介绍反证法和举例
数字推理圈三法

数字推理圈三法
数字推理圈三法是指数字推理中的三个基本法则:反证法、分情况法和无中生有法。
1. 反证法:假设某个条件不成立,然后通过逻辑推理推出矛盾结果,从而证明该条件一定成立。
举例:如果要证明一个数是质数,可以采用反证法。
假设这个数不是质数,那么它一定可以被分解为两个较小的数的乘积,然后通过逻辑推理可以得出这两个数中至少有一个是小于这个数的平方根的整数,这与前提矛盾,因此假设不成立,该数一定是质数。
2. 分情况法:将问题分成几种可能的情况进行分析,从而得出结论。
举例:假设有一个箱子里面装着球,有蓝球、红球和绿球三种颜色,问至少需要取出几个球才能确保取到三个同颜色的球。
可以采用分情况法,将问题分成三种情况:取到两个球和取到三个球,分别考虑每种情况下最坏情况的情况数,得出至少需要取出四个球才能确保取到三个同颜色的球。
3. 无中生有法:利用一些看似无关的信息推出结论。
举例:假设有一堆硬币,其中有一个是假的,假硬币比真硬币重,但它的重量与真硬币的重量相差不大。
只能使用天平进行称重,问最少需要进行几次称重才能找出假硬币。
可以采用无中生有法,将硬币堆分成三堆,每堆各放三枚硬币,先将一堆放在天平的一侧,将另外两堆各放在天平的一侧,如果天平平衡,说明假硬币在未称重的那一堆中,然后将这堆硬币分成三堆,再按照上述方法进行称重;如果天平不平衡,说明假硬币在天平较重的那一侧,将这一侧的硬币分成三堆,再按照上述方法进行称重。
最多只需要三次称重就能找出假硬币。
课件7:2.2.2 反证法

名师点评
证明“有且只有一个”的问题,需要证明两个命
题,即存在性和唯一性.本例用直接证法中的综合法证
明了存在性,反证法证明了唯一性.
跟踪训练
2.(1)证明:方程2x=3有且只有一个根.
(2)证明:两条相交直线有且只有一个交点.
证明:(1)∵2x=3,∴x=log23.这说明方程有一个根.
下面用反证法证明方程2x=3的根是唯一的.
成立),经过正确的推理,最后得出矛盾,因此说明
原命题
假设
________错误,从而证明了_________成立,这种证
明方法叫做反证法.
想一想
1.用反证法证明命题“若p,则q”时,为什么证出綈q假,
就说明“若p,则q”就真?
提示:“若p,则綈q”是“若p,则q”的否定,二者一真一
假,所以“若p,则綈q”为假从而说明“若p,则q”为真.
想一想
2.“反证法”与“证逆否命题”有什么主要区别?
提示:(1)两种证法的逻辑原理不同.“反证法”的原理是
命题与命题的否定一真一假,“证逆否命题”的原理是命
题与其逆否命题的等价性(即同真假).
(2)两种证明的推理形式不同,证明逆否命题实际上就是
从结论的反面出发,推出条件的反面成立.而反证法一
般是假设结论的反面成立,然后通过推理导出矛盾.
2
4
4 2
4 2
2
即( λ-3) =λ( λ-4)⇔ λ -4λ+9= λ -4λ⇔9=0,
3
9
9
9
矛盾.所以对任意实数 λ,{an}不是等比数列.
设{an},{bn}的公比分别为p,q(p≠q).
∵a=an-1·an+1,b=bn-1·bn+1,
高数论文-反证法

高等数学结课论文之反证法反证法又称归谬法、背理法,是一种论证方式,他首先假设某命题不成立(即在原命题的条件下,结论不成立),然后推理出明显矛盾的结果,从而下结论说原假设不成立,原命题得证。
反证法的原理:反证法是“间接证明法”一类,是从反方向证明的证明方法,即:肯定题设而否定结论,从而得出矛盾。
法国数学家阿达玛对反证法的实质作过概括:“若肯定定理的假设而否定其结论,就会导致矛盾”。
具体地讲,反证法就是从反论题入手,把命题结论的否定当作条件,使之得到与条件相矛盾,肯定了命题的结论,从而使命题获得了证明。
在应用反证法证题时,一定要用到“反设”,否则就不是反证法。
用反证法证题时,如果欲证明的命题的方面情况只有一种,那么只要将这种情况驳倒了就可以,这种反证法又叫“归谬法”;如果结论的方面情况有多种,那么必须将所有的反面情况一一驳倒,才能推断原结论成立,这种证法又叫“穷举法”。
反证法在数学中经常运用。
当论题从正面不容易或不能得到证明时,就需要运用反证法,此即所谓"正难则反"。
牛顿曾经说过:“反证法是数学家最精当的武器之一”。
一般来讲,反证法常用来证明正面证明有困难,情况多或复杂,而逆否命题则比较浅显的题目,问题可能解决得十分干脆。
反证法的逻辑原理:反证法的证题可以简要的概括为“否定→得出矛盾→否定”。
即从否定结论开始,得出矛盾,达到新的否定,可以认为反证法的基本思想就是辩证的“否定之否定”。
应用反证法的是:欲证“若P则Q”为真命题,从相反结论出发,得出矛盾,从而原命题为真命题。
反证法的证明:反证法的证明主要用到“一个命题与其逆否命题同真假”的结论,为什么?这个结论可以用穷举法证明:某命题:若A则B,则此命题有4种情况:1.当A为真,B为真,则A→B为真,﹁B→﹁A为真;2.当A为真,B为假,则A→B为假,﹁B→﹁A为假;3.当A为假,B为真,则A→B为真,﹁B→﹁A为真;4.当A为假,B为假,则A→B为真,﹁B→﹁A为真;∴一个命题与其逆否命题同真假即关于〉=〈的问题:大于 -〉反义:小于或等于都大于-〉反义:至少有一个不大于小于 -〉反义:大于或等于都小于-〉反义:至少有一个不小于即反证法是正确的。
浙教版数学八年级下册_反证法应用例析

“反证法”应用例析反证法是一种间接证题方法。
证题时,首先假设结论不成立,然后以此为出发点,通过正确的逻辑推理,推导出与已知条件、定义、公理或定理等相矛盾的结果,从而肯定假设错误,得出结论正确。
下面举例加以说明,供同学们参考。
一、证明与三角形有关的问题例题1、求证:一个三角形中不能有两个角是直角。
分析:应首先据题意画出一个三角形草图,并写出已知、求证,然后按照反证法的步骤进行推理即可。
已知:△ABC。
求证:∠A、∠B、∠C中不能有两个角是直角。
证明:假设∠A、∠B、∠C中有两个角是直角,不妨设∠A=∠B=90º,则∠A+∠B+∠C=90º+90º+∠C>180º,这与三角形的内角和定理相矛盾,所以假设∠A=∠B=90º不成立,因此,一个三角形中不能有两个角是直角。
二、证明与一元二次方程有关的问题例题2、已知a>2,b>2,请判断关于x的方程x2-(a+b)x+ab=0与x2-abx+(a+b)=0有没有公共根;并说明理由。
分析:可用反证法,先假设两个方程有公共根,然后推导出与已知相矛盾。
解:这两个方程没有公共根。
理由如下:假设所给的这两个方程有公共根x0,根据题意,得x02-(a+b)x0+ab=0①x02-abx0+(a+b)=0②②-①得:(x0+1) (a+b-ab)=0。
因为:a>2,b>2,所以a+b≠ab。
这样有,x0=-1。
将x0=-1代入到方程②中,得:1+ a+b+ab=0,显然这是不可能的。
故假设两个方程存在着公共根x0不成立。
因此,已知的两个方程没有公共根。
评注:应用反证法解题应首先掌握基本的解题步骤,其次熟练有关图形和代数等的基础知识,这些都是不可或缺的。
应认真体会、总结,并配合强化训练等加以融会贯通。
反证法 课件

反证法
先假设要证明的命题不成立,以此为出发点, 结合已知条件,应用公理、定义、定理、性质等, 进行正确的推理,得到矛盾,说明假设不正确, 从而间接说明原命题成立的方法。
例1 已知x, y 0, 且x y 2,试证 : 1 x ,1 y中至少
yx 有一个小于2.
另外,如果从正面 证明,需要对某一 个分式小于2或两 个分式都小于2等 进行分类讨论,而
证明 假设 a,b, c 不全是正数,即其中至少有 一个不是正数.不妨先设a 0.下面分a 0和 a 0 两种情况讨论.
1 如果 a 0,则 abc 0,与abc 0 矛盾. 所以
a 0 不可能.
2 如果 a 0,那么由abc 0,可得 bc 0.
又因为a b c 0.所以b c a 0.
与①矛盾∴结论成立
例2 已知 a,b, c为实 假设a,b, c不全是正数, 数 , a b c 0 , ab 这时需要逐个讨论a , bc ca 0, abc 0,求 b, c不是正数的情形.但 证 : a 0,b 0, c 0. 注意到条件的特点(任 分析 要证的结论与 意交换a,b, c 的位置不 条件之间的联系不明 改变命题的条件),我们 显,直接由条件推出结 只要讨论其中一个(例 论的线索不 够清晰,于 如a), 其他两个(例如b, 是考虑采用反证法. c)与这种情形类似.
▪
论成立的方法。
反证法
先假设要证的命题不成立,以此为出发点,结合已知条 件,应用公理,定义,定理,性质等,进行正确的推理,得到 和命题的条件(或已证明的定理,性质,明显成立的事实 等)矛盾的结论,以说明假设不正确,从而证明原命题成 立,这种方法称为反证法.对于那些直接证明比较困难
的命题常常用反证法证明. (正难则反)
《初二数学反证法》课件

在推导过程中,要避免将不同的 概念混为一谈,以确保推导的逻 辑严密性。
掌握反证法的适用范围
适用于直接证明困难的情况
反证法常常适用于直接证明某个命题很困难的情况,通过假设原命题的结论不成立,找到矛盾,从而证明原命题 的正确性。
适用于真假较易判断的命题
反证法适用于真假较易判断的命题,因为一旦找到矛盾,就可以很容易地判断原命题的真假。
它是一种间接的证明方法,常 常用于那些直接证明比较困难 的问题。
在数学中,反证法是一种常用 的证明技巧,尤其在初等数学 中。
反证法的起源与发展
反证法的思想可以追溯到古希腊的哲 学家和数学家,如亚里士多德等。
随着数学的发展,反证法的应用越来 越广泛,成为数学证明中的重要方法 之一。
在中国古代的数学著作中,也出现了 反证法的应用,如《九章算术》等。
反证法的应用场景
在几何学中,反证法常常用于证明一些与图形有关的命题,如线段的性质、角的性 质等。
在代数中,反证法可以用于证明一些不等式、恒等式等。
在初等数学中,反证法是一种非常常用的证明方法,尤其在竞赛数学中更为常见。
01
反证法的证明步骤
假设命题结论不成立
提出与原命题相反的 假设。
确保假设与原命题的 结论相矛盾。
《初二数学反证法》 ppt课件
THE FIRST LESSON OF THE SCHOOL YEAR
目录CONTENTS
• 反证法简介 • 反证法的证明步骤 • 反证法的应用实例 • 反证法的注意事项 • 练习与思考
01
反证法简介
反证法的定义
反证法是一种证明方法,通过 否定待证明的命题,然后推导 出矛盾,从而肯定原命题。
总结词
举例说明消退法的应用(一)

举例说明消退法的应用(一)举例说明消退法消退法(即归纳法、反证法)是一种常用的推理方法,通过反证和归纳两种不同的方式,来证明或推测某个命题的真假。
下面将通过几个具体的应用例子来详细讲解该方法的使用。
1. 反证法例子1:证明开方是唯一的假设存在两个不同的正数 x 和 y,使得它们的平方都等于 2。
根据反证法,我们假设开方不是唯一的,即存在一个正数 x(不等于y),满足 x^2 = 2 平方等于 2。
然后我们推导出一个矛盾的结论。
假设 x = p/q,其中 p 和 q 是彼此互质的整数,因为我们要找到一个正数 x。
则我们有 (p/q)^2 = 2。
整理得到 p^2 = 2q^2,即p^2 是 2 的倍数。
我们可以得出结论,p 也必须是 2 的倍数,因为如果 p 不是 2 的倍数,则 p^2 也不是 2 的倍数。
因此,可以将 p 表示为 p = 2r (r 是整数),将上述等式代入,得到 (2r)^2 = 2q^2,进一步简化为 4r^2 = 2q^2。
这样一来,我们可以得出结论,q 也必须是 2 的倍数。
因此,我们可以将 q 表示为 q = 2s(s 是整数),将上述等式代入,得到4r^2 = 8s^2,简化为 2r^2 = 4s^2,进一步简化为 r^2 = 2s^2。
根据前面的推导,我们看到 p 和 q 都是 2 的倍数,这与我们最初的假设矛盾。
因此,我们可以推断出开方是唯一的,不存在两个不同的正数 x 和 y,满足 x^2 = 2 和 y^2 = 2。
例子2:证明素数无穷多假设存在有限个素数p1, p2, …, pn。
然后,我们可以构建一个新的数 q,该数为p1, p2, …, pn 中所有素数的乘积加一。
即,q = p1 * p2 * … * pn + 1。
首先,我们可以明确 q 不是其中任何一个素数的倍数(因为 q除以这些素数的余数都是 1),即 q 不等于p1, p2, …, pn。
然后,我们可以推断出 q 要么是素数,要么是由两个以上的素数的乘积组成。
初中数学解题方法:反证法

初中数学解题方法:反证法初中数学解题方法:反证法反证法,亦称“逆证”,是间接论证的方法之一,是通过断定与论题相矛盾的判断的虚假来确立论题的真实性的论证方法。
以下是小编为大家整理的初中数学解题方法:反证法相关资料,供大家参考。
反证法反证法是一种间接证法,它是先提出一个与命题的结论相反的假设,然后,从这个假设出发,经过正确的推理,导致矛盾,从而否定相反的假设,达到肯定原命题正确的一种方法。
用反证法证明一个命题的步骤,大体上分为:(1)反设;(2)归谬;(3)结论。
反设是反证法的基础,为了正确地作出反设,掌握一些常用的互为否定的表述形式是有必要的,例如:是/不是;存在/不存在;平行于/不平行于;垂直于/不垂直于;等于/不等于;大(小)于/不大(小)于;都是/不都是;至少有一个/一个也没有;至少有n个/至多有(n一1)个;至多有一个/至少有两个;唯一/至少有两个。
归谬是反证法的关键,导出矛盾的过程没有固定的模式,但必须从反设出发,否则推导将成为无源之水,无本之木。
推理必须严谨。
导出的矛盾有如下几种类型:与已知条件矛盾;与已知的公理、定义、定理、公式矛盾;与反设矛盾;自相矛盾。
本章节的初中数学学习方法汇编之反证法,相信同学们都认真记忆了吧。
接下来还有更多更全的初中数学学习方法等着大家来掌握哦。
初中数学解题方法之常用的公式下面是对数学常用的公式的讲解,同学们认真学习哦。
对于常用的公式如数学中的乘法公式、三角函数公式,常用的数字,如11~25的平方,特殊角的三角函数值,化学中常用元素的化学性质、化合价以及化学反应方程式等等,都要熟记在心,需用时信手拈来,则对提高演算速度极为有利。
总之,学习是一个不断深化的认识过程,解题只是学习的一个重要环节。
你对学习的内容越熟悉,对基本解题思路和方法越熟悉,背熟的数字、公式越多,并能把局部与整体有机地结合为一体,形成了跳跃性思维,就可以大大加快解题速度。
初中数学解题方法之学会画图数学的解题中对于学会画图是有必要的,希望同学们很好的学会画图。