介绍反证法及举例
反证法通俗易懂的例子

反证法通俗易懂的例子
以下是 6 条关于反证法通俗易懂的例子:
1. 你想啊,如果说小明不是个调皮捣蛋的孩子,那为啥每次大家捣乱的时候都有他呀!就好比说西瓜是方的,那可能吗?这显然不符合常理呀,所以小明就是调皮捣蛋嘛,这就是用反证法呀!
2. 哎呀,你说小李不是很努力工作,那为啥他天天加班到很晚呢?这不就和说天上没有星星一样荒谬嘛!这反证法一下就看出来小李很努力啦!
3. 嘿,你要是说那蛋糕不甜,那为啥大家吃了都一脸满足的样子呢?这就像说太阳不发光一样可笑呀!这不就证明了蛋糕是甜的嘛,反证法真神奇呢!
4. 你讲小红不是个善良的人,那为啥每次有人遇到困难她都第一个去帮忙呢?这和说花儿没有颜色有啥区别呀!显然小红就是善良的呀,反证法多好用!
5. 你非要说小王不懂音乐,那为啥他每次听到音乐都能跟着哼起来呢?这就如同说鸟儿不会飞一样不合理呀!这就说明小王是懂音乐的呀,这不就是反证法的威力嘛!
6. 你要是坚持说这电影不好看,那为啥电影院里的人都看得那么投入,还时不时发出笑声呢?这就好像说大海没有水一样不可思议呀!所以电影就是好看呀,反证法太绝啦!
我的观点结论是:反证法真的是一种很有趣且有用的思维方法呀,能让我们从相反的角度看清很多事情呢!。
反证法的例子

反证法的例子
反证法是一种认证思维方法,旨在验证一种断言是否正确。
反证法有助于减轻数学上疑难问题的繁琐性,其采用对思考过程的反向评估,如果反证能够确定该断言是正确的,则它便是有效的。
例如:假设断言“凡是10的倍数的正整数,其平方数一定能被100整除。
”
反证法:如果你反复反证,那么你可以推翻上面的断言,只要你能证明一个满足条件的正整数的平方数不能被100整除,断言就就不正确。
证明:令x=10,则x的平方数为100。
令x=20,则x的平方数为400,400不能被100整除,因此断言不正确。
反证法具有有效思维的优势:它可以削减费时间,节省脑力,并使你更清楚地表达你的观点,从而使推理成为一种更有效和有趣的过程。
此外,反证法是在认为断言有误的情况下,通过进行反复的反证来证明该断言不实的一种思维过程,具有证据驱动的特点,有利于维护真理,有力地推动学术研究和思维拓展。
驳论的论证方法

驳论的论证方法引言驳论是一种常见的辩论和辩证思维方法,旨在通过论证来驳斥他人的观点或结论。
在辩论中,正确使用驳论的论证方法可以帮助我们更好地理解问题,发现漏洞,并向对方提出有力的反驳。
本文将介绍一些常用的驳论论证方法,并通过具体例子来说明如何运用这些方法。
一、反证法1.反证法是一种通过推理得出与某个命题相矛盾的命题,从而反驳原命题的方法。
简单来说,就是假设原命题为真,然后通过推理得出一个与已知事实矛盾的结论,从而推翻原命题。
这种方法常用于推翻一些未经证实的观点或假设。
2.举例说明:假设某人声称”所有的人都喜欢吃辣的食物”,我们可以通过反证法来反驳这个说法。
我们可以找到一个人A,他并不喜欢吃辣的食物,然后就可以得出与原命题相矛盾的结论,即”并非所有人都喜欢吃辣的食物”。
3.反证法的优点在于能够通过推理和逻辑思维来证明事实,从而有效地进行驳论。
然而,反证法并不适用于所有情况,有时可能需要其他方法来进行有效的驳论。
二、矛盾法1.矛盾法是一种通过找出论点之间的逻辑矛盾来驳斥某种观点或结论的方法。
当一个命题与其他已知的命题发生矛盾时,我们就可以通过矛盾法来进行有效的驳论。
2.举例说明:假设某人提出观点”所有的大学生都是年轻人”,我们可以通过矛盾法来进行驳论。
因为已知事实是”有的大学生是成年人”,所以这个观点与已知事实发生了逻辑矛盾,我们可以通过指出这个矛盾来驳斥该观点。
3.矛盾法的优点在于能够通过找出观点之间的逻辑矛盾来进行有效的驳论。
然而,有时候观点之间的矛盾可能并不明显,这就需要我们进行深入的逻辑思考和推理。
三、证伪法1.证伪法是一种通过找出一个与某个命题相矛盾的证据来驳斥该命题的方法。
它认为,一般命题在逻辑上是不可证明的,而只能通过证伪的方式来得到认可。
2.举例说明:假设某人提出命题”所有的猫都能飞”,我们可以通过证伪法来进行驳论。
找出一个不能飞的猫作为反例,就可以推翻这个命题。
3.证伪法的优点在于能够通过实际证据来驳斥某个命题,从而进行有效的驳论。
介绍反证法及举例

01
用反证法证明命题的一般步骤是什么?
2.反证法是一种常用的间接证明方法.
02
则C必定是在撒谎.
05
由A假, 知B真. 这与B假矛盾.
03
B、C三个人,A说B撒谎,B说C撒谎,C说A、B都撒谎。则C必定是在撒谎,为什么?
M:为了做出决断,旅游者被送到国王那里。苦苦想了好久,国王才说——
国王:不管我做出什么决定,都肯定要破坏这条法律。我们还是宽大为怀算了,让这个人自由吧。
1
2
3
4
5
6
唐·吉诃德悖论
说谎者悖论
M:小说《唐·吉诃德》里描写过一个国家.它有一条奇怪的法律:每一个旅游者都要回答一个问题。问,你来这里做什么?M:如果旅游者回答对了。一切都好办。如果回答错了,他就要被绞死。
M:一天,有个旅游者回答——
旅游者:我来这里是要被绞死。
M:这时,卫兵慌了神,如果他们不把这人绞死,他就说错了,就得受绞刑。可是,如果他们绞死他,他就说对了,就不应该绞死他。
∴ab + bc + ca = a(b + c) + bc < 0
与题设矛盾
若a = 0,则与abc > 0矛盾,
∴必有a > 0
同理可证:b > 0, c > 0
练习2.已知a + b + c > 0,ab + bc + ca > 0,
abc > 0, 求证:a, b, c > 0
幻灯片切换
反设②归谬③结论 方法小结: 1直接证明:直接从原命题的条件逐步推得结论成立. 正难则反!
介绍反证法及举例

反证法将更多地与其他证明方法相结合,形成更强大的证 明工具。例如,可以与归纳法、构造法等相结合,共同解 决复杂问题。
完善理论体系
未来反证法的理论体系将进一步完善,包括更严谨的假设 条件、更精确的推导过程以及更广泛的应用范围。
推动学科发展
反证法的不断发展和完善将推动相关学科的进步,为数学 、物理学、哲学等领域的研究提供更有效的工具和方法。
原理
基于逻辑中的排中律和矛盾律。排中律指出任何命题要么为真要么为假,没有中间状态;矛盾律则表 明一个命题不能既为真又为假。通过假设命题的否定并推导出矛盾,可以证明原命题的成立。
适用范围及局限性
适用范围
反证法在数学、逻辑学、哲学等多个领域都有广泛应用。它特别适用于直接证 明困难或不可能的情况,通过间接方式证明命题的成立。
03
反证法在物理领域应用
力学问题中反证法应用
假设物体不受外力作用时,其运动状 态不会改变。如果物体运动状态发生 了改变,则可以推导出物体必定受到 了外力的作用,从而证明了牛顿第一 定律的正确性。
VS
假设两个物体之间的摩擦力与它们之 间的正压力成正比。如果两个物体之 间的摩擦力与正压力不成正比,则可 以推导出物体之间的滑动摩擦系数不 是一个常数,从而证明了库仑摩擦定 律的正确性。
电磁学问题中反证法应用
假设电荷在电场中受到的电场力与其所带电荷量成正比。如 果电荷在电场中受到的电场力与其所带电荷量不成正比,则 可以推导出电场强度不是一个恒定的值,从而证明了库仑定 律的正确性。
假设电流在导体中产生的磁场与电流强度成正比。如果电流 在导体中产生的磁场与电流强度不成正比,则可以推导出磁 感应强度不是一个恒定的值,从而证明了安培环路定律的正 确性。
反证法数学最简单的例子

反证法数学最简单的例子
反证法是一种证明方法,用于证明某个命题的否定或矛盾。
它基于假设命题的否定为真,并通过逻辑推理的过程来得出矛盾的结论,从而证明原命题是成立的。
对于数学上最简单的例子,我们可以考虑证明一个整数是奇数。
以下是一个使用反证法证明某个整数是奇数的例子:
假设存在一个整数x,其中x是偶数。
根据偶数的定义,我们可以将x表示为2的倍数,即存在一个整数k使得x=2k。
根据这个假设,我们可以得出以下结论:
1. x是偶数,所以存在一个整数k使得x=2k。
2. 由于k也是整数,故存在一个整数n,使得k=2n。
现在我们可以将x用k和n来表示:
x=2k=2(2n)=4n
综上,我们得到结论x=4n。
此时我们来观察一下得到的结论。
我们知道4可以写成2的平方,所以x可以
写成2的平方乘以n,也就是说x是2的倍数。
然而,根据我们一开始的假设,x是偶数,x=2k,因此x也是2的倍数。
然而这与我们之前的结论矛盾,因为我们开始的时候假设x是一个奇数。
基于我们的假设推导出了矛盾的结论,说明我们的假设是错误的。
反设法的核心是通过推理达到矛盾,从而证明了原命题的成立。
因此,我们可以得出结论x 是一个奇数。
总结起来,反证法是一种重要的证明方法,可以用于解决各种数学问题。
这个简单的例子展示了反证法的使用过程,以及如何通过逻辑推理推导出矛盾,从而证明了原命题的成立。
当面对一些困难的问题时,反证法可以提供一个有效的解决思路,帮助我们理解问题的本质,并得出正确的结论。
反证法举例子通俗易懂

反证法举例子通俗易懂
反证法(又称反论法)是一种推理证明方法,主要用于证明命题的真假。
即首先设定
被证明命题的否定式的原子命题(称为反假设)为真,然后证明这样假设而不合理,从而
及推出原命题为真。
反证法是推理推理技术中最基本也是最常用的一种,解决一个复杂问
题时反证法是有效的。
举例说明:
假设某超市一瓶价格20元的矿泉水,被称为“保健水”;
应用反证法来证明这个瓶子的水不是保健水:
1.建立假设:这个瓶子的水是保健水。
2.推理:正常正规的保健水一般都是非常昂贵的,而这款产品只要20元一瓶,所以
不可能是保健水;
3.结论:根据以上结论,可以推出“这个瓶子的水不是保健水”。
以上就是反证法的一个典型的用法,它的核心主要有两个,一是建立一个明确的假设,二是结合证据和事实来推理出一个假设的真假。
反证法应用非常广泛,日常生活中我们也经常使用反证法,比如说:
1.建立假设:“A”是小明最好的朋友
2. 推理:A跟小明之间没有联系,也没有表达过珍重,那么他一定不是小明最好的朋友;
3.结论:根据以上分析,A不是小明最好的朋友。
以上就是应用反证法所推理出的结论,可以发现,反证法也可以根据生活中的实际情况,通过不同的推理思维来推断出一个命题的真假,只要抓住正确的点去思考,就可以结
合现实情况,用反证法来解释问题,解决实际中的问题。
反证法的一般步骤例子

反证法的一般步骤例子反证法是一种常用的数学证明方法,它通过假设所要证明的命题为假,然后推导出矛盾的结论,从而证明原命题为真。
下面将以反证法的一般步骤为题,列举一些具体的例子来说明。
一、反证法的一般步骤反证法的一般步骤包括以下几个步骤:1. 假设待证命题的反命题为真;2. 利用已知条件或已证明的命题推导出与反命题相矛盾的结论;3. 由此得出结论,待证命题为真。
二、具体例子1. 证明根号2是一个无理数假设根号2是一个有理数,即可以表示为两个整数的比值。
设根号2=a/b,其中a和b互质,且b不等于0。
由此可得2=a^2/b^2,即2b^2=a^2。
根据整除的性质可知,a^2必然是2的倍数,而根据素因子分解的唯一性可知,a也必然是2的倍数。
设a=2k,则可得到4k^2=2b^2,化简得到2k^2=b^2。
同样地,可知b也是2的倍数。
这与a和b互质的假设相矛盾,因此假设不成立,根号2是一个无理数。
2. 证明素数有无穷多个假设存在有限个素数,记为p1、p2、p3、…、pn。
考虑数M=p1p2p3…pn+1,显然M大于任何一个已知的素数。
根据素数的定义,M必然是一个合数。
而根据合数的定义可知,M必然可以被某个素数pi整除。
然而,pi不能整除M,因为p1p2p3…pn+1除以pi的余数必然为1。
这与假设相矛盾,因此假设不成立,素数有无穷多个。
3. 证明根号3是一个无理数假设根号3是一个有理数,即可以表示为两个整数的比值。
设根号3=a/b,其中a和b互质,且b不等于0。
由此可得3=a^2/b^2,即3b^2=a^2。
根据整除的性质可知,a^2必然是3的倍数,而根据素因子分解的唯一性可知,a也必然是3的倍数。
设a=3k,则可得到9k^2=3b^2,化简得到3k^2=b^2。
同样地,可知b也是3的倍数。
这与a和b互质的假设相矛盾,因此假设不成立,根号3是一个无理数。
4. 证明根号5是一个无理数假设根号5是一个有理数,即可以表示为两个整数的比值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
反证法证明命题的一般步骤如下 : 1.假设结论的反面成立 ; 反设
2.由这个假推理过程中一定要用到才行
显而易见的矛盾(如和已知条件矛盾).
3. 由矛盾判定假设不正确 , 从而肯定 结论 命题的结论正确 .
举例(课本例4) ( 课本例5)
例1:用反证法证明:圆的两条不是直径的相交弦 不能互相平分。
D
B
反证法是一种重要的数学思想方法,对于那些含有否 定词的命题, “至少”型命题、唯一性命题,尤为适宜。牛 顿说: “反证法是数学上最精良的武器之一 .” 这就充分肯 定了这一方法的积极作用和不可动摇的重要地位。 数学上很多有名的结论都是用反证法得证的. 比如说, 素数有无穷多个 , 2 是无理数的证明等.
64 2 (1 a ) a 1 又∵0 < a, b, c < 1 ∴ 0 (1 a )a ≤ 2 4 1 1 同理: (1 b)b ≤ (1 c )c ≤ 4 4 1
以上三式相乘:(1 a)a•(1 b)b•(1 c)c≤ 与①矛盾∴结论成立
作业:课本 P 练习 1,2 102
选做作业: 1.直线 PO 与平面 相交于 O ,过点 O 在平面 内 引直线 OA 、 OB 、 OC , POA POB POC . 求证: PO . P
A E O H B
2.已知 f ( x ) x 2 px q ,
幻灯片切换
方法小结: 1直接证明:直接从原命题的条件逐步推得结论成立. ⑴综合法──联想尝试(浮想联翩,尝试前进!) 由因导果:(已知) A B1 Bn B (结论)
2.反证法是一种常用的间接证明方法.
⑵分析法──转化尝试(执果索因,妙在转化!) 执果索因:(结论) B B1 Bn A (已知)
你能举出一个类似故事《路边苦李》中的推理 的例子吗?
当我们直接从正面考虑不易解决问题时,于是就要 改变思维方向,从结论入手,反面思考。这种从“正面难 解决就从反面思考”的思维方式就是我们通常所说的 间接解法中的一种——反证法. (又比如课本的思考)
什么是反证法?
一般地,假设原命题不成立,经过正确的推理, 最后得出矛盾,因此说明假设错误,从而证明了原命 题成立,这样的证明方法叫做反证法(归谬法).
已知 f ( x) x 2 px q ,求证:| f (1) |,| f (2) |,| f (3) | 中至少有 1 一个不小于 。 2 1 分析:设 | f (1) |,| f (2) |,| f (3) | 中没有一个大于或等于 , 2 观察: f (1) 1 p q, f (2) 4 2 p q, f (3) 9 3 p q 得: f (1) 2 f (2) f (3) 2 所以 2= | f (1) 2 f (2) f (3) | ≤ | f (1) | 2 | f (2) | | f (3) | 1 1 1 < +2× + =2 这是不可能的,矛盾表明原结论成立。 2 2 2 解:略。说明: “至少”型命题常用反证法,由于其反面情况 也只有一种可能,所以属于归谬反证法。
a
C
F
1 求证: | f (1) |,| f (2) |,| f (3) | 中至少有一个不小于 。 2
作业:课本 P 练习 1,2 102
1.直线 PO 与平面 相交于 O ,过点 O 在平面 内引直 P 线 OA 、 OB 、 OC , POA POB POC . 求证: PO . 证明:假设 PO 不垂直平面 。 A E 作 PH 并与平面 相交于 H, O H 此时 H、O 不重合,连结 OH。 F C B a 由 P 作 PE OA 于 E, PF OB 于 F,根据三垂线定理可知, HE OA , HF OB .∵ POA POB ,PO 是公共边, ∴ Rt POE Rt POF ∴ OE OF 又 OH OH ∴ Rt OFH Rt OEH ∴ FOH EOH 因此,OH 是 AOB 的平分线。同理可证,OH 是 AOC 的平 分线。但是,OB 和 OC 是两条不重合的直线,OH 不可能同 时是 AOB 和 AOC 的平分线,产生矛盾.∴ PO .
反证法
故事引入
思维体会
介绍反证法 及举例 本课小结
练习1,2
反证法
阅读下面的故事 ,体会其中的推理: 《路边苦李》 古时候有个人叫王戎,7 岁那年的某一天和 小伙伴在路边玩,看见一棵李子树上的果实多得 把树枝都快压断了,小伙伴们都跑去摘,只有王 戎站着没动。他说: “李子是苦的,我不吃。 ”小伙 伴摘来一尝,李子果然苦的没法吃。小伙伴问王 戎: “这就怪了!你又没有吃,怎么知道李子是苦的 啊?”王戎说:“如果李子是甜的,树长在路边,李 子早就没了!李子现在还那么多 ,所以啊,肯定李 子是苦的,不好吃!”
已知:如图,在⊙O中,弦AB、CD交于点P,且 AB、CD不是直径.求证:弦AB、CD不被P平分. A O 证明: 假设弦AB、CD被P平分, 由于P点一定不是圆心O,连结OP,根据垂径 P 定理的推论,有OP⊥AB,OP⊥CD, C 即过点P有两条直线与OP都垂直,这与垂线性质矛盾。 所以,弦AB、CD不被P平分。
所以假设不成立,2是有理数成立。
练习1,2
练习1.设0 < a, b, c < 1, 求证:(1 a)b, (1 b)c, (1 c)a,不可能同时大于1/4
1 1 1 证:设(1 a)b > , (1 b)c > , (1 c)a > 4 4 4 1 ① 则三式相乘:(1a)b•(1b)c•(1c)a >
(1)用反证法证明命题的一般步骤是什么? ①反设②归谬③结论
(2)用反证法证题,矛盾的主要类型有哪些? 用反证法在归谬中所导出的矛盾可以是与题设矛盾,与 假设矛盾,与已知定义、公理、定理矛盾,自相矛盾等. (3)适宜使用反证法的情况: 正难则反! (1)结论以否定形式出现;(2)结论以“至多----,” ,“至 少---” 形式出现;(3)唯一性、存在性问题;(4)结论的反 面比原结论更具体更容易研究的命题。
( 课本例5)
(自学课本例5)例2.求证: 2 是无理数.
证:假设 2是有理数,
2
∴ m = 2n
m 则存在互质的整数m,n使得 2 = , n
∴ m = 2n
2 2
2
∴m 2 是偶数,从而m必是偶数,故设m = 2k(k∈N)
从而有4k = 2n ,即n = 2k
2
2
∴n2也是偶数,这与m,n互质矛盾!
64
练习2
练习2.已知a + b + c > 0,ab + bc + ca > 0, abc > 0, 求证:a, b, c > 0
证:设a < 0, ∵abc > 0, ∴bc < 0 又由a + b + c > 0, 则b + c > a > 0 ∴ab + bc + ca = a(b + c) + bc < 0 与题设矛盾 若a = 0,则与abc > 0矛盾, ∴必有a > 0 同理可证:b > 0, c > 0
它的最简单的形式。
• 甲:这句话是错的。
• M:上面这个句子对吗?如果是对的,这句话就
是错的!如果这句话是错的,那这个句子就对
了!像这样矛盾的说法比你所能想到的还要普
遍得多。
唐· 吉诃德悖论
• M:小说《唐· 吉诃德》里描写过一个国家.它有一条 奇怪的法律:每一个旅游者都要回答一个问题。问, 你来这里做什么?M:如果旅游者回答对了。一切都 好办。如果回答错了,他就要被绞死。 • M:一天,有个旅游者回答—— • 旅游者:我来这里是要被绞死。 • M:这时,卫兵慌了神,如果他们不把这人绞死,他 就说错了,就得受绞刑。可是,如果他们绞死他,他 就说对了,就不应该绞死他。 • M:为了做出决断,旅游者被送到国王那里。苦苦想 了好久,国王才说—— • 国王:不管我做出什么决定,都肯定要破坏这条法律。 我们还是宽大为怀算了,让这个人自由吧。
A、B、C三个人,A说B撒谎,B说C撒谎, C说A、B都撒谎。则C必定是在撒谎,为 什么?
分析:假设C没有撒谎, 则C真. - - 那么A假且B假; 由 A假 , 知 B真 . 这与B假矛盾. 那么假设C没有撒谎不成立, 则C必定是在撒谎.
说谎者悖论
• M:我们陷入了著名的说谎者悖论之中。下面是