氨酯主要应用在涂料印花/染色、树脂整理(如棉、麻、粘胶、天丝及丝织物的防皱整理)、特殊效果的织物涂层整理(如防水透湿、仿皮、仿特殊质感涂层)及化纤织物的亲水、抗静电整理等方面。
另外,纳米材料能够很好地分散于水性聚氨酯溶液,而不改变材料原有的性能。
因此,水性聚氨酯的应用将极大地促进纳米功能材料在纺织染整加工领域的实际应用。
2改性聚氨酯为降低成本、扩大应用范围并改善高分子材料的性能,通常将具有不同化学组成及性能的高分子通过共混或接枝共聚等方法复合,制得混杂聚合物(Hybrid)[2]。
由于聚氨酯预聚体易于与其他单体或聚合物混合并进行互不干扰的平行反应,得到性能优良的聚氨酯互穿网络(InterpenetratingPolymerNetwork,IPN)体系,因此成为目前研究最为活跃的一类互穿网络聚合物[3]。
改性聚氨酯可广泛用作各种纺织品印染助剂和涂饰剂。
对水性聚氨酯进行有机硅改性,整理后的织物不仅柔软滑爽,且在弹性和耐洗性方面也会有明显的改善,是一种良好的柔软剂;聚氨酯主链上接枝多氟烷基,可成为优良的防水、防油污整理剂;而在其主链上接枝卤素或磷等元素,则成为优良的阻燃整理剂[4]。
2.1有机硅改性聚氨酯有机硅/聚氨酯共聚物兼备有机硅材料优异的柔韧性、耐水性、透气性、生物相容性和聚氨酯的耐磨性,可广泛应用于纺织印染领域[5]。
通过与有机硅结合,可极大地改善水性聚氨酯的表面性能、耐湿擦性和低温柔顺性,手感也更加滑爽舒适[6]。
在以端羟基聚二甲基硅氧烷为部分软段的聚氨酯材料中,有机硅链段更倾向于在材料的表面富集并取向,从而使得共聚物膜的附着力、硬度等力学性能得到改善[7]。
这种水性有机硅/聚氨酯乳液不仅可用于皮革涂饰,还可用作手感整理剂和防水剂等[8]。
采用高活性有机聚硅氧烷改性的阳离子聚氨酯光亮剂具有乳液稳定、成膜透明和喷涂手感好等优点[9]。
有研究表明[10]:经水溶性有机硅改性的封端聚氨酯在加热整理过程中,复活的异氰酸酯基能够与纤维上的活性基团反应,因而整理织物具有较好的弹性和耐洗性。
2.2丙烯酸酯改性聚氨酯水性聚氨酯具有高弹性和良好的渗透性并耐热、耐寒、耐化学品、耐曲磨且手感特别柔软,其湿摩擦牢度及爽滑性好,皮膜不发黏、不吸附灰尘,而且在针织物上印花不会产生露花等疵病,但其耐高温和耐水性较差,且价格是聚丙烯酸酯(PA)的3~4倍。
水性丙烯酸酯树脂虽具有较好的耐水性、耐候性和力学性能,但又存在硬度大、热黏冷脆等缺点。
因此,用聚氨酯对丙烯酸酯进行改性,以结合两者优点,做到优势互补,令人关注[3,11]。
其改性产物被称为“第三代”聚氨酯乳液(PUA),正成为近年来研究的热点[12-13]。
采用化学共聚法制得的PUA乳液,其PU和PA组分通过化学键达到了分子水平上的相容,复合程度更高、性能更加优越,是未来PUA复合乳液发展的重点。
有研究表明[12,14]:PU/PA互穿网络聚合物通过分子链间的相互渗透、缠结和相容,在手感、强度、延伸率、吸水率、吸尘性等性能上都比拼混物增效一倍左右。