(新)高一数学期中考试试卷及答案
北京市2024-2025学年高一上学期期中考试数学试卷含答案

2024年高一第一学期期中试卷数学(答案在最后)一、选择题(共10小题,每小题4分,共40分)1.已知集合{}31M x x =-<<,{}14N x x =-≤<,则M N = ()A.{}31x x -<< B.{}3x x >- C.{}11x x -≤< D.{}4x x <2.设命题p : n ∃∈N ,225n n >+,则p 的否定是()A. n ∀∈N ,225n n >+ B. n ∀∈N ,225n n ≤+C.n ∃∈N ,225n n ≤+ D.n ∃∈N ,N 225n n <+3.下列各组函数中,两个函数相同的是()A.3y =和y x=B.2y =和y x=C.y =和2y =D.y =和2x y x=4.下列函数在区间()0,+∞上为增函数的是()A.2xy = B.()21y x =- C.1y x-= D.3xy -=5.若实数a ,b 满足a b >,则下列不等式成立的是()A.a b> B.a c b c+>+ C.22a b > D.22ac bc>6.“4a ≥”是“二次函数()2f x x ax a =-+有零点”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件7.在下列区间中,一定包含函数()25xf x x =+-零点的区间是()A.()0,1 B.()1,2 C.()2,3 D.()3,48.已知函数()1,01,0x f x x x≤⎧⎪=⎨>⎪⎩,则使方程()x f x m +=有解的实数m 的取值范围是()A.()1,2 B.(),2-∞- C.()(),12,-∞+∞ D.(][),12,-∞+∞ 9.定义在R 上的偶函数()f x 满足:对任意的[)()1212,0,x x x x ∈+∞≠,都有()()21210f x f x x x -<-,且()30f =,则不等式()0f x >的解集是()A.()(),30,3-∞-B.()()3,03,-+∞C.()3,3- D.()(),33,-∞-+∞ 10.现实生活中,空旷田野间两根电线杆之间的电线与峡谷上空横跨深涧的观光索道的钢索有相似的曲线形态,这类曲线在数学上常被称为悬链线.在合适的坐标系中,这类曲线可用函数()()2e 0,e 2.71828ex xa bf x ab +=≠=⋅⋅⋅来表示.下列结论正确的是()A.若0ab >,则()f x 为奇函数B.若0ab >,则()f x 有最小值C.若0ab <,则()f x 为增函数D.若0ab <,则()f x 存在零点二、填空题(共5小题,每小题5分,共25分)11.函数()f x =的定义域为__________.12.已知函数()()1104f x x x x=++>,则当且仅当x =_________时,()f x 有最小值________.13.已知集合{}2,0A a =,{}3,9B a =-,若满足{}9A B = ,则实数a 的值为________.14.已知函数()y f x =在R 上是奇函数,当0x ≤时,()21xf x =-,则()1f =________;当0x >时,()f x =________.15.已知非空集合A ,B 满足以下四个条件:①{}1,2,3,4,5,6A B = ;②A B =∅ ;③A 中的元素个数不是A 中的元素;④B 中的元素个数不是B 中的元素.(ⅰ)如果集合A 中只有1个元素,那么集合A 的元素是__________;(ⅱ)有序集合对(),A B 的个数是__________.三、解答题(共6小题,第16题9分,第17-19题6分,第20题7分,第21题6分)16.已知集合{}14A x x =-≤≤,{}11B x a x a =-≤≤+.(1)若4a =,求A B ;(2)若A B A = ,求a 的取值范围.17.解下列关于x 的不等式:(1)2112x x +≤-(2)213x -≥(3)()()2220ax a x a +--≥∈R 18.已知函数()22xxf x a -=⋅-是定义在R 上的奇函数.(1)求a 的值,并用定义法证明()f x 在R 上单调递增;(2)解关于x 的不等式()()23540f x x f x -+->.19.某工厂要建造一个长方体的无盖贮水池,其容积为34800m ,深为3m ,如果池底造价为每平方米150元,池壁每平方米造价为120元,怎么设计水池能使总造价最低?最低造价是多少?20.已知函数()()21f x mx m x m =--+.(1)若不等式()0f x >的解集为R ,求m 的取值范围;(2)若不等式()0f x ≤对一切()0,x ∈+∞恒成立,求m 的取值范围;21.设k 是正整数,集合A 至少有两个元素,且* N A ⊆.如果对于A 中的任意两个不同的元素x ,y ,都有x y k -≠,则称A 具有性质()P k .(1)试判断集合{}1,2,3,4B =和{}1,4,7,10C =是否具有性质()2P ?并说明理由;(2)若集合{}{}1212,,,1,2,,20A a a a =⋅⋅⋅⊆⋅⋅⋅,求证:A 不可能具有性质()3P ;(3)若集合{}1,2,,2023A ⊆⋅⋅⋅,且同时具有性质()4P 和()7P ,求集合A 中元素个数的最大值.高一第一学期期中试卷数学参考答案与试题解析一、选择题(共10小题)CBAABABDCD二、共填空题(共5小题)11.[)1,+∞12.12;213.-314.12;()12xf x -=-15.5;10三、解答题(共6小题)17.(1){}23A B x x =≤≤ .(2)a 的取值范围是7,2⎛⎤-∞ ⎥⎝⎦.16.(1)()3,2-;(2)(][),12,-∞-+∞ (3)综上所述:当0a =时,不等式解集为(],1-∞-;当0a >时,不等式解集为(]2,1,a ⎡⎫-∞-+∞⎪⎢⎣⎭;当20a -<<时,不等式解集为2,1a⎡⎤-⎢⎥⎣⎦;当2a =-时,不等式解集为{}1-;当2a <-时,不等式解集为21,a⎡⎤-⎢⎥⎣⎦.18.(1)1a =,证明略(2)()()()()()2235403544f x x f x f x x f x f x -+->⇒->--=-∴23542x x x x ->-⇒>或23x <-.19.水池总造价()()16001502331207201600150x f x xy x y x ⎛⎫=⨯++⨯=+⨯+⨯ ⎪⎝⎭72024000057600240000297600≥+=+=元.当且仅当40x m =,40y m =时取等号.∴设计水池底面为边长为40m 的正方形能使总造价最低,最低造价是297600元.20.(1)m 的取值范围为1,3⎛⎫+∞ ⎪⎝⎭;(2)m 的取值范围为(],1-∞-;21.(1)集合B 不具有性质()2P ,集合C 具有性质()2P (2)证明:将集合{}1,2,,20⋅⋅⋅中的元素分为如下11个集合,{1,4},{2,5},{3,6},{7,10},{8,11}.{9,12},{13,16},{14,17},{15,18},{19},{20},所以从集合{}1,2,,20⋅⋅⋅中取12个元素,则前9个集合至少要选10个元素,所以必有2个元素取自前9个集合中的同一集合,即存在两个元素其差为3,所以A 不可能具有性质()3P ;(3)先说明连续11项中集合A 中最多选取5项,以1,2,3……,11为例.构造抽屉{1,8},{2,9},{3,10},{4,11},{5},{6},{7}.①5,6,7同时选,因为具有性质()4P 和()7P ,所以选5则不选1,9;选6则不选2,10;选7则不选3,11;则只剩4,8.故1,2,3……,11中属于集合A 的元素个数不超过5个.②5,6,7选2个,若只选5,6,则1,2,9,10,7不可选,又{4,11}只能选一个元素,3,8可以选,故1,2,3……,11中属于集合A 的元素个数不超过5个.若选5,7,则只能从2,4,8,10中选,但4,8不能同时选,故1,2,3……,11中属于集合A 的元素个数不超过5个.若选6,7,则2,3,10,11,5不可选,又{1,8}只能选一个元素,4,9可以选,故1,2,3……,11中属于集合A 的元素个数不超过5个.③5,6,7中只选1个,又四个集合{1,8},{2,9},{3,10},{4,11}每个集合至多选1个元素,故1,2,3……,11中属于集合A 的元素个数不超过5个.由上述①②③可知,连续11项自然数中属于集合A 的元素至多只有5个,如取1,4,6,7,9.因为2023=183×11+10,则把每11个连续自然数分组,前183组每组至多选取5项;从2014开始,最后10个数至多选取5项,故集合A 的元素最多有184×5=920个.给出如下选取方法:从1,2,3……,11中选取1,4,6,7,9;然后在这5个数的基础上每次累加11,构造183次.此时集合A的元素为:1,4,6,7,9;12,15,17,18,20;23,26,28,29,31;……;2014,2017,2019,2020,2022,共920个元素.经检验可得该集合符合要求,故集合A的元素最多有920个.。
浙江省宁波2023-2024学年高一上学期期中考试数学试卷含答案

浙江省宁波2023-2024学年高一上学期期中考试数学试卷一、选择题:本题共8小题,每小题5分,共40分.在每个题给出的四个选项中,只有一项是符合题目要求的.(答案在最后)1.已知集合{||11},{14}A x x B x x =-<=≤≤∣∣,则A B = ()A.{12}x x <<∣B.{12}xx ≤<∣C .{04}xx <<∣ D.{04}xx <≤∣【答案】B 【解析】【分析】先求集合A ,再根据交集运算求解即可.【详解】由题意,因为集合{|02},{|14}A x x B x x =<<=≤≤所以{|12}A B x x =≤< .故选:B.2.已知命题2000:1,0p x x x ∃≥-<,则命题p 的否定为()A.200010x ,x x ∃≥-≥ B.200010x ,x x ∃<-≥C.210x ,x x ∀<-≥ D.210x ,x x ∀≥-≥【答案】D 【解析】【分析】根据存在量词命题的否定方法对命题p 否定即可.【详解】由命题否定的定义可知,命题2000:1,0p x x x ∃≥-<的否定是:210x ,x x ∀≥-≥.故选:D.3.对于实数a ,b ,c ,下列结论中正确的是()A.若a b >,则22>ac bcB.若>>0a b ,则11>a bC.若<<0a b ,则<a b b aD.若a b >,11>a b,则<0ab 【答案】D 【解析】【分析】由不等式的性质逐一判断.【详解】解:对于A :0c =时,不成立,A 错误;对于B :若>>0a b ,则11<a b,B 错误;对于C :令2,a =-1b =-,代入不成立,C 错误;对于D :若a b >,11>a b,则0a >,0b <,则<0ab ,D 正确;故选:D .4.已知0x 是函数1()33xf x x ⎛⎫=-+ ⎪⎝⎭的一个零点,则0x ∈()A.(1,2)B.(2,3)C.(3,4)D.(4,5)【答案】C 【解析】【分析】根据题意,由条件可得函数单调递减,再由零点存在定理即可得到结果.【详解】根据题意知函数1()3xf x ⎛⎫= ⎪⎝⎭在区间1,+∞上单调递减,函数()3f x x =-+在区间()1,∞+单调递减,故函数1()33xf x x ⎛⎫=-+ ⎪⎝⎭在区间1,+∞上单调递减,又因1>2>3>0,4<0,又因()133xf x x ⎛⎫=-+ ⎪⎝⎭在()1,∞+上是连续不中断的,所以根据零点存在定理即可得知存在()03,4x ∈使得()00f x =.故选:C5.“2a ≤”是“函数()2()ln 1f x x ax =-+在区间[)2,+∞上单调递增”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件【答案】A 【解析】【分析】根据复合函数的单调性求函数()2()ln 1f x x ax =-+在区间[)2,+∞上单调递增的等价条件,在结合充分条件、必要条件的定义判断即可.【详解】二次函数21y x ax =-+图象的对称轴为2a x =,若函数()2()ln 1f x x ax =-+在区间[)2,+∞上单调递增,根据复合函数的单调性可得2≤24−2+1>0,即52a <,若2a ≤,则52a <,但是52a <,2a ≤不一定成立,故“2a ≤”是“函数()2()ln 1f x x ax =-+在区间[)2,+∞上单调递增”的充分不必要条件.故选:A 6.函数22()1xf x x =+的图象大致是()A. B.C. D.【答案】D 【解析】【分析】首先判断函数的奇偶性,即可判断A 、B ,再根据0x >时函数值的特征排除C.【详解】函数22()1x f x x =+的定义域为R ,且()()2222()11x x f x f x x x --==-=-+-+,所以22()1xf x x =+为奇函数,函数图象关于原点对称,故排除A 、B ;又当0x >时()0f x >,故排除C.故选:D7.已知42log 3x =,9log 16y =,5log 4z =,则x ,y ,z 的大小关系为()A.y x z >>B.z x y >>C.x y z >>D.y z x>>【答案】C 【解析】【分析】利用对数运算法则以及对数函数单调性可限定出x ,y ,z 的取自范围,即可得出结论.【详解】根据题意可得2222log 3log 3x ==,2233log 4log 4y ==,5log 4z =利用对数函数单调性可知32223log 3log log log 22x ===,即32x >;又323333331log 3log 4log log log 32y ====<,可得312y <<;而55log 4log 51z ==<,即1z <;综上可得x y z >>.故选:C8.已知函数323log ,03()1024,3x x f x x x x ⎧<≤=⎨-+>⎩,若方程()f x m =有四个不同的实根()12341234,,,x x x x x x x x <<<,则()()3412344x x x x x --的取值范围是()A.(0,1)B.(1,0)- C.(4,2)- D.(2,0]-【答案】B 【解析】【分析】根据图象分析可得121x x =,()()343410,3,4,6,7x x x x +=∈∈,整理得3431233(4)(4)2410x x x x x x x ⎛⎫--=-++ ⎪⎝⎭,结合对勾函数运算求解.【详解】因为op =3log 3,0<≤32−10+24,>3,当3x >时()22()102451f x x x x =-+=--,可知其对称轴为5x =,令210240x x -+=,解得4x =或6x =;令210243x x -+=,解得3x =或7x =;当03x <≤时3()3log f x x =,令33log 3x =,解得13x =或3x=,作出函数=的图象,如图所示,若方程()f x m =有四个不同的实根12341234,,,()x x x x x x x x <<<,即()y f x =与y m =有四个不同的交点,交点横坐标依次为12341234,,,()x x x x x x x x <<<,则12341134673x x x x <<<<<<<<<,对于12,x x ,则3132log log x x =,可得3132312log log log 0x x x x +==,所以121x x =;对于34,x x ,则()()343410,3,4,6,7x x x x +=∈∈,可得4310x x =-;所以()()3434333431233334161024(4)(4)2410x x x x x x x x x x x x x x x -++--⎛⎫--===-++ ⎪⎝⎭,由对勾函数可知332410y x x ⎛⎫=-++ ⎪⎝⎭在()3,4上单调递增,得()3324101,0x x ⎛⎫-++∈- ⎪⎝⎭,所以34123(4)(4)x x x x x --的取值范围是()1,0-.故选:B.【点睛】关键点点睛:本题解答的关键是画出函数图象,结合函数图象分析出121x x =,()()343410,3,4,6,7x x x x +=∈∈,从而转化为关于3x 的函数;二、多选题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分.9.下列说法正确的是()A.函数1()21x f x -=+恒过定点(1,1)B.函数3x y =与3log y x =的图象关于直线y x =对称C.0x ∃∈R ,当0x x >时,恒有32x x >D.若幂函数()f x x α=在(0,)+∞单调递减,则0α<【答案】BCD 【解析】【分析】由指数函数的性质可判断A ;由反函数的性质可判断B ;由指数函数的增长速度远远快于幂函数,可判断C ;由幂函数的性质可判断D .【详解】对于A ,函数1()21x f x -=+恒过定点(1,2),故A 错误;对于B ,函数3x y =与3log y x =的图象关于直线y x =对称,故B 正确;对于C ,因为指数函数的增长速度远远快于幂函数,所以0x x >时,恒有32x x >,故C 正确;对于D ,当0α<时,幂函数()f x x α=在(0,)+∞单调递减,故D 正确;故选:BCD .10.已知函数e 1()e 1x x f x +=-,则下列结论正确的是()A.函数()f x 的定义域为RB.函数()f x 的值域为(,1)(1,)-∞-+∞C.()()0f x f x +-=D.函数()f x 为减函数【答案】BC 【解析】【分析】根据分母不为0求出函数的定义域,即可判断A ;再将函数解析式变形为2()1e 1xf x =+-,即可求出函数的值域,从而判断B ;根据指数幂的运算判断C ,根据函数值的特征判断D.【详解】对于函数e 1()e 1x x f x +=-,则e 10x -≠,解得0x ≠,所以函数的定义域为{}|0x x ≠,故A 错误;因为e 1e 122()1e 1e 1e 1x x x x xf x +-+===+---,又e 0x >,当e 10x ->时20e 1x >-,则()1f x >,当1e 10x -<-<时22e 1x<--,则()1f x <-,所以函数()f x 的值域为(,1)(1,)-∞-+∞ ,故B 正确;又11e 1e 1e 1e 1e 1e ()()01e 1e 1e 11e e 11e xxxx x x x x x xx xf x f x --++++++-+=+=+=+------,故C 正确;当0x >时()0f x >,当0x <时()0f x <,所以()f x 不是减函数,故D 错误.11.已知0,0a b >>,且1a b +=,则()A.22log log 2a b +≥- B.22a b +≥C.149a b +≥ D.33114a b ≤+<【答案】BCD 【解析】【分析】利用基本不等式求出ab 的范围,即可判断A ;利用基本不等式及指数的运算法则判断B ;利用乘“1”法及基本不等式判断C ;利用立方和公式及ab 的范围判断D.【详解】因为0,0a b >>,且1a b +=,所以2124a b ab +⎛⎫≤= ⎪⎝⎭,当且仅当12a b ==时取等号,所以()22221log log log log 24a b ab +=≤=-,当且仅当12a b ==时取等号,故A 错误;22a b +≥=22a b =,即12a b ==时取等号,故B 正确;()14144559b a a b a b a b a b ⎛⎫+=++=++≥+ ⎪⎝⎭,当且仅当4b a a b =,即13a =,23b =时取等号,故C 正确;()()()2332222313a b a b a ab b a ab b a b ab ab +=+-+=-+=+-=-,因为104ab <≤,所以3034ab <≤,所以11314ab ≤-<,即33114a b ≤+<,故D 正确.故选:BCD12.对于定义在[]0,1上的函数()f x 如果同时满足以下三个条件:①()11f =;②对任意[]()0,1,0x f x ∈≥成立;③当12120,0,1x x x x ≥≥+≤时,总有()()()1212f x f x f x x +≤+成立,则称()f x 为“天一函数”.若()f x 为“天一函数”,则下列选项正确的是()A.()00f =B.()0.50.5f ≤C.()f x 为增函数 D.对任意[0,1]x ∈,都有()2f x x ≤成立【答案】ABD【分析】对于A ,令120x x ==,结合题中条件即可求解;对于B ,令120.5x x ==,结合题中条件即可求解;对于C ,令2121101X x x x X +>≥=≥=,结合性质②③可得()()21f X f X ≥,因此有()f x 在[]0,1x ∈上有递增趋势的函数(不一定严格递增),即可判断;对于D ,应用反证法:若存在[]00,1x ∈,使0>20成立,讨论1,12x ⎡⎤∈⎢⎥⎣⎦,10,2x ⎡⎫∈⎪⎢⎣⎭,结合递归思想判断0x 的存在性.【详解】对于A ,令120x x ==,则()()()000f f f +≤,即()00f ≤,又对任意[]()0,1,0x f x ∈≥成立,因此可得()00f =,故A 正确;对于B ,令120.5x x ==,则()()()0.50.51f f f +≤,又()11f =,则()0.50.5f ≤,故B 正确;对于C ,令2121101X x x x X +>≥=≥=,则221(0,1]x X X -∈=,所以()()()()()()12122121f X f X X f X f X f X f X X +-≤⇒-≥-,又对任意[]()0,1,0x f x ∈≥成立,则()221()0f x f X X =-≥,即()()210f X f X -≥,所以()()21f X f X ≥,即对任意1201x x ≤<≤,都有()()12f x f x ≤,所以()f x 在[]0,1x ∈上非递减,有递增趋势的函数(不一定严格递增),故C 错误;对于D ,由对任意1201x x ≤<≤,都有()()12f x f x ≤,又()00f =,()11f =,故()[]0,1f x ∈,反证法:若存在[]00,1x ∈,使0>20成立,对于1,12x ⎡⎤∈⎢⎥⎣⎦,()1f x ≤,而21x ≥,此时不存在01,12x ⎡⎤∈⎢⎥⎣⎦使0>20成立;对于10,2x ⎡⎫∈⎪⎢⎣⎭,若存在010,2x ⎡⎫∈⎪⎢⎣⎭使0>20成立,则()()()002f f x f x ≥,而[)020,1x ∈,则()()()()000022f x f x f x f x ≥+=,即0≥20>40,由()[)00,1f x ∈,依次类推,必有[)0,1∈t ,0()2nf t x >且*n ∈N 趋向于无穷大,此时()[0,1)f t ∈,而02nx 必然会出现大于1的情况,与>20矛盾,所以在10,2x ⎡⎫∈⎪⎢⎣⎭上也不存在010,2x ⎡⎫∈⎪⎢⎣⎭使0>20成立,综上,对任意[]0,1x ∈,都有()2f x x ≤成立,故D 正确;故选:ABD.【点睛】关键点点睛:对于D ,应用反证及递归思想推出1,12x ⎡⎤∈⎢⎥⎣⎦,10,2x ⎡⎫∈⎪⎢⎣⎭情况下与假设矛盾的结论.三、填空题:本大题共4小题,每小题5分,共20分.13.若23(1)()log (1)x x f x x x ⎧≤=⎨>⎩,则(0)(8)f f +=______.【答案】4【解析】【分析】根据分段函数解析式计算可得.【详解】因为23(1)()log (1)x x f x x x ⎧≤=⎨>⎩,所以()0031f ==,()32228log 8log 23log 23f ====,所以(0)(8)4f f +=.故答案为:414.已知()f x 是定义在R 上的奇函数,当0x >时,()22xf x x =-,则()()10f f -+=__________.【答案】1-【解析】【分析】根据()f x 是定义在R 上的奇函数,可得(1)(1)f f -=-,(0)0f =,只需将1x =代入表达式,即可求出(1)f 的值,进而求出(1)(0)f f -+的值.【详解】因为()f x 是定义在R 上的奇函数,可得(1)(1)f f -=-,(0)0f =,又当0x >时,()22xf x x =-,所以12(1)211f =-=,所以(1)(0)101f f -+=-+=-.故答案为:1-【点睛】本题主要考查利用奇函数的性质转化求函数值,关键是定义的灵活运用,属于基础题.15.定义在R 上的偶函数()f x 满足:在[)0,+∞上单调递减,则满足()()211f x f ->的解集________.【答案】()0,1【解析】【分析】利用偶函数,单调性解抽象不等式【详解】因为()f x 为定义在R 上的偶函数,且在[)0,+∞上单调递减,所以()()()()211211f x f fx f ->⇔->,所以2111211x x -<⇔-<-<,即01x <<,故答案为:()0,116.设函数31()221x f x =-+,正实数,a b 满足()(1)2f a f b +-=,则2212b aa b +++的最小值为______.【答案】14##0.25【解析】【分析】首先推导出()()2f x f x +-=,再说明()f x 的单调性,即可得到1a b +=,再由乘“1”法及基本不等式计算可得.【详解】因为31()221x f x =-+,所以3132()221221xx xf x --=-=-++,所以331()()22221221x x x f x f x +-=-+-=++,又21x y =+在定义域R 上单调递增,且值域为()1,+∞,1y x =-在()1,+∞上单调递增,所以31()221x f x =-+在定义域R 上单调递增,因为正实数,a b 满足()(1)2f a f b +-=,所以10a b +-=,即1a b +=,所以()()222211212412b a b a a b a b a b ⎛⎫⎡⎤+=++++ ⎪⎣⎦++++⎝⎭()()2222211412b b a a b a a b ⎡⎤++=+++⎢⎥++⎣⎦()()22222111124444b a b a ab a b ⎡⎢≥++=++=+=⎢⎣,当且仅当()()222112b b a a a b ++=++,即35a =,25b =时取等号,所以2212b a a b +++的最小值为14.故答案为:14四、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.17.计算下列各式的值.(1)20.5233727228)9643-⎛⎫⎛⎫⎛⎫+-+ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭(2)2log 3223(lg5)lg2lg50log 3log 22+⨯+⋅+【答案】(1)229(2)5【解析】【分析】(1)根据指数幂的运算法则计算可得;(2)根据对数的运算性质及换底公式计算可得.【小问1详解】20.5233727229643-⎛⎫⎛⎫⎛⎫+-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭2223333212139245-⎡⎤⎛⎫⎛⎫⎛⎫=+-+⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎝⎭⎣⎦2323332521334⎛⎫⨯- ⎪⨯⎝⎭⎛⎫=+-+ ⎪⎝⎭5162221399=+-+=.【小问2详解】2log 3223(lg5)lg2lg50log 3log 22+⨯+⋅+()210lg 3lg 2(lg 5)lg lg 10535lg 2lg 3⎛⎫=+⨯⨯+⋅+ ⎪⎝⎭()()2(lg5)1lg51lg513=+-⨯+++()()22lg 51lg 5135=+-++=.18.设全集为R ,已知集合{}2|280A x R x x =∈--≤,(){}2|550B x R x m x m =∈-++≤.(1)若3m =,求A B ,R A ð;(2)若R B A ⊆ð,求实数m 的取值范围.【答案】(1){}25A B x R x ⋃=∈-≤≤;{2R A x x =<-ð或}4x >;(2)4m >.【解析】【分析】(1)先解不等式求出集合A ,B ,根据补集的概念,以及并集的概念,即可得出结果;(2)由(1)得出R A ð,再对m 分类讨论,即可得出结果.【详解】(1)因为{}{}228024A x R x x x R x =∈--≤=∈-≤≤,则{2R A x x =<-ð或}4x >;若3m =,则{}{}2815035B x R x x x R x =∈-+≤=∈≤≤,所以{}25A B x R x ⋃=∈-≤≤.(2)由(1){2R A x x =<-ð或}4x >,()(){}|50B x R x x m =∈--≤,当5m =时,则{5}B =,满足R B A ⊆ð;当5m >时,则[5,]B m =,满足R B A ⊆ð;当5m <时,则[,5]B m =,为使R B A ⊆ð,只需4m >,所以45m <<.综上,4m >.19.为了节能减排,某农场决定安装一个可使用10年旳太阳能供电设备.使用这种供电设备后,该农场每年消耗的电费C (单位:万元)与太阳能电池面积x (单位:平方米)之间的函数关系为4,0105(),10m xx C x m x x-⎧≤≤⎪⎪=⎨⎪>⎪⎩,(m 为常数),已知太阳能电池面积为5平方米时,每年消耗的电费为12万元.安装这种供电设备的工本费为0.5x (单位:1万元),记()F x 为该农场安装这种太阳能供电设备的工本费与该农场10年消耗的电费之和(1)写出()F x 的解析式;(2)当x 为多少平方米时,()F x 取得最小值?最小值是多少万元?【答案】(1)1607.5,010()8000.5,10x x F x x x x-≤≤⎧⎪=⎨+>⎪⎩;(2)40平方米,最小值40万元.【解析】【分析】(1)根据给定的条件,求出m 值及()C x 的解析式,进而求出()F x 的解析式作答.(2)结合均值不等式,分段求出()F x 的最小值,再比较大小作答.【小问1详解】依题意,当5x =时,()12C x =,即有45125m -⨯=,解得80m =,则804,0105()80,10xx C x x x -⎧≤≤⎪⎪=⎨⎪>⎪⎩,于是得1607.5,010()10()0.58000.5,10x x F x C x x x x x -≤≤⎧⎪=+=⎨+>⎪⎩,所以()F x 的解析式是1607.5,010()8000.5,10x x F x x x x-≤≤⎧⎪=⎨+>⎪⎩.【小问2详解】由(1)知,当010x ≤≤时,()1607.5F x x =-在[0,10]上递减,min ()(10)85F x F ==,当10x >时,800()402x F x x =+≥=,当且仅当8002x x =,即40x =时取等号,显然4085<,所以当x 为40平方米时,()F x 取得最小值40万元.【点睛】方法点睛:在求分段函数的最值时,应先求每一段上的最值,然后比较得最大值、最小值.20.已知函数1()2(R)2xx m f x m -=-∈是定义在R 上的奇函数.(1)求m 的值;(2)根据函数单调性的定义证明()f x 在R 上单调递增;(3)设关于x 的函数()()()9143xxg x f m f =++-⋅有零点,求实数m 的取值范围.【答案】(1)2m =(2)证明见解析(3)(],3-∞【解析】【分析】(1)由奇函数性质(0)0f =求得参数值,再验证符合题意即可;(2)根据单调性的定义证明;(3)令()0g x =,结合()f x 的单调性得到9431x x m +=⋅-,参变分离可得1943x x m =-+-⨯,依题意可得关于x 的方程1943x x m =-+-⨯有解,令()1943xxh x =-⨯+-,则y m =与()y h x =有交点,利用换元法求出()h x 的值域,即可得解.【小问1详解】因为1()2(R)2xxm f x m -=-∈是定义在R 上的奇函数,所以(0)1(1)0f m =--=,解得2m =,当2m =时,1()2222xx xx f x -=-=-,满足()()f x f x -=-,()f x 是奇函数,所以2m =;【小问2详解】由(1)可得1()22x x f x =-,设任意两个实数12,R x x ∈满足12x x <,则1212121212111()()22(22)(1)2222xx x x x x x x f x f x -=--+=-+⋅,∵12x x <,∴12022x x <<,1211022x x +>⋅,∴12())0(f x f x -<,即12()()f x f x <,所以()f x 在R 上为单调递增;【小问3详解】令()0g x =,则()()9143xxf m f +=--⋅,又()f x 是定义在R 上的奇函数且单调递增,所以()()1943xxf m f +=⋅-,则9431x x m +=⋅-,则1943x x m =-+-⨯,因为关于x 的函数()()()9143xxg x f m f =++-⋅有零点,所以关于x 的方程1943x x m =-+-⨯有解,令()1943xxh x =-⨯+-,则y m =与()y h x =有交点,令3x t =,则()0,t ∈+∞,令()214H t t t +--=,()0,t ∈+∞,则()()222314H t t t t +-==---+,所以()H t 在()0,2上单调递增,在()2,+∞上单调递减,所以()(],3H t ∈-∞,所以()(],3h x ∈-∞,则(],3m ∈-∞,即实数m 的取值范围为(],3-∞.21.设R a ∈,已知函数()y f x =的表达式为21()log f x a x ⎛⎫=+ ⎪⎝⎭.(1)当3a =时,求不等式()1f x >的解集;(2)设0a >,若存在1,12t ⎡⎤∈⎢⎥⎣⎦,使得函数()y f x =在区间[],2t t +上的最大值与最小值的差不超过1,求实数a 的取值范围.【答案】(1)(,1)(0,)-∞-⋃+∞(2)1,3⎡⎫+∞⎪⎢⎣⎭【解析】【分析】(1)根据函数的单调性转化为自变量的不等式,解得即可;(2)根据函数的单调性求出最值,根据不等式有解分离参数求取值范围.【小问1详解】当3a =时,21()log 3f x x ⎛⎫=+⎪⎝⎭,不等式()1f x >,即21log 31x ⎛⎫+>⎪⎝⎭,所以132x +>,即10x x +>,等价于()10x x +>,解得1x <-或0x >;所以不等式()1f x >的解集为(,1)(0,)-∞-⋃+∞;【小问2详解】因为0a >,1[,1]2t ∈,所以当[,2]x t t ∈+时,函数1y a x=+为减函数,所以函数()21log f x a x ⎛⎫=+⎪⎝⎭在区间[],2t t +上单调递减,又函数()y f x =在区间[],2t t +上最大值和最小值的差不超过1,所以()()21f t f t -+≤,即2211log ()log ()12a a t t +-+≤+,即222111log ()1log ()log 2()22a a a t t t +≤++=+++所以112()2a a t t +≤++,即存在1[,1]2t ∈使122a t t ≥-+成立,只需min122a t t ⎛⎫≥- ⎪+⎝⎭即可,考虑函数121,[,1]22y t t t =-∈+,221,[,1]22t y t t t -=∈+,令321,2r t ⎡⎤=-∈⎢⎥⎣⎦,213,1,86826r y r r r r r⎡⎤==∈⎢⎥-+⎣⎦+-,设()8g r r r =+,其中31,2r ⎡⎤∈⎢⎥⎣⎦,任取123,1,2r r ⎡⎤∈⎢⎥⎣⎦,且12r r <,则()()()212121212121888r r g r g r r r r r r r r r ⎛⎫--=+--=- ⎪⎝⎭,因为12r r <,所以210r r ->,因为123,1,2r r ⎡⎤∈⎢⎥⎣⎦,所以2180r r -<,所以()()21g r g r <,所以函数()g r 在31,2⎡⎤⎢⎥⎣⎦上单调递减,所以86y r r =+-在31,2r ⎡⎤∈⎢⎥⎣⎦单调递减,所以856,36r r ⎡⎤+-∈⎢⎥⎣⎦,116,8356r r⎡⎤∈⎢⎥⎣⎦+-,所以13a ≥,所以a 的取值范围为1,3⎡⎫+∞⎪⎢⎣⎭.22.已知函数43()21x x f x +=+,函数2()||1g x x a x =-+-.(1)若[0,)x ∈+∞,求函数()f x 的最小值;(2)若对1[1,1]x ∀∈-,都存在2[0,)x ∈+∞,使得()()21f x g x =,求a 的取值范围.【答案】(1)2(2)1313,,44⎛⎤⎡⎫-∞-+∞ ⎪⎥⎢⎝⎦⎣⎭【解析】【分析】(1)首先利用指数运算,化简函数()()421221xx f x =++-+,再利用换元,结合对勾函数的单调性,即可求解函数的最值;(2)首先将函数()f x 和()g x 在定义域的值域设为,A B ,由题意可知B A ⊆,()02g ≥,确定a 的取值范围,再讨论去绝对值,求集合B ,根据子集关系,比较端点值,即可求解.【小问1详解】若[)0,x ∈+∞,()()()()221221442122121x x x x xf x +-++==++-++,因为[)0,x ∈+∞,令212x t =+≥,则()42,2y t t t=+-≥,又因为42y t t=+-在[)2,+∞上单调递增,当2t =,即0x =时,函数取得最小值2;【小问2详解】设()f x 在[)0,+∞上的值域为A ,()g x 在[]1,1-上的值域为B ,由题意可知,B A ⊆,由(1)知[)2,A =+∞,因为()012g a =-≥,解得:3a ≥或3a ≤-,当3a ≥时,且[]11,1x ∈-,则10x a -<,可得()222111111151124g x x a x x x a x a ⎛⎫=-+-=-+-=-+- ⎪⎝⎭,可得()1g x 的最大值为()11g a -=+,最小值为1524g a ⎛⎫=-⎪⎝⎭,即5,14B a a ⎡⎤=-+⎢⎥⎣⎦,可得524a -≥,解得:134a ≥,当3a ≤-时,且[]11,1x ∈-,10x a ->,可得()222111111151124g x x a x x x a x a ⎛⎫=-+-=+--=+-- ⎪⎝⎭,可知,()1g x 的最大值为()11g a =-,最小值为1524g a ⎛⎫-=-- ⎪⎝⎭,即5,14B a a ⎡⎤=---⎢⎥⎣⎦,可得524a --≥,解得:134a ≤-,综上可知,a 的取值范围是1313,,44⎛⎤⎡⎫-∞-+∞ ⎪⎥⎢⎝⎦⎣⎭.【点睛】关键点点睛:本题第二问的关键是求函数()g x 的值域,根据()02g ≥,缩小a 的取值范围,再讨论去绝对值.。
山西省太原市2024-2025学年高一上学期11月期中考试 数学含答案

2024~2025学年第一学期高一年级期中学业诊断数学试卷(答案在最后)(考试时间:上午7:30-9:00)说明:本试卷为闭卷笔答,答题时间90分钟,满分100分.题号一二三四总分得分一、单项选择题(本题共8小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合{}0,1,2,3A =,{}2,3,4B =,则A B = A.{}2,3 B.{}0,1,2,3,4 C.[]2,3 D.[]0,42.已知a b >,则下列结论正确的是A.ac bc > B.22a b> C.1a b >- D.11b a>3.函数()ln f x x =的定义域是A.()0,+∞ B.(]0,2 C.()()0,22,+∞ D.[)2,+∞4.“0xy =”是“0x =”的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件5.函数()11x f x a -=-(0a >,且1)a ≠的图象必经过的定点是A.()1,0 B.()1,1- C.()1,0- D.()1,1--5.已知不等式2220kx kx +-<对于一切实数x 都成立,则实数k 的取值范围是A.()2,0- B.(]2,0- C.()0,2 D.[)0,26.已知函数()()1,bf x ax a b x=++∈R ,且()10f -=,则()1f =A.-1B.1C.-2D.27.已知0,0x y >>,且满足2x y xy +=,若228x y m m +>-恒成立,则实数m 的取值范围是A.()1,9- B.()9,1- C.()(),19,-∞-+∞ D.()(),91,-∞-+∞ 二、多项选择题(本题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分)9.已知幂函数()f x 的图象经过点(,则下列结论正确的是A.()2f -= B.()f x 是增函数C.()f x 是偶函数D.不等式()1f x <的解集为{}01x x <<10.已知函数()f x 是定义域为R 的奇函数,当0x >时,()22f x x x =-,则下列结论正确的是A.()00f = B.()1f -是函数()f x 的最大值C.当0x <时,()22f x x x=-+ D.不等式()0f x >的解集是()()2,02,-+∞ 11.已知函数()f x 对于一切实数x ,y 都有()()()f x y f x f y +=,当0x >时,()01f x <<,()113f =,则下列结论正确的是A.()01f = B.若()9f m =,则2m =C.()f x 是增函数D.()0f x >三、填空题(本题共3小题,每小题3分,共9分)12.命题“x ∃∈R ,20x x ->”的否定是________13.已知函数()2,0,1,0x a x f x ax x ⎧-=⎨-<⎩在R 上是增函数,则实数a 的取值范围________.14.对实数a 和b ,定义运算“◎”:,1,,1,a ab a b b a b -⎧=⎨->⎩◎,设函数()()222f x x x =+◎,x ∈R .若函数()y f x m =-的图象与x 轴恰有2个公共点,则实数m 的取值范围是________.四、解答题(本题共5小题,共49分.解答应写出文字说明、证明过程或演算步骤)15.计算下列各式的值(每小题4分,共8分)(1)12023489-⎛⎫--⎪⎝⎭;(2)21151133662262a b a b a b ⎛⎫⎛⎫⎛⎫÷- ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭.16.(本小题满分8分)已知全集U =R ,{}260A x x x =+-<,1282xB x ⎧⎫=<<⎨⎬⎩⎭,{}212C x m x m =+<<-.(1)求()U A B ð;(2)若()A B C ⊆ ,求实数m 的取值范围.17.(本小题满分10分)已知函数()21xf x x =+.(1)判断并证明()f x 的奇偶性;(2)根据定义证明:()f x 在()1,1-上单调递增.18.(本小题满分10分)实行垃圾分类,保护生态环境,促进资源再利用。
贵州省六盘水市2024-2025学年高一上学期11月期中考试 数学(含答案)

六盘水市2024-2025学年度第一学期期中质量监测高一年级数学试题卷(考试时长:120分钟试卷满分:150分)注意事项:1.答题前,务必在答题卡上填写姓名和准考证号等相关信息并贴好条形码.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上,写在本试题卷上无效.3.考试结束后,将答题卡交回.一、单项选择题(本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一个符合题目要求.)1. 命题“,”的否定为()A. ,B. ,C. ,D. ,2. 已知集合,,则下列关系正确的是()A.B. C. D. 3. “”是“”的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件4. 下列函数中既是奇函数又在区间上为增函数是()A. B. C. D.5. 已知,,,则的最小值为()A. 9B. 8C. 4D. 36. 已知函数的部分图象如图所示,则()的x ∃∈Q 220x -=x ∃∉Q 220x -≠x ∃∈Q 220x -≠x ∀∈Q 220x -≠x ∀∉Q 220x -≠{}22A x x =-≤≤{}0,1,2B =AA ⊆Z 1B ⊆B A⊆1x >2x >()0,∞+1y x=21y x =+y x x =1y x x=+0a >0b >21a b +=12a b+()1f x x x=-A. 的定义域为B. 的值域为C. 在区间上单调递减D. 的解集为7. 若关于的不等式对一切实数都成立,则的取值范围为()A. B. C. D. 8. 已知是上的偶函数,当时,.若,则的取值范围为()A. B. C. D. 二、多项选择题(本大题共3小题,每小题6分,共18分,在每小题给出的四个选项中,至少有两个符合题目要求,全选对得6分,部分选对得部分分,有选错的得0分.)9. 下列命题为真命题的是()A. 若,则 B. 若,,则C. 若,,则 D. 若,则10. 下列说法正确的是()A 若,则B. 若,则C. 若是偶函数,则是偶函数D. 若是奇函数,则的图象关于轴对称11. 已知函数,.,用表示,中的较大者,记为,则()()f x ()f x ()f x (),0∞-()0f x >()()1,01,∞-⋃+x ()()21110a x a x -+--<x a (]3,1-()3,1-()(),31,-∞-+∞ ()[),31,-∞-⋃+∞()y f x =R 0x ≥()11f x x =+()1122f m ->m ()1,+∞()0,1()(),01,-∞⋃+∞(),0-∞a b >22ac bc >a b >c d >a d b c ->-a b >c d >ac bd >a b >1212b a->-()21f x x +=()39f =()21f x x =-()212f x x x+=+()y f x =()2y f x =-()y f x =()y f x =y ()3f x x =+()()21g x ax =+x ∀∈R ()M x ()f x ()g x ()()(){}max ,M x f x g x =A. 的解集为B. 当时,的值域为C. 若在上单调递增,则D. 当时,不等式有4个整数解三、填空题(本大题共3个小题,每小题5分,共15分.)12. 函数的定义域为_________.13. 如图所示,动物园要建造一面靠墙的矩形熊猫居室,墙长.如果可供建造围墙的材料总长是,则当宽为_________时,才能使所建造的熊猫居室面积最大,熊猫居室的最大面积是_________.14. 已知定义在上的函数满足:①;②,,;③在上单调递减.则不等式解集为_________.四、解答题(本大题共5个小题,共77分,解答应写出文字说明,证明过程或演算步骤.)15. 已知函数(1)求,的值;(2)若,求的取值范围.16. 设全集,集合,.(1)若,求,;(2)若,求的取值范围.17. 已知二次不等式的解集为.的()0f x >()3,-+∞1a =()M x [)1,+∞()M x 2,9⎡⎫-+∞⎪⎢⎣⎭3a ≥-106a -≤<()214g x x >()1f x =-20m 36m x m 2m R ()f x ()124f =x ∀y ∈R ()()()f x y f x f y +=()f x R ()()244f xf x ≥+()22,0,1,0.x x x f x x x ⎧-<=⎨+≥⎩()1f -()()3ff -()3f a ≤a U =R {}13A x m x m =+≤≤224B y y x x ⎧⎫==+⎨⎬⎩⎭2m =U A ðA B A B A = m 220ax bx ++<()2,1--(1)求不等式的解集;(2)已知,且,求最小值.18. 已知函数.(1)若是偶函数,求的值;(2)求关于的不等式的解集;(3)若在区间上最小值为,求的值.19. 已知集合,其中且.若集合满足:①;②对于中的任意两个元素,(,),满足;则称集合是关于实数的“压缩集”.例如,集合是关于的“压缩集”,理由如下:①;②,,.(1)判断集合是否是关于的“压缩集”,并说明理由:(2)若集合是关于的“压缩集”,(i )求证:,;(提示:)(ii )求中元素个数的最大值.的的2340x x a -+≥0m >0n >mn m n b =++m n +()()2122f x x a x a =-++-()f x a x ()0f x <()f x []1,2-1-a {}123,,,,n A x x x x +=⊆N n +∈N 3n ≥A 123n x x x x <<<< A i x j x i {}1,2,3,,j n ∈ 111i j x x K-≥A K {}2,3,4A =12K =234<<1112412-≥1113412-≥1112312-≥{}3,4,5A =20K =A 20K =1120i n n i x x --≥{}1,2,3,,i n ∈ 11202020n in i --++= A六盘水市2024-2025学年度第一学期期中质量监测高一年级数学试题卷一、单项选择题(本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一个符合题目要求.)1.【答案】C2.【答案】D3.【答案】B4.【答案】C5.【答案】A6.【答案】D7.【答案】A8.【答案】B二、多项选择题(本大题共3小题,每小题6分,共18分,在每小题给出的四个选项中,至少有两个符合题目要求,全选对得6分,部分选对得部分分,有选错的得0分.)9.【答案】BD10.【答案】BCD11.【答案】ABD三、填空题(本大题共3个小题,每小题5分,共15分.)12.【答案】13.【答案】 ①. ②. 14.【答案】四、解答题(本大题共5个小题,共77分,解答应写出文字说明,证明过程或演算步骤.)15.【答案】(1),(2)16. 【解析】【分析】(1)利用基本不等式求得函数的值域,从而解得集合,再求结果即可;(2)根据题意可得,对参数的取值进行分类讨论,列出满足题意的不等式,求解即可.【小问1详解】因,当且仅当,也即,故,又时,,故或,.【小问2详解】由可得:;①若,即时,,满足题意;②若时,要满足题意,则,解得.综上所述,实数的取值范围为:.17.【解析】为[)3,∞-+9162[]1,2-()13f -=()()316f f -=[]1,2-224y x x=+B m 2244y x x =+≥=224x x =x =[)4,+∞224B y y x x ⎧⎫==+⎨⎬⎩⎭[)4,=+∞2m ={|36}A x x =≤≤U A ð{|3x x =<6}x >A B {|3}x x =≥A B A = 13m m +>12m <A =∅12m ≥14m +≥[)3,m ∈+∞m [)1,3,2⎛⎫-∞⋃+∞ ⎪⎝⎭【分析】(1)根据不等式的解集,求得,再解一元二次不等式即可;(2)根据(1)中所求,结合不等式,即可求得的最小值.【小问1详解】根据题意可得:,且,解得,经检验满足题意;,也即,,解得,故不等式的解集为:.【小问2详解】由(1)可知,也即,因为,故可得,也即,故,解得或,又,故,当且仅当,也即时取得等号;故的最小值为.18.【答案】(1)(2)答案见解析(3)【解析】【分析】(1)求出二次函数的对称轴,代入计算,即可得到结果;(2)将不等式因式分解,然后按照两根的大小关系讨论,即可得到结果;(3)求出二次函数的对称轴,然后结合二次函数的图像特点,分类讨论,即可得到结果.【小问1详解】因为二次函数的对称轴为,,a b b ()214mn m n ≤+m n +()()221,21b a a-+-=--⨯-=1,3a b ==2340x x a -+≥23410x x -+≥()()3110x x --≥[)1,1,3x ⎛⎤∈-∞⋃+∞ ⎥⎝⎦2340x x a -+≥[)1,1,3⎛⎤-∞⋃+∞ ⎥⎝⎦mn m n b =++3mn m n =++()214mn m n ≤+()2134m n m n ++≤+()()24120m n m n +-+-≥()()620m n m n +-++≥6m n +≥2m n +≤-0,0m n >>6m n +≥,3m n mn m n ==++3m n ==m n +61a =-1a =()()2122f x x a x a =-++-12a x +=若是偶函数,则对称轴为,即.【小问2详解】由可得,即,当时,即,不等式的解集为;当时,即,不等式的解集为;当时,即,不等式的解集为;综上所述,当时,不等式的解集为;当时,不等式的解集为;当时,不等式的解集为;【小问3详解】二次函数的对称轴为,当时,即,此时函数在上单调递减,则,不符合题意;当时,即,此时,即,化简可得,解得或(舍);当时,即,此时函数在上单调递增,则,即,解得(舍);综上所述,.19. 【解析】【分析】(1)根据的“压缩集”定义判断即可;(2)设且,则,()f x 102a x +==1a =-()0f x <()21220x a x a -++-<()()210x x a ---<⎡⎤⎣⎦12a ->3a >21x a <<-12a -=3a =∅12a -<3a <12a x -<<3a >{}21x x a <<-3a =∅3a <{}12x a x -<<()()2122f x x a x a =-++-12a x +=122a +≥3a ≥()f x []1,2-()()min 20f x f ==1122a +-<<33a -<<()min 112a f x f +⎛⎫==- ⎪⎝⎭()211122122a a a a ++⎛⎫-+⋅+-=- ⎪⎝⎭()()150a a --=1a =5a =112a +≤-3a ≤-()f x []1,2-()()min 11f x f =-=-31a =-13a =-1a =20K =12{,,,,,,,}N i j n A x x x x x +=⊆ 121i j n n x x x x x x -<<<<<<<< 1211111i j nx x x x x >>>>>>>(i)根据,结合即可证;(ii )根据定义,要使中元素个数最大必有,以为界点判断两侧最多能有几个元素属于集合A ,即可得答案.【小问1详解】集合是关于的“压缩集”,理由如下:由题意,对于有,且,,,所以,对于其中任意两个元素都有成立,故是关于的“压缩集”.【小问2详解】设且,所以,(i )由题意,中的任意两个元素,(),满足,所以,得证;(ii )由题意随递减,而,,所以中元素个数最大,则,即,若存在,则,可得,所以,若时,此时,显然与矛盾,所以,若必有,以下讨论和两种情况,当,1111120i j i j x x x x -=-≥112111111111i i n i n i i n x x x x x x x x ++-+-=-+-++- A {1,2,3,4,5}A ⊆20k x ={}3,4,5A =20K ={}3,4,5A =345<<111||3412-=112||3515-=111||4520-=11120i j x x -≥{}3,4,5A =20K ={}121,,,,,,N i n n A x x x x x -+=⊆ 121i n n x x x x x -<<<<<< A i x j x i <j 1111120i j i j x x x x -=-≥11211111111111202020n ii n i i i n i n n i x x x x x x x x ++-+---=-+-++-≥++=111n n x x --N n +∈1114520-=1111563020-=<A 1234512345x x x x x =<=<=<=<={1,2,3,4,5}A ⊆6x 6111520x -≥661320203x x ≤⇒≥67x ≥120n x -≥1111111102020n n n n x x x x ---≥⇒≤-≤n x +∈N 20n x ≥120n x -<20n x =20n x >20n x =则,此时,即,由,故在区间中最多有一个元素属于集合,当时,,显然与矛盾,此时最大元素为,同理可证均有,所以,,有,其中,即最多有7个元素;当,若,则,得且,即,同时,得且,即,而,且,故有,此时,综上,,则,其中,即最多有8个元素;同理讨论,均可得,即最多有8个元素;综上,中元素个数的最大值为8.120n x -<111120n n x x -≥+11111010n n x x --≥⇒≤11317107020-=<[7,10]A 67x =67711111120720x x x -≥⇒≤-⇒71401113x ≥>110n x -≤A 7n x x =68,9,10x =7n x x =20n x =6{1,2,3,4,5,,20}A x =6{7,8,9,10}x ∈20n x >119n x -=1111920n x -≥11380n x ≤n x +∈N 380n x ≥21111920n x --≥2139380n x -≥2n x -+∈N 29n x -≤67x ≥1121796320-=<26n x x -=268n n -=⇒=8380x ≥{}681,2,3,4,5,,19,A x x =6{7,8,9}x ∈1{11,12,13,14,15,16,17,18}n x -∈{}6781,2,3,4,5,,,A x x x =A。
河南省商丘开封名校联考2024-2025学年高一上学期11月期中考试 数学(含答案)

2024~2025学年度高一上学期期中联考试卷数学考生注意:1.本试卷分选择题和非选择题两部分.满分150分,考试时间120分钟.2.答题前,考生务必用直径0.5毫米黑色墨水签字笔将密封线内项目填写清楚.3.考生作答时,请将答案答在答题卡上.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;非选择题请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,超出答题区域书写的答案无效,在试题卷、草稿纸上作答无效.4.本卷命题范围:人教A 版必修第一册第一章~第三章.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合,,则()A. B. C. D. 2. 函数的定义域为()A. B. C.D. 3. 已知幂函数的图象经过点,则=()A.B. 9C.D.4. 设、,“且”是“”的()A. 充分不必要条件 B. 必要不充分条件C. 充要条件D. 既不充分又不必要条件5. 如果是定义在上的奇函数,那么下列函数中,一定是偶函数的是A. B. C. D.6. 若,,则的取值范围是(){}1A x x =≤-{}2,1,0,1,2B =--()A B =RIð{}0,1,2{}1,0,1,2-{}2,1--{}1,2y =[]1,0-[)1,0-(][),10,-∞-⋃+∞(]()10,-∞-+∞ ,()y f x =(4,2)(3)f 32x y ∈R 6x =6y =12x y +=()f x R ()y x f x =+()y x f x =⋅2()y x f x =+2()y x f x =⋅324a b -≤+≤12a b -≤-≤5a b +A. B. C. D. 7. 已知的解析式为()A. B. C. D. 8. 已知定义在上的函数f (x )满足对,,都有,若,则不等式的解集为()A B. C. D. 二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9. 下列各组函数中表示同一个函数是()A.B. ,C, D. ,10. 已知关于的不等式的解集为或x >2},则下列说法正确的是()A B. C. 关于的不等式的解集为或D. 若,则关于的不等式的解集为或x >2}11. 已知,,且,则下列不等式恒成立的是()A. B.C. D. 三、填空题:本题共3小题,每小题5分,共15分.的{}512511a b a b +-≤+≤395|5123a b a b ⎧⎫+-≤+≤⎨⎬⎩⎭255583a b a b ⎧⎫+-≤+≤⎨⎬⎩⎭{}5955a b a b +-≤+≤)1fx -=-()f x 2()1f x x =-2()1(1)f x x x =+≥-2()1(1)f x x x =-≥-2()1f x x =+[0,)+∞12,[0,)x x ∀∈+∞12x x ≠2121()()2f x f x x x ->-(1)2024f =(2024)2(1013)f x x ->-(2023,)+∞(2024,)+∞(2025,)+∞(1012,)+∞()f x =()g x =()1f x x =-()1g x =()2x f x x=()g x x=()1f x x =-()g x =x 20ax bx c ++>{3x x <-0a >93a c b+>x 20cx bx a -+<12x x ⎧<-⎨⎩13x ⎫>⎬⎭a b ca b c ''='=x 20a x b x c ''+'+>{3x x <-0m >0n >221m n mn +=+222m n +≥112m n+≥m ≤332m n +≤12. 命题“,”的否定是_____________13. 已知满足,且,则______.14. 若函数在区间上的最大值为M ,最小值为m ,则__________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15. 已知集合(1)若,请写出集合所有子集;(2)若集合,且,求的取值范围.16. 已知.(1)若成立,求实数的取值范围,(2)若和中至多有一个成立,求实数的取值范围.17. 已知函数.(1)简述图象可由的图象经过怎样平移得到;(2)证明:的图象是中心对称图形,并计算的值.18. 某公司由于业务的快速发展,计划在其仓库外,利用其一侧原有墙体,建造一间高为4米,底面积为108平方米,且背面靠墙的长方体形状的贵重物品存储室.由于此贵重物品存储室的后背靠墙,无需建造费用,某工程队给出的报价如下:存储室前面新建墙体的报价为每平方米1500元,左、右两面新建墙体的报价为每平方米1000元,屋顶和地面以及其他报价共计36000元,设存储室的左、右两面墙的长度均为米,该工程队的总报价为元(1)请用表示;(2)求该工程队的总报价的最小值,并求出此时的值.19. 若函数在区间上的值域恰为,则称区间为的一个“倒域区间”.已知定义在上的奇函数,当时,.(1)求的解析式;的2x ∀>340x x ->()f x ()()()2f x y f x f y +=++()22f =()3f =()()22211x f x x +=+[]2024,2024-M m +={}240A x x x a =+-=5a =A {}220B x x x =+=A B ⊆a {}22:11,0,:,2340∀∈-≤≤+-≤∃∈+++≤∣p x xx x x k q x x kx k R p ⌝k p q k ()1xf x x=+()f x 1()g x x=-()f x ()()()()()()202520242020222023f f f f f f -+-++-++++ x ()618x ……y x y x ()f x [],a b 11,b a ⎡⎤⎢⎥⎣⎦[],a b ()f x []22-,()g x []0,2x ∈()22g x x x =-+()g x(2)若关于的方程在上恰有两个不相等的根,求的取值范围;(3)求函数在定义域内的所有“倒域区间”.x ()g x mx m =--()0,2m ()g x2024~2025学年度高一上学期期中联考试卷数学一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 【答案】A2. 【答案】D3. 【答案】D4. 【答案】A5. 【答案】B6. 【答案】A7. 【答案】C8. 【答案】C二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.【答案】BD 10. 【答案】AC 11.【答案】BCD12.【答案】,13.2x ∃>340x x -≤【答案】414.【答案】4四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.【答案】(1)、、、(2)16. 【解析】【分析】(1)根据题意可得,根据存在性问题分析求解;(2)取反面:当和均成立时,求参数的取值范围,进而可得结果.【小问1详解】若成立,因为时,,可得,所以实数的取值范围为.【小问2详解】和中至多有一个成立,考虑其反面:和均成立,若成立,因为时,,可得;若成立时,,解得或;若均成立时,可得,所以至多有一个成立时,则.综上上述:实数的取值范围为.17.【解析】【分析】(1)变形函数,再利用平移变换求出变换过程.(2)利用中心对称的定义计算推理得证;再利用对称性求出函数值及和.∅{}5-{}1{}5,1-{}4a a ≤-{}2:11,⌝∃∈-≤≤+>∣p x xx x x k p q {}2:11,⌝∃∈-≤≤+>∣p x xx x x k {}11x xx ∈-≤≤∣2124⎧⎫+∈-≤≤⎨⎬⎩⎭∣x x x x 2k <k {|2}k k <p q p q {}2:11,∀∈-≤≤+≤∣p x xx x x k {}11x xx ∈-≤≤∣2124⎧⎫+∈-≤≤⎨⎬⎩⎭∣x x x x 2k ≥q ()2Δ44340k k =-+≥1k ≤-4k ≥p q 、4k ≥p q 、4k <k {|4}k k <()f x【小问1详解】由于,所以的图象可由的图象先向左平移一个长度单位,再向上平移一个长度单位得到.【小问2详解】因为,所以的图象关于中心对称;则,,…,,所以.18. 【解析】【分析】(1)求出前面墙的长度,再根据题意可得出关于的表达式;(2)利用基本不等式可求出的最小值,利用等号成立的条件求出的值,即可得出结论.【小问1详解】前面墙的长度为米,总报价,其中.【小问2详解】,当且仅当,即时等号成立,所以总报价的最小值为180000元,并求出此时的值为9米.19. 【解析】【分析】(1)根据奇函数的性质,取相反数,利用已知的函数解析式,整理可得答案;(2)整理方程,构造函数,结合二次函数的性质,可得答案;(3)根据题目中的新定义,利用分类讨论,结合函数的单调性,建立方程,可得答案.【小问1详解】当时,则,11111()11x x f x x xx +-===-++++()f x 1()g x x=-22211)(2)11((2)x x x x f x x x f x x x--++=++--=+=+--++()f x (1,1)-()()202320252f f +-=()()202220242f f +-=()()022f f +-=(2025)(2024)(2)(0)(2022)(2023)220244048f f f f f f -+-++-++++=⨯= x 108x1086480001000241500436000800036000y x x x x=⨯⨯+⨯⨯+=++618x ≤≤64800081800036000800036000800036000180000y x x x x ⎛⎫=++=++≥⨯+= ⎪⎝⎭81x x=9x =x [)2,0x ∈-(]0,2x -∈由奇函数的定义可得,所以.小问2详解】方程即,设,由题意知,解得.【小问3详解】因为在区间上的值域恰为,其中且,所以,则,所以或.①当时,因为函数在上单调递增,在上单调递减,故当时,,则,所以,所以,则,解得,所以在内的“倒域区间”为;②当时,在上单调递减,在上单调递增,故当时,,所以,所以,所以,【()()()22()22g x g x x x x x ⎡⎤=--=---+-=+⎣⎦()222,02,2,20.x x x g x x x x ⎧-+≤≤=⎨+-≤<⎩()g x mx m =--()220x m x m -+-=()()22,02h x x m x m x =-+-<<()()200230Δ(2)402022h m h m m m m ⎧=->⎪=->⎪⎪⎨=++>⎪+⎪<<⎪⎩40m -<<()g x [],a b 11,b a⎡⎤⎢⎥⎣⎦a b ≠0,0a b ≠≠11a bb a<⎧⎪⎨<⎪⎩0a b ab <⎧⎨>⎩02a b <<≤20a b -≤<<02a b <<≤()g x []0,1[]1,2[]0,2x ∈()max ()11g x g ==11a≤12a ≤<12a b ≤<≤()()22121212g b b b bg a a a a a b ⎧=-+=⎪⎪⎪=-+=⎨⎪≤<≤⎪⎪⎩1a b =⎧⎪⎨=⎪⎩()g x []1,2⎡⎢⎣20a b -≤<<()g x []2,1--[]1,0-[]2,0x ∈-()min ()11g x g =-=-11b≥-21b -<≤-21a b -≤<≤-则,解得,所以在内的“倒域区间”为.综上所述,函数在定义域内的“倒域区间”为和.()()22121221g a a a ag b b b b a b ⎧=+=⎪⎪⎪=+=⎨⎪-≤<≤-⎪⎪⎩1a b ⎧=⎪⎨⎪=-⎩()g x []2,1--1⎤-⎥⎦()gx ⎡⎢⎣1⎤-⎥⎦。
江苏省扬州市扬州中学2024-2025学年高一上学期11月期中数学试题(含答案)

江苏省扬州中学2024-2025学年第一学期期中试题高一数学 2024.11试卷满分:150分,考试时间:120分钟注意事项:1.作答前,请考生务必将自己的姓名、考试证号等写在答题卡上并贴上条形码2.将选择题答案填写在答题卡的指定位置上(用2B 铅笔填涂),非选择题一律在答题卡上作答(用0.5mm 黑色签字笔作答),在试卷上答题无效。
3.考试结束后,请将答题卡交监考人员。
一、单项选择题:本大题共8小题,每小题5分,共40分。
在每题给出的四个选项中只有一项是最符合题意的。
1.已知集合,,则( )A. B. C. D. 或2. 已知为常数,集合,集合,且,则的所有取值构成的集合元素个数为( )A. 1B. 2C. 3D.43.设为奇函数,且当时,,则当时,( )A. B. C. D. 4.函数的值域为( )A. B. C. D. 5.已知函数的定义域为,则函数)A. B. C. D. 6. 若不等式的解集为,那么不等式的解集为( ){|02}A x x =<<{|14}B x x =<<A B = {|02}x x <<{|24}x x <<{|04}x x <<{2|x x <4}x >a {}260A x x x =+-=∣{20}B x ax =-=∣B A ⊆a ()f x 0x ≥()2f x x x =+0x <()f x =2x x +2x x -2x x --2x x -+x x y 211-++=(]2,∞-()2,∞-()20,[)∞+,2(2)f x +(3,4)-()g x =(1,6)(1,2)(1,6)-(1,4)20ax bx c ++>{}12x x -<<()()2112a x b x c ax ++-+>A. B. 或C. 或 D. 7.命题在单调增函数,命题在上为增函数,则命题是命题的( )条件.A.充分不必要B.必要不充分C.充要D.既不充分也不必要8. 已知,则的最大值为( )A. B. C. D.二、多项选择题:本大题共3小题,每小题6分,共18分。
北京市2024-2025学年高一上学期期中考试数学试卷含答案

北京市2024-2025学年高一上学期期中考试数学试卷(答案在最后)注意事项1.本试卷共四页,共23道小题,满分150分.考试时间120分钟.2.在答题卡上指定位置贴好条形码,或填涂考号.3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效.4.在答题卡上,选择题用2B 铅笔作答,其他试题用黑色字迹签字笔作答.5.答题不得使用任何涂改工具.出题人:高一备课组审核人:高一备课组一、选择题共12小题,每小题4分,共48分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合{}1,2,{02}A B x x ==<<,则A B = ()A.{1}B.{1,2}C.{0,1,2}D.{02}x x <≤【答案】A 【解析】【分析】根据交集的运算方法即可计算.【详解】∵集合{}1,2,{02}A B x x ==<<,∴A B = {1}.故选:A .2.设命题2:N,25p n n n ∃∈>+,则p 的否定为()A.2N,25n n n ∀∈>+B.2N,25n n n ∀∈≤+ C.2N,25n n n ∃∈≤+ D.2N,25n n n ∃∈<+【答案】B 【解析】【分析】由特称命题的否定为将存在改任意并否定原结论,即可得答案.【详解】由特称命题的否定为全称命题,则原命题的否定为2N,25n n n ∀∈≤+.故选:B 3.方程组221{9x y x y +=-=的解集是()A.(-5,4)B.(5,-4)C.{(-5,4)}D.{(5,-4)}【答案】D 【解析】【分析】消元法解方程组即可求解【详解】解方程组221{9x y x y +=-=,得()2219x x --=,解得54x y =⎧⎨=-⎩,故方程组的解集为{(5,-4)},故选:D.【点睛】本题考查解二元二次方程组及列举法表示集合,注意解集是点集的形式,是基础题4.已知全集U =R ,集合{}2M x x =>,{}13N x x =<<,那么下面的维恩图中,阴影部分所表示的集合为()A.{}2x x > B.{}2x x ≤ C.{}2x x > D.{}1x x ≤【答案】D 【解析】【分析】根据并集和补集的知识求得正确答案.【详解】{}|1M N x x => ,阴影部分表示集合为(){}|1M N x x ⋃=≤R ð.故选:D 5.不等式302xx -<+的解集为()A.{|2}x x <-B.{|23}x x -<< C.{|2x x <-或3}x > D.{|3}x x >【答案】C【分析】将不等式作等价转换,再求解集即可.【详解】30(2)(3)02xx x x -<⇒+->+,故解集为{|2x x <-或3}x >.故选:C 6.函数26()f x x x=-零点所在的一个区间是()A.(2,1)-- B.(0,1)C.(1,2)D.(2,)+∞【答案】C 【解析】【分析】根据零点存在性定理判断即可.【详解】令26()0f x x x=-=,解得:1360x =>,只有一个零点.而()611501f =-=>,()624102f =-=-<,由零点存在性定理知,函数26()f x x x=-零点所在的一个区间是(1,2).故选:C.7.下列函数中,在区间(0,1)上是增函数的是()A.||y x = B.3y x=- C.1y =-D.24y x =-+【答案】A 【解析】【分析】运用增函数定义,结合函数图像判断即可.【详解】对于A,区间()0,1,y x x ==,在()0,1单调递增,A 正确;对于B,区间()0,1,3y x =-,在()0,1单调递减,B 错误;对于C,区间()0,1,1y =-()0,1单调递减,C 错误;对于D,区间()0,1,24y x =-+,在()0,1单调递减,D 错误.故选:A.8.如果函数2()f x x bx c =++对于任意实数t 都有(2)(2)f t f t +=-,那么()A.f (2)<f (1)<f (4)B.f (1)<f (2)<f (4)C.f (4)<f (2)<f (1)D.f (2)<f (4)<f (1)【答案】A【分析】根据给定条件可得函数()f x 图象对称轴为2x =,再借助对称性、单调性即可比较判断作答.【详解】因函数2()f x x bx c =++对于任意实数t 都有(2)(2)f t f t +=-,则其图象对称轴为2x =,且()f x 在[2,)+∞上递增,于是得(2)(3)(4)f f f <<,而(1)(3)f f =,所以(2)(1)(4)f f f <<.故选:A9.已知0a >,0b >,且28a b +=,那么ab 的最大值等于A.4 B.8C.16D.32【答案】B 【解析】【分析】利用基本不等式可求得ab 的最大值.【详解】由基本不等式可得82a b =+≥8ab ≤,当且仅当2a b =时,等号成立,因此,ab 的最大值为8.故选:B.【点睛】本题考查利用基本不等式求最值,考查计算能力,属于基础题.10.已知,,,R a b c d ∈,则“a c b d +>+”是“a b >且c d >”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】B 【解析】【分析】根据不等式的性质,分析条件间的推出关系判断充分、必要性.【详解】当3,2,0,2a b c d ==-==时,a c b d +>+,但c d >不成立,充分性不成立;若a b >且c d >,则必有a c b d +>+,必要性成立;所以“a c b d +>+”是“a b >且c d >”的必要不充分条件.故选:B11.若定义在R 的奇函数f (x )在(,0)-∞单调递减,且f (2)=0,则满足(10)xf x -≥的x 的取值范围是()A.[)1,1][3,-+∞ B.3,1][,[01]--C.[1,0][1,)-⋃+∞D.[1,0][1,3]-⋃【答案】D 【解析】【分析】首先根据函数奇偶性与单调性,得到函数()f x 在相应区间上的符号,再根据两个数的乘积大于等于零,分类转化为对应自变量不等式,最后求并集得结果.【详解】因为定义在R 上的奇函数()f x 在(,0)-∞上单调递减,且(2)0f =,所以()f x 在 腊语 上也是单调递减,且(2)0f -=,(0)0f =,所以当(,2)(0,2)x ∈-∞-⋃时,()0f x >,当(2,0)(2,)x ∈-+∞ 时,()0f x <,所以由(10)xf x -≥可得:0210x x <⎧⎨-≤-≤⎩或0012x x >⎧⎨≤-≤⎩或0x =解得10x -≤≤或13x ≤≤,所以满足(10)xf x -≥的x 的取值范围是[1,0][1,3]-⋃,故选:D.【点睛】本题考查利用函数奇偶性与单调性解抽象函数不等式,考查分类讨论思想方法,属中档题.12.设函数266,0()34,0x x x f x x x ⎧-+≥=⎨+<⎩,若互不相等的实数123,,x x x 满足:()()()123f x f x f x ==.则123x x x ++的取值范围是()A.11,66⎛⎤⎥⎝⎦B.11,63⎛⎫⎪⎝⎭C.2026,33⎛⎫⎪⎝⎭ D.2026,33⎛⎤⎥⎝⎦【答案】B 【解析】【分析】根据解析式画出函数草图,结合零点的情况及一次、二次函数性质得236x x +=、1703x -<<,即可得答案.【详解】由解析式,可得如下()f x 图象,令()()()123f x f x f x k ===,要满足题设,则34-<<k ,若123x x x <<,则236x x +=,令343x +=-,则73x =-,故1703x -<<,综上,123x x x ++范围是11,63⎛⎫⎪⎝⎭.故选:B二、填空题共5小题,每小题5分,共25分.13.函数()2f x x =-的定义域是_______.【答案】[)2,+∞【解析】【分析】函数()2f x x =-的定义域满足20x -≥,解得答案.【详解】函数()2f x x =-的定义域满足20x -≥,解得2x ≥,故函数定义域为[)2,+∞.故答案为:[)2,+∞14.已知()f x 是定义在R 上的奇函数,且当x >0时,()f x =2x ,则1()2f -=________.【答案】14-.【解析】【分析】由于函数是奇函数,所以11(()22f f -=-,再由已知的解析式求出1()2f 的值,可得答案【详解】解:因为当x >0时,()f x =2x ,所以2111(()224f ==,因为()f x 是定义在R 上的奇函数,所以111((224f f -=-=-,故答案为:14-15.设函数22y x ax =+在区间(2,)+∞上是增函数,则实数a 的取值范围是______.【答案】2a ≥-【解析】【分析】由题意可知,(2,)+∞为函数单调递增区间的子集,根据子集关系可以求得.【详解】由函数22y x ax =+可知,对称轴为x a =-,因为在区间(2,)+∞上是增函数,则2a -≤,解得2a ≥-,故实数a 的取值范围是2a ≥-.故答案为:2a ≥-16.命题“2[1,2],10x x ax ∀∈-+<”为假命题的一个充分不必要条件是______.【答案】52a <(答案不唯一)【解析】【分析】问题化为1[1,2],x a x x∃∈≤+为真命题,利用对勾函数的单调性求最大值,即可得52a ≤,结合充分不必要条件写出一个符合要求的参数范围即可.【详解】由题设,1[1,2],x a x x ∀∈>+为假命题,故1[1,2],x a x x∃∈≤+为真命题,又1y x x =+在[1,2]x ∈上递增,则max 52y =,只需52a ≤即可,所以,原命题为假命题的一个充分不必要条件是52a <.故答案为:52a <(答案不唯一)17.设函数()()()2,1,242, 1.a x f x x x a x a x ⎧-<⎪=-⎨⎪--≥⎩①若0a =,则(1)2f =;②若1a =,则()f x 的最小值为1-;③存在实数a ,使得()f x 为R 上的增函数;④若()f x 恰有2个零点,则实数a 的取值范围是1,1[2,)2⎡⎫+∞⎪⎢⎣⎭.其中所有正确结论的序号是______.【答案】②③④【解析】【分析】①当0a =时,1x =代入()4()(2)f x x a x a =--中求值即可;②当1a =时,得到21,<1()24(1)(2),1x f x x x x x ⎧-⎪=-⎨⎪--≥⎩.分情况讨论求出各段最小值,最后得到()f x 的最小值.③保证两端都要增,端点考虑即可;④分类讨论,结合二次函数性质可解.【详解】①当0a =时,1x =代入()4()(2)f x x a x a =--中,得到(1)4(10)(10)42f =⨯-⨯-=≠,所以①错误.②当1a =时,21,<1()24(1)(2),1x f x xx x x ⎧-⎪=-⎨⎪--≥⎩.当<1x 时,则21x ->,,所以0<222<x-,1()1f x -<<.当1x ≥时,2231()4(1)(2)4(32)4()24f x x x x x x ⎡⎤=--=-+=--⎢⎥⎣⎦.对于二次函数2314()24y x ⎡⎤=--⎢⎥⎣⎦,对称轴为32x =,在32x =时取得最小值3()12f =-.综上,可得()f x 的最小值为1-,所以②正确.③当1x <时,22()22f x a a x x -=-=---是增函数.当1x ≥时,22()4()(2)432f x x a x a x ax a ⎡⎤=--=-+⎣⎦,其对称轴为32ax =.要使()f x 在R 上是增函数,则24(1)(12)21312a a a a ⎧-≤--⎪⎪-⎨⎪≤⎪⎩.解24(1)(12)21a a a -≤---,即281120a a -+≥,解得115711571616a a +-><或.解312a ≤得23a ≤.显然交集有元素.故存在a 能同时满足这两个条件使得函数在R 上单调递增,所以③正确.④当<1x 时,令2()02f x a x =-=-,则22a x =-,2(2)x a =-,22x a=-.若221x a=-<,即02a <<时,函数()f x 在<1x 时有一个零点.当1x ≥时,()4()(2)f x x a x a =--,令()0f x =,则x a =或2x a =.若1a <且21a ≥,即112a ≤<时,()f x 在1x ≥时有一个零点,结合1x <时的情况,此时()f x 恰有2个零点.若1a ≥,要使()f x 恰有2个零点,则21a >且22a a =-(无解)或者21a >且222a a=-(无解)或者1a >且21a >且221a-≥(即2a ≥).综上,实数a 的取值范围是1[,1)[2,)2+∞ ,所以④正确.故答案为:②③④.三、解答题共6小题,共77分.解答应写出文字说明,演算步骤或证明过程.18.关于x 的一元二次方程()22230x k x k +++=有两个不相等的实数根12,x x .(1)求k 的取值范围;(2)若12111x x +=-,求k 的值.【答案】(1)3(,)4-+∞(2)3【解析】【分析】(1)根据一元二次方程的性质,结合0∆>,即可求解;(2)根据题意,利用根与系数的关系,求得2121223,x x k k x x +=--=,结合12111x x +=-,列出方程,求得k 的值,即可求解.【小问1详解】由一元二次方程22(23)0x k x k +++=有两个不相等的实数根12,x x ,则满足()222340k k ∆=+->,解得34k >-,即实数k 的取值范围为3(,)4-+∞.【小问2详解】因为方程22(23)0x k x k +++=有两个不相等的实数根12,x x ,由(1)知34k >-,且2121223,x x k k x x +=--=,因为12111x x +=-,可得12121x x x x +=-,即1212x x x x +=-,可得223k k --=-,即223k k +=,解得3k =或1k =-,因为34k >-,所以3k =.19.设全集R U =,集合{}2|20A x x x =--<,集合{|||1}B x x m =->,其中R m ∈.(1)当1m =时,求()U A B A B ⋂⋃,ð;(2)若A B ⊆,求m 的取值范围.【答案】(1){|10}A B x x =-<< ,(){12}U A B x =-<≤ ð;(2)3m ≥或2m ≤-.【解析】【分析】(1)由题设得{|12}A x x =-<<,{|0B x x =<或2}x >,根据集合交并补运算求集合;(2)根据包含关系有12m -≥或11m +≤-,即可求参数范围.【小问1详解】由题设{}|(2)(1)0{|12}A x x x x x =-+<=-<<,{|1B x x m =<-或1}x m >+,当1m =时,{|0B x x =<或2}x >,故{|10}A B x x =-<< ,且{|02}U B x x =≤≤ð,故(){12}U A B x =-<≤ ð.【小问2详解】由A B ⊆,则12m -≥或11m +≤-,可得3m ≥或2m ≤-.20.已知函数2()(2)2f x x a x a =-++.(1)当0a =时,分别求出函数()f x 在[1,2]-上的最大值和最小值;(2)求关于x 的不等式()0f x <的解集.【答案】(1)最大值为(1)3f -=,最小值为(1)1f =-;(2)答案见解析.【解析】【分析】(1)根据二次函数的图象及性质确定区间上的最大值和最小值即可;(2)分类讨论求含参一元二次不等式解集.【小问1详解】由题设2()2f x x x =-,开口向上且对称轴为1x =,结合二次函数的图象,在[1,2]-上最大值为(1)3f -=,最小值为(1)1f =-.【小问2详解】由题意2(2)2()(2)0x a x a x a x -++=--<,当2a <时,解集为(,2)a ;当2a =时,解集为∅;当2a >时,解集为(2,)a .21.已知函数21()x f x x+=.(1)判断函数的奇偶性,并加以证明;(2)用定义证明()f x 在(0,1)上是减函数;(3)若函数()y f x m =-在12,3⎡⎤⎢⎥⎣⎦上有两个零点,求m 的范围.(直接写出答案)【答案】(1)()f x 是奇函数,理由见解析(2)答案见解析(3)5(2,]2【解析】【分析】(1)对于本题,需要先求出()f x -,然后与()f x 和()f x -进行比较.(2)利用函数单调性的定义,设12,(0,1)x x ∈且12x x <,然后计算12()()f x f x -,根据其正负判断函数的单调性.(3)函数()y f x m =-在1[,3]2上有两个零点,等价于()y f x =与y m =的图象在1[,3]2上有两个交点,需要先分析()f x 在1[,3]2上的单调性和值域,从而确定m 的范围.【小问1详解】函数21()x f x x+=的定义域为(,0)(0,)-∞+∞ ,关于原点对称.22()11()()x x f x f x x x-++-==-=--.根据奇函数的定义,对于定义域内任意x ,()()f x f x -=-,所以函数()f x 是奇函数.【小问2详解】设12,(0,1)x x ∈且12x x <.则222212122112121211(1)(1)()()x x x x x x f x f x x x x x +++-+-=-=,对分子进行化简:222212211222111212212112(1)(1)()()()(1)x x x x x x x x x x x x x x x x x x x x +-+=+--=-+-=--.因为12,(0,1)x x ∈,所以12(0,1)x x ∈,1210x x ->,210x x ->,120x x >.所以21121212()(1)()()0x x x x f x f x x x ---=>,即12()()f x f x >.所以()f x 在(0,1)上是减函数.【小问3详解】1,32x ⎡⎤∈⎢⎥⎣⎦时,211()2x f x x x x+==+≥,当且仅当1x =取得最小值.当121,[,1)2x x ∈时,且12x x <,121[,1)4x x ∈,1210x x ->,210x x ->.则21121212()(1)()()0x x x x f x f x x x ---=>,即12()()f x f x >,则当1)[1,2x ∈()f x 单调递减;当12,(1,3]x x ∈时,且12x x <,12(1,9]x x ∈,1210x x -<,210x x ->.则21121212()(1)()()0x x x x f x f x x x ---=<,即12()()f x f x <,则当(1,3]x ∈,()f x 单调递增;并且215()11524()112222f +===,(1)2f =,23110(3)33f +==.因为函数()y f x m =-在1[,3]2上有两个零点,所以5(2,]2m ∈.22.为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层.某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用C (单位:万元)与隔热层厚度x (单位:cm )满足关系:C (x )=(010),35k x x ≤≤+若不建隔热层,每年能源消耗费用为8万元.设f (x )为隔热层建造费用与20年的能源消耗费用之和.(Ⅰ)求k 的值及f(x)的表达式.(Ⅱ)隔热层修建多厚时,总费用f(x)达到最小,并求最小值.【答案】40k =,因此40()35C x x =+.,当隔热层修建5cm 厚时,总费用达到最小值为70万元.【解析】【详解】解:(Ⅰ)设隔热层厚度为cm x ,由题设,每年能源消耗费用为()35k C x x =+.再由(0)8C =,得40k =,因此40()35C x x =+.而建造费用为1()6C x x=最后得隔热层建造费用与20年的能源消耗费用之和为140800()20()()2066(010)3535f x C x C x x x x x x =+=⨯+=+≤≤++(Ⅱ)22400'()6(35)f x x =-+,令'()0f x =,即224006(35)x =+.解得5x =,253x =-(舍去).当05x 时,'()0f x ,当510x 时,'()0f x ,故5x =是()f x 的最小值点,对应的最小值为800(5)6570155f =⨯+=+.当隔热层修建5cm 厚时,总费用达到最小值为70万元.23.设函数()f x 是定义在R 上的函数,对任意的实数,x y 都有()(1)(1)f x y f x f y +=+⋅-,且当0x >时()f x 的取值范围是(0,1).(1)求证:存在实数m 使得()1f m =;(2)当0x <时,求()f x 的取值范围;(3)判断函数()f x 的单调性,并予以证明.【答案】(1)证明见解析;(2)(1,)+∞;(3)()f x 单调递减,证明见解析.【解析】【分析】(1)令1x y ==结合题设可得(0)1f =,即可证;(2)令y x =-得到1(1)(1)f x f x --=+,若10t x =+>,结合已知即可求范围;(3)令1x x y =+>21x x =+,应用函数单调性定义求证即可.【小问1详解】令1x y ==,则(11)(11)(11)(2)(2)(0)f f f f f f +=+⋅-⇒=,当0x >时()f x 的取值范围是(0,1),即(2)0f ≠,故(0)1f =,显然存在0m =,使()1f m =,得证;【小问2详解】令y x =-,则()(1)(1)f x x f x f x -=+⋅--,即(1)(1)(0)1f x f x f +⋅--==,若10t x =+>,则10x t --=-<,故1(1)(1)f x f x --=+,即1()()f t f t -=,而()(0,1)f t ∈,则()(1,)f t -∈+∞,当0x <时,()f x 取值范围是(1,)+∞;【小问3详解】()f x 单调递减,证明如下:令1x x y =+>21x x =+,则1210x x y -=->,所以1212()()()f x f x f x x =⋅-,则12212()()()[()1]f x f x f x f x x -=--,由题设及(2)知,212()0,()10f x f x x >--<,则12())0(f x f x -<,即12()()f x f x <,所以()f x 单调递减,得证.。
甘肃省武威市武威第一中学2023-2024学年高一上学期期中考试数学试卷(含答案)

武威一中2023年秋季学期期中考试高一年级 数学试卷第Ⅰ卷(选择题)一、单选题(共8小题,每小题5分)1.已知A 是由0,,三个元素组成的集合,且,则实数为( )A.2B.3C.0或3D.0,2,3均可2.已知全集,集合,,那么( )A. B. C. D.3.若集,合,则( )A. B. C. D.4.设,则( )A.B.C.1D.-25.若命题“,使得成立”是假命题,则实数的取值范围是( )A. B. C. D.6.已知函数是一次函数,且,则( )A.11B.9C.7D.57.已知函数是定义在上的偶函数,又,则,,的大小关系为( )A. B.C. D.8.若定义在R 的奇函数,若时,则满足的的取值范围是( )A. B.C. D.m 232m m -+2A ∈m U =R {}24A x x =-≤≤∣501x B x x ⎧⎫-=<⎨⎬+⎩⎭A B = ()1,4-(]1,4-()2,5-[)2,5-{}24x A x =<∣{N 13}B x x =∈-<<∣A B = {12}xx -<<∣{}0,1{}1{13}xx -<<∣()212,11,11x x f x x x ⎧--≤⎪=⎨>⎪+⎩()()1f f =15120R x ∃∈201k x >+k 1k >01k <<1k ≤0k ≤()f x ()23f f x x ⎡⎤-=⎣⎦()5f =()22f x ax a =+[],2a a +()()2g x f x =+()2g -()3g -()2g ()()()232g g g ->->()()()322g g g ->>-()()()223g g g ->>-()()()232g g g >->-()f x 0x <()2f x x =--()0xf x ≥x ()[],20,2-∞- ()(),22,-∞-+∞ ][(,20,2⎤-∞-⎦[]2,2-二、多选题(共4小题,每小题选对得5分,错选或多选得0分,少选或漏选得2分)9.下列结论中,不正确的是( )A. B. C. D.10.下列命题中,真命题的是( )A.,都有 B.任意非零实数,都有C.,使得D.函数211.下列命题正确的是( )A.命题“,,”的否定是“,,”B.与是同一个函数C.函数的值域为D.若函数的定义域为,则函数的定义域为12.函数的定义域为R ,已知是奇函数,,当时,,则下列各选项正确的是( )A. B.在单调递C. D.第Ⅱ卷(非选择题)三、填空题13.已知,集合,则图中阴影部分所表示的集合是________.14.函数的单调递减区间为________.15.已知集合,,若“”是“”的必要非充分条件,则实数的取值范围是________.0.20.20.20.3>113323--<0.10.20.81.25->0.33.11.70.9>x ∀∈R 21x x x -≥-,a b 2b a a b+≥()1,x ∃∈+∞461x x +=-y =x ∀y ∈R 220x y +≥x ∃y ∈R 220x y +<()1f x x =-()211x g x x -=+y x =[)0,+∞()1f x +[]1,4()f x []2,5()f x ()1f x +()()22f x f x +=-[]1,2x ∈()22f x ax =+()()4f x f x +=()f x []0,1()10f =13533f ⎛⎫=⎪⎝⎭U R ={11}A x x =->{B xy ==∣y =204x A xx ⎧⎫+=<⎨⎬-⎩⎭{}22210B x x ax a =-+-<∣x A ∈x B ∈a16已,,,知为四个互不相等的实数.若,,,中最大,则实数的取值范围为________.四、解答题17.(本小题10分)计算下列各式(式中字母都是正数):(1);(2);(3.18.(本小题12分)已知函数.(1)证明:函数在上是减函数;并求出函数在的值域;(2)记函数,判断函数的的奇偶性,并加以证明.19.(本小题12分)设关于的函数,其中,都是实数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一切事无法追求完美,唯有追求尽力而为。
这样心无压力,最后的结果反而会更好。
高一数学期中考试试卷及答案(考试时间:120分钟)一、 选择题(10⨯5分)1. 下列四个集合中,是空集的是( )A . }33|{=+x xB . },,|),{(22R y x x y y x ∈-=C . }0|{2≤x xD . },01|{2R x x x x ∈=+- 2. 下面有四个命题:(1)集合N 中最小的数是1;(2)若a -不属于N ,则a 属于N ; (3)若,,N b N a ∈∈则b a +的最小值为2;(4)x x 212=+的解可表示为{}1,1; 其中正确命题的个数为( )A . 0个B . 1个C . 2个D . 3个 3. 若集合{},,M a b c =中的元素是△ABC 的三边长, 则△ABC 一定不是( )A . 锐角三角形B . 直角三角形C . 钝角三角形D . 等腰三角形4. 若偶函数)(x f 在(]1,-∞-上是增函数,则下列关系式中成立的是( )A . )2()1()23(f f f <-<-B . )2()23()1(f f f <-<-C . )23()1()2(-<-<f f fD . )1()23()2(-<-<f f f5. 下列函数中,在区间()0,1上是增函数的是( ) A . x y = B . x y -=3C . xy 1=D . 42+-=x y 6. 判断下列各组中的两个函数是同一函数的为( )⑴3)5)(3(1+-+=x x x y ,52-=x y ;⑵111-+=x x y ,)1)(1(2-+=x x y ;⑶x x f =)(,2)(x x g =;⑷()f x()F x = ⑸21)52()(-=x x f ,52)(2-=x x f .A . ⑴、⑵B . ⑵、⑶C . ⑷D . ⑶、⑸ 7 . 以下说法正确的是( ).A.正数的n 次方根是正数B.负数的n 次方根是负数C.0的n 次方根是0(其中n>1且n ∈N *) D .负数没有n 次方根8. 若n<m<0,则错误!未找到引用源。
-错误!未找到引用源。
等于( ).A.2mB.2nC.-2mD.-2n9. 已知22(1)()(12)2(2)x x f x x x x x +≤-⎧⎪=-<<⎨⎪≥⎩,若()3f x =,则x 的值是( )A . 1B . 1或32 C . 1,32或 D .10. 某学生离家去学校,由于怕迟到,所以一开始就跑步,等跑累了再走余下的路程. 在下图中纵轴表示离学校的距离,横轴表示出发后的时间,则下图中的四个图形中较符合该学生走法的是( )二、 填空题(5⨯5分)11. 计算:32532322)0.527(--+= . 12.设非空集合{32}A x x =-≤≤,{2121}B x k x k =-≤≤+,且A B ⊇,则实数k 的取值范围是 .13. 函数422--=x x y 的定义域 . 14.指数函数y =f (x )的图象过点(-1,12),则f [f (2)]=________.15. 若函数2()(32)f x k k x b =-++在R 上是减函数,则k 的取值范围为__________.三、解答题(75分)16.(本题满分15分)已知函数21()1f x x =-. (1)设()f x 的定义域为A ,求集合A ;(2)判断函数()f x 在(1,+∞)上单调性,并用定义加以证明.17.求函数(f x )的定义域.(10分)18. 已知函数y=错误!未找到引用源。
(a>0,且a ≠1)在[0,2]上有最小值8,求实数a 的值.(12分)19.(本题满分15分)已知函数1()(01)x f x a a a -=>≠且(1)若函数()y f x =的图象经过P (3,4)点,求a 的值; (2)比较1(lg)( 2.1)100f f -与大小,并写出比较过程; (3)若(lg )100f a =,求a 的值.20. 设f (x )=错误!未找到引用源。
,若0<a ≤1,求1()a f a +的值. (12分)21. (1).(1)计算:214303125.016)81(064.0++---(2). 若10x =3,10y =4,计算102x-y 的值(11分)参考答案一、选择题1. D 选项A 所代表的集合是{}0并非空集,选项B 所代表的集合是{}(0,0)2. A (1)最小的数应该是 ,(2)反例: ,但(3)当 ,(4)元素的互异性3. D 元素的互异性 ;4. D 3(2)(2),212f f =--<-<- 5. A 3y x =-在R 上递减,1y x=在(0,)+∞上递减, 24y x =-+在(0,)+∞上递减,6. C (1)定义域不同;(2)定义域不同;(3)对应法则不同;(4)定义域相同,且对应法则相同;(5)定义域不同; 7. C 正数的偶次方根中有负数,A 错,负数的奇次方根是负数,偶次方根不存在,所以B 、D 错. 8. C 原式=错误!未找到引用源。
-错误!未找到引用源。
=|m+n|-|m-n|,∵n<m<0,∴m+n<0,m-n>0,∴原式=-(m+n )-(m-n )=-2m.9. D 该分段函数的三段各自的值域为(][)[),1,0,4,4,-∞+∞,而[)30,4∈∴2()3,12,f x x x x ===-<<而∴x =10. B 刚刚开始时,离学校最远,取最大值,先跑步,图象下降得快!二、填空题11.929 1 2. [-1, 12] 1 3. {x 2x ≠±} 14. 1615. (1,2)三、 解答题16解:(1)由210x -≠,得1x ≠±,所以,函数21()1f x x =-的定义域为{|1}x x ∈≠±R ……………………… 4分 (2)函数21()1f x x =-在(1,)+∞上单调递减. ………………………………6分证明:任取12,(1,)x x ∈+∞,设12x x <,则210,x x x ∆=->12122122222112()()1111(1)(1)x x x x y y y x x x x -+∆=-=-=----…………………… 10分121,1,x x >>22121210,10,0.x x x x ∴->->+>又12x x <,所以120,x x -< 故0.y ∆< 因此,函数21()1f x x =-在(1,)+∞上单调递减. ………………………15分 17. {x1x ≠-}18 【解析】令u (x )=x 2-3x+3=(x-错误!未找到引用源。
)2+错误!未找到引用源。
, 当x ∈[0,2]时,u (x )max =u (0)=3;u (x )min =u (错误!未找到引用源。
)=错误!未找到引用源。
. 当a>1时,y min =错误!未找到引用源。
=8,解得a=16; 当0<a<1时,y min =a 3=8,解得a=2(舍去). 因此a=16.19.解:⑴∵函数()y f x =的图象经过(3,4)P∴3-14a=,即24a =. ……………………………………… 2分又0a >,所以2a =. ……………………………………… 4分 ⑵当1a >时,1(lg)( 2.1)100f f >-; 当01a <<时,1(lg)( 2.1)100f f <-. …………………………………… 8分 因为,31(lg)(2)100f f a -=-=, 3.1( 2.1)f a --= 当1a >时,xy a =在(,)-∞+∞上为增函数,∵3 3.1->-,∴33.1a a -->.即1(lg)( 2.1)100f f >-. 当01a <<时,xy a =在(,)-∞+∞上为减函数,一切事无法追求完美,唯有追求尽力而为。
这样心无压力,最后的结果反而会更好。
∵3 3.1->-,∴33.1a a --<.即1(lg)( 2.1)100f f <-. ……………………………………… 10分 ⑶由(lg )100f a =知,lg 1100a a -=.所以,lg 1lg 2a a-=(或lg 1log 100a a -=).∴(lg 1)lg 2a a -⋅=.∴2lg lg 20a a --=, ……………………………………… 12分 ∴lg 1a =- 或 lg 2a =,所以,110a = 或 100a =. ……………………………………… 15分 201a a- 21. (1) 10.(2)【解析】∵10x =3,∴102x =9, ∴102x-y =错误!未找到引用源。
=错误!未找到引用源。
.。