高中数学二次曲线
圆锥曲线

概念
01
焦点
02
准线03离Fra bibliotek率04
焦准距
06
弦和焦点弦
05
焦半径
定义中提到的定点,称为圆锥曲线的焦点。
定义中提到的定直线称为圆锥曲线的准线。
固定的常数(即圆锥曲线上一点到焦点与对应准线的距离比值)称为圆锥曲线的离心率。
焦点到对应准线的距离称为焦准距。
焦点到曲线上一点的线段称为焦半径。
类似圆,圆锥曲线上任意两点之间的连线段称为弦;过焦点的弦称为焦点弦。平行于准线的焦点弦称为通径, 物理学中又称为正焦弦。
(1)两条动直线交点为圆锥曲线上的某个定点
即从圆锥曲线上某一点引出两直线AC、AD,如果CD经过定点B,则kAC+kAD为定值。反之,如果已知kAC+kAD 为定值,也能推出CD经过某定点B。
斜率之和为定值如图,A为圆锥曲线上的定点,A'是A关于x轴的对称点。在过A‘的切线上找一点B,过B作割 线CD,连接AC、AD。这就有了两动直线AC、AD,其交点为圆锥曲线上的定点A,且经过定点B。
圆锥曲线是光滑的,因此有切线和法线的概念。
对于同一个椭圆或双曲线,有两个“焦点-准线”的组合可以得到它。因此,椭圆和双曲线有两个焦点和两 条准线。而抛物线只有一个焦点和一条准线。
圆锥曲线是轴对称图形,对称轴为过焦点且与准线垂直的直线。在椭圆和双曲线的情况,该直线通过两个焦 点,该直线称为圆锥曲线的焦轴。对于椭圆和双曲线,还关于焦点连线的垂直平分线对称,因此椭圆和双曲线有 两条对称轴。
早期对圆锥曲线进行系统研究成就最突出的可以说是古希腊数学家阿波罗尼(Apollonius,前262~前190)。 他与欧几里得是同时代人,其巨著《圆锥曲线》与欧几里得的《几何原本》同被誉为古代希腊几何的登峰造极之 作。
高三数学知识点椭圆双曲线

高三数学知识点椭圆双曲线高三数学知识点:椭圆与双曲线椭圆与双曲线是高中数学中重要的几何概念之一,它们在代数几何中有着广泛的应用。
本文将重点介绍椭圆和双曲线的基本定义和性质,并讨论它们的图像、方程和几何意义。
一、椭圆的定义和性质椭圆是平面上一点到两个给定点的距离之和等于常数的点的集合。
这两个给定点称为椭圆的焦点,两个焦点之间的距离称为椭圆的焦距。
椭圆还有一个重要的性质,即椭圆上任意一点到两个焦点的距离之和等于椭圆的长轴长度。
椭圆的标准方程为:(x-a)²/b² + (y-c)²/d² = 1,其中(a, c)为椭圆的中心坐标,b和d分别为短轴和长轴长度。
根据椭圆的方程,我们可以确定椭圆的图像和位置。
椭圆还有其他一些重要的性质,如离心率和焦半径等。
离心率是一个表示椭圆形状的重要指标,它的值介于0和1之间。
当离心率接近0时,椭圆形状趋近于圆形;当离心率接近1时,椭圆形状趋近于长条形。
二、双曲线的定义和性质双曲线是平面上满足一点到两个给定点的距离之差等于常数的点的集合。
这两个给定点称为双曲线的焦点,两个焦点之间的距离称为双曲线的焦距。
双曲线还有一个重要的性质,即双曲线上任意一点到两个焦点的距离之差等于双曲线的常数项。
双曲线的标准方程有两种形式:(x-a)²/b² - (y-c)²/d² = 1 和 (y-c)²/d² - (x-a)²/b² = 1,其中(a, c)是双曲线的中心坐标,b和d分别为短轴和长轴长度。
根据双曲线的方程,我们可以确定双曲线的图像和位置。
双曲线也有离心率和焦半径等重要性质。
与椭圆不同的是,双曲线的离心率大于1,表明双曲线的形状更加扁平。
双曲线还有两条渐近线,它们与双曲线的曲线趋势完全相同。
三、椭圆和双曲线的几何意义椭圆和双曲线有着重要的几何意义和应用。
在椭圆和双曲线的研究中,我们可以探索许多有趣的性质和结论。
高中数学复习----双曲线知识讲解及结论大全

的弦中点的轨迹方程是
1 / 34
x2 a2
−
y2 b2
=
x0 x a2
−
y0 y b2
.
15 . 若
PQ
是双曲线
( > x2
a2
−
y2 b2
=1
b
a
>0)上对中心张直角的弦,则
1 r12
+
1 r22
=
1 a2
−
1 b2
(r1
=| OP |, r2
=| OQ |) .
16 . 若 双 曲 线
x2 a2
,则双曲线的焦点角形的面积为
S∆F1PF2
=
b2
cot
γ 2
,
P(± a c
c2
+
b2
cot 2
γ 2
,
±
b2 c
cot
γ 2
)
.
21.若
P
为双曲线
x2 a2
−
y2 b2
= 1 (a>0,b>0)右(或左)支上除顶点外的任一点,F1,
F2
是焦
点 ,则 (或 ) , ∠PF1F2 = α , ∠PF2F1 = β
径的圆,除去实轴的两个端点.
6.以焦点弦 PQ 为直径的圆必与对应准线相交.
7.以焦点半径 PF1 为直径的圆必与以实轴为直径的圆外切.
8.设 P 为双曲线上一点,则△PF1F2 的内切圆必切于与 P 在同侧的顶点.
9.双曲线
x2 a2
−
y2 b2
= 1(a>0,b>0)的两个顶点为
A1(−a, 0) ,
=
b2 a2
.
.若 13 P0 (x0,
高中高三数学双曲线方程知识点

高中高三数学双曲线方程知识点
高中高三数学双曲线方程知识点
广大高中生要想顺利通过高考,接受更好的教育,就要做好考试前的复习准备。
小编带来高三数学双曲线方程知识点,希望大家认真阅读。
1. 双曲线的第一定义:
⑴①双曲线标准方程:. 一般方程:.
⑵①i. 焦点在x轴上:
顶点:焦点:准线方程渐近线方程:或
ii. 焦点在轴上:顶点:. 焦点:. 准线方程:. 渐近线方程:或,参数方程:或 .
②轴为对称轴,实轴长为2a, 虚轴长为2b,焦距2c. ③离心率. ④准线距(两准线的距离);通径. ⑤参数关系. ⑥焦点半径公式:对于双曲线方程(分别为双曲线的左、右焦点或分别为双曲线的上下焦点)
长加短减原则:
构成满足(与椭圆焦半径不同,椭圆焦半径要带符号计算,而双曲线不带符号)
⑶等轴双曲线:双曲线称为等轴双曲线,其渐近线方程为,离心率.
⑷共轭双曲线:以已知双曲线的虚轴为实轴,实轴为虚轴的双曲线,叫做已知双曲线的共轭双曲线.与互为共轭双曲线,它们具有共同的渐近线:.
以上就是高三数学双曲线方程知识点的全部内容。
也祝愿大家都能愉快学习,愉快成长!。
高中数学双曲线知识点总结

高中数学双曲线知识点总结一、双曲线的定义双曲线是由平面上距离不变的所有点的轨迹组成的曲线。
具体地说,双曲线是平面上的一条曲线,其上的每一点到两个给定的不同点F1和F2的距离之差是一个常数。
在平面直角坐标系中,双曲线的定义可以表示为:一个点到两个不同点F1和F2的距离之差是一个常数e,即PF1-PF2=e。
二、双曲线的性质1. 双曲线包括两条分支,它们分别靠近两个焦点。
对于双曲线的每个分支来说,离焦点越远,离另一个分支越近。
2. 双曲线的两个焦点之间的距离称为焦距,是双曲线的重要参量,通常用2c表示。
3. 双曲线的渐近线是双曲线的一条特殊的直线,与双曲线有两个不同的交点。
双曲线的两条分支在渐近线上无限趋近。
4. 双曲线具有对称性,关于两个坐标轴都具有对称性,即当双曲线与一个坐标轴相交时,在另一个坐标轴上也有交点。
5. 双曲线有一个中心,它是两个焦点的中点,也是双曲线的对称中心。
6. 双曲线的方程通常可以表示为x^2/a^2-y^2/b^2=1或者y^2/b^2-x^2/a^2=1,其中a 和b分别是椭圆的轴长。
三、双曲线的方程在平面直角坐标系中,双曲线的一般方程可以表示为:1. 若横轴为实轴,纵轴为虚轴,则双曲线的方程为x^2/a^2-y^2/b^2=1;2. 若横轴为虚轴,纵轴为实轴,则双曲线的方程为y^2/b^2-x^2/a^2=1。
在双曲线的方程中,a和b分别代表横轴和纵轴方向的轴长,e为离心率。
四、双曲线的图像1. 当a>b时,双曲线的中心在x轴上,两分支朝向y轴;2. 当a<b时,双曲线的中心在y轴上,两分支朝向x轴。
双曲线的图像可以通过手工绘图或者计算机绘图软件来绘制,使学生更好地理解双曲线的性质和特点。
双曲线的图像在实际生活中也有许多应用,比如在光学中的抛物面镜和双曲面镜、在通信中的双曲线天线和成像原理等。
五、双曲线的相关定理和定律1. 双曲线的面积定理:双曲线的面积等于焦距的一半与两个辅助椭圆的面积之和。
高中双曲线数学教案

高中双曲线数学教案
一、教学内容:双曲线
二、教学目标:
1. 了解双曲线的定义及性质;
2. 掌握双曲线的标准方程及相关参数;
3. 能够应用双曲线解决实际问题。
三、教学重点:
1. 双曲线的定义;
2. 双曲线的标准方程及参数;
3. 双曲线的性质。
四、教学难点:
1. 掌握双曲线参数对图像的影响;
2. 能够熟练应用双曲线解决实际问题。
五、教学过程:
1. 先介绍双曲线的定义及基本形态,让学生了解双曲线的特点;
2. 讲解双曲线的标准方程及参数,让学生掌握双曲线的基本表达形式;
3. 通过实例分析,让学生掌握双曲线参数对图像的影响;
4. 给出一些实际问题,让学生应用双曲线解决问题;
5. 总结本节课内容,做一些习题巩固学生的学习成果。
六、教学资源:
1. 教科书
2. 教学PPT
3. 习题集
七、教学评价:
1. 课堂问答
2. 作业检查
3. 实际问题解决能力测试
八、教学反馈:
1. 收集学生对本节课的反馈意见;
2. 根据学生反馈,及时调整教学方法和内容。
以上是本次双曲线数学教案,希望对您的教学有所帮助。
高二数学双曲线知识点汇总

高二数学双曲线知识点汇总双曲线是高二数学中重要的一章,它是解析几何的重要内容之一。
在本文中,将对双曲线的定义、性质以及相关公式进行详细的总结与汇总,以帮助学生更好地理解和掌握双曲线的知识。
1. 双曲线的定义双曲线是一个平面上的曲线,其定义为平面上所有点到两个不相交定点(称为焦点)的距离之差等于常数的点的轨迹。
双曲线有两种类型:横向双曲线和纵向双曲线,具体形状与焦点之间的距离差有关。
2. 双曲线的标准方程横向双曲线的标准方程为:x²/a² - y²/b² = 1,其中a为焦点到原点的距离,b为垂直于主轴的距离。
纵向双曲线的标准方程为:y²/a² - x²/b²= 1,其中a和b的含义同上。
3. 双曲线的焦点、准线和直径横向双曲线的焦点为(±c,0),准线为x = ±a,直径为两焦点间的距离,即2c。
纵向双曲线的焦点为(0, ±c),准线为y = ±a,直径同样为2c。
4. 双曲线的离心率离心率是双曲线的一个重要属性,表示焦点到准线的距离与焦点到曲线上任意点的距离之比。
对于横向双曲线,离心率的计算公式为e = √(a² + b²)/a,而对于纵向双曲线,离心率的计算公式为e = √(a² + b²)/b。
5. 双曲线的对称性和渐近线横向双曲线关于y轴对称,纵向双曲线关于x轴对称。
双曲线还有两条渐近线,横向双曲线的渐近线方程为y = ±b/a * x,纵向双曲线的渐近线方程为y = ±a/b * x。
6. 双曲线的图像特点当双曲线的焦点位于原点时,曲线两支在原点相交;当焦点位于x轴上时,曲线两支分离,称为“非奇异双曲线”;当焦点位于y轴上时,曲线两支开口向下,称为“奇异双曲线”。
7. 双曲线的参数方程双曲线也可以通过参数方程来表示。
用二次曲线系快速解决一类定点定值问题

F 得1 1 D -D , x x xB = , + =- . A +x B = A A A x x F A B , , 又x 故 x A <0 B >0
1 1 D 1 1 . + =- =- + x x F O A O B A B 所以 1 - 1 = 1 - 1 , 从而 O J 为定值 , O A O B O I O J 即直线 C F 过定点J. 参考文献 : [ ] ] 特值探路 , 准确定位 , 快速答题 [ 1 J . 李治国 . ( ) , ( ) 数学通讯 上半月 2 0 1 29 . [ ] ]. 对一道武汉四月调考题的思考[ 2 J 陈春 . , ( ) 数学通讯 ( 上半月 ) 2 0 1 2 9 [ ] 3 2 0 1 4高中数学 中国数学会普及工作委员会 . 联赛备考手册 [ 上海 : 华东师范大 学 出 M]. 版社 , 2 0 1 3. [ ] 周建新 . 名牌大学自主招生 [ 上 4 M] . 冯志刚 , 海: 华东师范大学 , 2 0 1 3.
{
如图 2. M2 连线的方程 ,
k 1 1 = . k 3 2 ( ) ) ) , 由( 易得 A1P: 2 1 x+2 A2Q: y =k y= 1(
)= 3 ) , 联立得 k x -2 k x -2 2( 1( ) , x +2 x = 4, y =k 1( 解得 ) , k k x -2 y =6 1, y =3 1( 从而 , S 在直线x = 4 上 .
2 2
又C F, D E 合成的图形可视为过C, D, E, F的 退化二次曲线 , 故存在λ, 使得 ① 为 C F, D E 两直 线合成的图形方程 . ) , ( ) , 设I, 在 ① 中令 y J 的坐标为 ( x 0 x 0 I, J, 2 2 有A 由图形可知 ② x +D x +F+ x =0② , λ =0, 的解即为 x 从而 x I, J,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学二次曲线
二次曲线是一个非常重要并且广泛应用的数学概念。
二次曲线的代数定义是一个具有
二次项的二元方程,通常表示为 $ax^2+by^2+cxy+dx+ey+f=0$,其中 $a,b,c,d,e,f$ 是
实数系数。
在平面直角坐标系中,二次曲线可以用标准方程表示,即
$Ax^2+Bxy+Cy^2+Dx+Ey+F=0$。
其中 $A,B,C,D,E,F$ 是实数系数,同时要求 $B^2-4AC<0$,以保证这个二次曲线是椭圆,圆形或双曲线。
二次曲线的几何特征可以通过它的标准方程来揭示。
先来看椭圆和圆:
椭圆的标准方程 $Ax^2+Cy^2+Dx+Ey+F=0$ 经过适当配方,可以表示为
$\frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} =1$,其中 $(h,k)$ 是椭圆的中心坐标,$a$ 和 $b$ 分别是椭圆沿两个坐标轴的半长轴和半短轴长度。
椭圆是一个有限闭曲线,
其离心率 $e<1$,即它的形状更加球形。
接下来是双曲线:
除了标准方程以外,二次曲线还有一些其他形式和表示方式,例如:顶点式,焦点式,极坐标式等,它们可以根据不同的应用和计算要求来选择最合适的表达方式。
在实际应用中,二次曲线在物理学、工程学、生物学、经济学等领域有广泛的应用。
例如本质疟疾的传播可以用椭圆方程来建模,楼梯的设计可以用双曲线方程来确定高低位置,天文学中的行星轨道可以用圆方程来描述等等。
总之,二次曲线作为数学及其应用中的一个基础概念,在近代科学和技术的发展中发
挥了非常重要的作用。
我们相信,在未来的科学和技术发展中,二次曲线的应用和进一步
研究将会更加广泛和深入。