高分子表面活性剂

合集下载

表面活性剂的研究进展论文

表面活性剂的研究进展论文

表面活性剂的绿色化研究进展学号:201321132250姓名:王南建表面活性剂绿色化研究进展现在社会,表面活性剂的应用日益广泛,本文对现行的几种表面活性剂及其应用进行了初步的探索。

1. 脂肽生物表面活性剂自从Fleming发现微生物产生青霉素以来,微生物成为生物活性物质的一个重要来源,为天然合成化学品提供了丰富资源。

生物表面活性剂是微生物在一定条件下培养时,在其代谢过程申分泌出来的具有一定表面活性的代谢产物,如糖脂、多糖蛋白脂、脂肪、磷脂利脂肪酸中性类脂衍生物。

它们与一般表面活性剂分子在结构上类似,即在分子中不仅有脂肪烃链构成的非极性憎水基,同时也含有极性的亲水基。

生物表面活性剂的早期研究见于1946年,1965年之后,微生物对烃类乳化机制的研究引起人们的关注。

微生物产生的表面活性剂是微生物提高石油采收率的重要机制之一。

用微生物生产表面活性剂成为生物技术领域中的一个新课题。

1968年,Arima等首次发现枯草芽胞杆菌株(Bacillus subtilis)产生的是脂肽类表面活性剂,呈晶状,商品名为表面活性素(surfactin),这类表面活性剂主要含:伊枯草菌素(Iturilns),杆菌霉素(Bacillomycin),芬荠素(Fengycin)和表面活性(Surfacin)等,其中surfactin的表面活性最强,是迄今报道的效果最好的生物表面活性齐之一。

脂肽分子由亲水的肽键和亲油的脂肪烃链两部分组成,由于其特殊的化学组成和两亲型分子结构,脂肤类生物表面活性剂在医药、微生物采油、环境治理等领域有重要的应用前景。

目前发现的脂肽类生物表面活性剂有数十种。

2. 高分子表面活性剂高分子表面活性剂通常指分子量大于1000、具有表面活性的物质。

减小两相界面张力的大分子物质皆可称为高分子表面活性剂。

高分子表面活性剂具有分散、凝聚、乳化、稳定泡沫、保护胶体、增溶等能力,毒性小,可用作胶凝剂、减阻剂、增粘剂、絮凝剂、分散剂、乳化剂、破乳剂、增溶剂、保湿剂、抗静电剂、纸张增强剂等。

五章表面活性剂与药用高分子材料【共28张PPT】

五章表面活性剂与药用高分子材料【共28张PPT】
(三)乳化剂 (四)润湿剂
(五)起泡剂与消泡剂
●泡沫:气体分子分散在液体中的分散系统。 ●起泡剂 :HLB高,应用外用避孕泡腾片 ●消泡剂。 HLB 1~3 如硅酮、辛醇等。
(六)去污剂与洗涤剂:HLB13~16 (七)其他
●透皮促进剂 1~2%
●晶型稳定剂
第二节 药用高分子材料(polymer in pharmaceutics)
离子型表面活性剂缔合数<100,非离子型>100. ●临界胶团浓度(CMC,Critical micelle Concentration)
开始形成胶团时溶液的浓度
○CMC测定;如表面张力变化。
○CMC值主要由表面活性剂性质决定;
○CMC值受温度、pH值及电解质的影响。
Unimers
Surfactant Aggregates
Dimers or trimers
Normal micelles spherical
cylindrical
Inverted hexagonal phase Reverse micelles
vesicle
Bilayer lamella
4 nm
(三)亲水亲油平衡值(Hydrophil-Lipophilalance value,HLB值)
不溶于水,有弱W/O的能力。O/W乳剂的辅助乳化剂
7、蔗糖的脂肪酸酯:
●无毒、无味、无臭,可降解。 ●单酯是亲水性,乳化剂
●双酯是不溶于水,润滑剂。
三、 基本特性:
(一)表面活性:显著降低表面张力的性质。
(二)胶团 ● 低浓度时,溶液表面定向排列降低,
浓度增加(表面饱和)后,胶团或胶束(Micelle)。 -亲油基团向内,亲水基团向外的多分子有序缔合体。

表面活性剂的分类

表面活性剂的分类

表面活性剂的分类根据分子组成特点和极性基团的解离性质,将表面活性剂分为离子表面活性剂和非离子表面活性剂。

根据离子表面活性剂所带电荷,又可分为阳离子表面活性剂、阴离子表面活性剂和两性离子表面活性剂。

一些表现出较强的表面活性同时具有一定的起泡、乳化、增溶等应用性能的水溶性高分子,称为高分子表面活性剂,如海藻酸钠、羧甲基纤维素钠、甲基纤维素、聚乙烯醇、聚维酮等,但与低分子表面活性剂相比,高分子表面活性剂降低表面张力的能力较小,增溶力、渗透力弱,乳化力较强,常用做保护胶体。

一、离子表面活性剂(一)阴离子表面活性剂阴离子表面活性剂起表面活性作用的部分是阴离子。

1.高级脂肪酸盐系肥皂类,通式为(RCOO-)nMn+。

脂肪酸烃链R 一般在C11~C17之间,以硬脂酸、油酸、月桂酸等较常见。

根据M的不同,又可分碱金属皂(一价皂)、碱土金属皂(二价皂)和有机胺皂(三乙醇胺皂)等。

它们均具有良好的乳化性能和分散油的能力,但易被酸破坏,碱金属皂还可被钙、镁盐等破坏,电解质可使之盐析。

一般只用于外用制剂。

2.硫酸化物主要是硫酸化油和高级脂肪醇硫酸酯类,通式为R·O·SO3-M+,其中脂肪烃链R在C12~C18范围。

硫酸化油的代表是硫酸化蓖麻油,俗称土耳其红油,为黄色或桔黄色粘稠液,有微臭,约含48.5%的总脂肪油,可与水混合,为无刺激性的去污剂和润湿剂,可代替肥皂洗涤皮肤,也可用于挥发油或水不溶性杀菌剂的增溶。

高级脂肪醇硫酸酯类中常用的是十二烷基硫酸钠(SDS,又称月桂醇硫酸钠、SLS)、十六烷基硫酸钠(鲸蜡醇硫酸钠)、十八烷基硫酸钠(硬脂醇硫酸钠)等。

它们的乳化性也很强,并较肥皂类稳定,较耐酸和钙、镁盐,但可与一些高分子阳离子药物发生作用而产生沉淀,对粘膜有一定的刺激性,主要用做外用软膏的乳化剂,有时也用于片剂等固体制剂的润湿剂或增溶剂。

3.磺酸化物系指脂肪族磺酸化物和烷基芳基磺酸化物等。

通式分别为R·SO3-M+和RC6H5·SO3-M+。

高分子表面活性剂在表面施胶中的应用

高分子表面活性剂在表面施胶中的应用

摘要:表面活性剂在造纸中有很大的应用,例如在制浆、湿部、脱墨、涂布加工等方面。

本文主要综述了几种主要的高分子表面活性剂如:阳离子淀粉,AKD 专用高分子表面活性剂,壳聚糖,聚乙烯醇,羧甲基纤维素等在表面施胶中的应用。

关键词:造纸、高分子表面活性剂、表面施胶。

表面施胶也叫纸面施胶,纸页形成后在半干或干燥后的纸页或纸板的表面均匀涂上胶料。

施胶剂分松香型和非松香型两大类,非松香型施胶剂主要用于表面施胶。

常用的表面施胶剂含有疏水基和亲水基,因此广义地说都是表面活性剂。

表面施胶剂主要有变性淀粉、聚乙烯醇(PVA)、羧甲基纤维素(CMC)和聚丙烯酰胺(PAM)等。

可根据不同的需要选择不同的表面活性剂,如:提高抗水性,可用AKD、分散松香、石蜡、硬脂酸氯化铬、苯乙烯马来酸酐共聚物及其他合成树脂胶乳等;提高抗油性,可加入有机氟化合物,如全氟烷基丙烯酸酯共聚物,全氟辛酸铬配合物,全氟烷基磷酸盐等;增加防黏性,可加入有机硅树脂;改善印刷性能,主要用变性淀粉、CMC、PVA等[1];改进干湿强度,可加入PAM、变性淀粉等;改善印刷光泽度和印刷发色性,主要用CMC、海藻酸钠、甲基纤维素、氧化淀粉等。

为了提高表面施胶效果,通常采用两种或几种表面活性剂共用的方法。

1. 淀粉是一种天然高分子化合物,它是一种重要的表面施胶剂和纸张增强剂。

在造纸工业中,薯类淀粉使用效果较好。

天然未改性的淀粉粘度较高,流动性差,容易凝聚,用水稀释后易沉淀,故在表面施胶中常用各种改性淀粉。

改性淀粉在较高浓度时仍有较低的粘度,并保持良好的溶解性、粘着力和成膜性能。

用于表面施胶的改性淀粉主要有氧化淀粉、阳离子淀粉、阳离子型磷酸酯淀粉、羟烷基淀粉、双醛淀粉、乙酸酯淀粉、酸解淀粉。

以下主要介绍阳离子淀粉。

阳离子淀粉通常是指淀粉在一定条件下与阳离子试剂反应制得的产物,阳离子试剂主要有叔胺盐类和季铵盐类阳离子试剂。

阳离子淀粉还可以通过淀粉与阳离子型乙烯基单体通过自由基共聚法制得。

表面活性剂分类

表面活性剂分类

表面活性剂的分类姓名:黄朋学号: 2012G0303006 1、高分子表面活性剂:离子分类亲水基高分子表面活性剂天然系半合成系合成系阴离子型羧酸基海藻酸钠果胶酸钠腐植酸钠咕吨树胶羧甲基纤维素羟甲基淀粉丙烯酸接枝淀粉水解丙烯腈接枝淀粉丙烯酸共聚物马来酸共聚物水解聚丙烯酰胺磺酸基木质素磺酸盐铁铬木质素磺酸盐缩合萘磺酸盐聚苯乙烯磺酸盐硫酸酯基缩合烷基苯醚硫酸酯阳离子型胺基壳聚糖阳离子淀粉氨基烷基丙烯酸酯共聚物聚乙烯苯甲基三甲铵盐季铵盐两性型胺基、羧基等水溶性蛋白质类非离子型多元醇及其他淀粉淀粉改性产物甲基纤维素乙基纤维素羧乙基纤维素聚乙烯醇聚乙烯基醚EO加成物聚乙烯吡咯烷酮2、离子分类:阴离子型表面活性剂离子型表面活性剂阳离子型表面活性剂表面活性剂非离子型表面活性剂两性表面活性剂特殊表面活性剂阴离子型表面活性剂:羧酸盐型、磺酸盐型、硫酸酯盐型、磷酸酯盐型等阳离子表面活性剂:脂肪胺盐、烷基咪唑啉盐、烷基吡啶盐、β—羟基胺等两性表面活性剂:从广义上讲,分子结构中含有两种及两种以上极性基团的表面活性剂,均可称为两性活性剂。

可将其分为:非离子-阴离子型;非离子-阳离子型;阴离子-阳离子型;非离子-阳离子-非离子型。

这类表面活性剂具有许多独特的性质。

例如,对皮肤的低刺激性,具有较好的抗盐性,且兼备阴离子型和阳离子型两类表面活性剂的点,既可用作洗涤剂、乳化剂,也可用作杀菌剂、防霉剂和抗静电剂。

因而,两性离子表面活性剂是近年来发展较快的一类。

非离子型表面活性剂:这类表面活性剂溶于水后不发生解离,其极性基部分大多为氧乙烯基、多元醇和酰胺基。

类型:酯型;醚型;胺型;酰胺型;混合型(Tween)酯醚型等。

特殊表面活性剂:以碳氟链为疏水基的表面活性剂,简称为氟表面活性剂,如全氟辛酸。

这类活性剂具有极高的表面活性,不仅可以使水的表面张力降至20 mN.m-1以下,而且能降低油的表面张力。

其化学性质极其稳定,具有抗氧化、抗强酸和强碱及抗高温等特性。

高分子表面活性剂的分类、特征及应用

高分子表面活性剂的分类、特征及应用

高分子表面活性剂的分类、特征及应用摘要:概述了高分子表面活性剂的分类、性质、合成方法及应用,分析了其应用前景,旨在通过对高分子表面活性剂相关内容的综述和介绍,让更多的人认识和了解高分子表面活性剂。

关键词:高分子表面活性剂;分类;应用高分子表面活性剂是相对一般常言的低相对分子质量表面活性剂而言讲的,通常指相对分子质量大于1000且具有表面活性功能的高分子化合物,也有说法认为,高分子表面活性剂是指分子量达到某种程度以上(一般为103~106) 又一定表面活性的物质[5],虽然,高分子表面活性剂分子量,甚至,高分子物质分子分子量到底多大并没有严格的界限,但总之,高分子表面活性剂相比低分子表面活性剂其分子量要大很多。

和低分子表面活性剂一样,高分子表面活性剂由亲水部分和疏水部分组成。

1951年施特劳斯把结合有表面活性官能团的聚1-十二烷基-4-乙烯吡啶溴化物命名为聚皂从而出现了合成高分子表面活性剂。

1954年美国Wyandotte公司报到了合成聚氧乙烯聚氧丙烯嵌段共聚物非离子高分子表面活性剂此后具有高性能的各种高分子表面活性剂相继开发。

高分子表面活性剂具有分散、凝聚、乳化、稳定泡沫、保护胶体、增溶等性质,被广泛用作胶凝剂、减阻剂、增粘剂、絮凝剂、分散剂、乳化剂、破乳剂、增溶剂、保湿剂、抗静电剂、纸张增强剂等[1]。

因此高分子表面活性剂近年来发展迅速,目前,已成为表面活性剂的重要发展方向之一。

1.高分子表面活性剂的分类高分子表面活性剂可根据在水中电离后亲水基所带电荷分为阴离子型、阳离子型、两性离子型和非离子型四类高分子表面活性剂。

如阴离子型的高分子表面活性剂有聚甲基丙烯酸钠、羧甲基纤维素钠、缩合萘磺酸盐、木质素磺酸盐、缩合烷基苯醚硫酸脂等。

阳离子型的高分子表面活性剂有氨基烷基丙烯酸酯共聚物、改型聚乙烯亚胺、含有季胺盐的丙烯酸酰胺共聚物、聚乙烯苯甲基三甲铵盐等。

两性离子型的高分子表面活性剂有丙烯酸乙烯基吡啶共聚物、丙烯酸一阳离子丙烯酸酯共聚物、两性聚丙烯酰胺等。

高分子表面活性剂

高分子表面活性剂
1
一、高分子表面活性剂简介

二、高分子表面活性剂结构与ቤተ መጻሕፍቲ ባይዱ能

三、高分子表面活性剂的分类

四、高分子表面活性剂的合成

五、高分子表面活性剂的应用
一、高分子表面活性剂简介
通常是某种物质当它溶于水中即使浓度 很小时,能显著降低水同空气的表面张力, 或同其它物质的界面张力,则该物质称为表 面活性剂
胶束浓度(CMC)
表面活性剂浓度和活动情况关系图
7
二、高分子表面活性剂的结构与性能
棒状 球状
片状
层状
8
二、高分子表面活性剂的结构与性能
乳化作用: 指将一种液体的细小颗粒分散于另一种不相溶的液 体中,所得到的分散体系被成为乳液。
泡沫作用: 泡沫实际是气结体论分:散表于面液活体性中剂的水分溶散液体其系,泡沫的 形成涉及起泡和稳泡两个浓因度素只。有稍高于其CMC值 分散作用: 增加固体粒子时在,溶才液能中充的分分显散示分其散作稳用定。性问题。
五、高分子表面活性剂的应用
4.2在石油工业中的应用 驱油剂:利用高分子表面活性剂如(超高分子量聚丙烯
酰胺)能够充分解决石油开采过程中由于原油中的胶质 、沥青质、蜡等重质成份的析出在地层中沉积成垢的堵 塞。大致每用1kg驱油剂可以多出原油10桶,在三次采油 中应用前景广阔。 破乳剂 压裂液 稠油降粘剂 钻井用化学剂 油田水处理剂
四、高分子表面活性剂的合成
3.高分子化学反应 通过化学反应的方法在聚合物上引入疏水基或亲水基 。 优点:直接用已商品化的聚合物作起始原料, 得到的产物 相对分子量较高。 缺点:反应通常需要在高粘度的聚合物溶液中进行。
例如:将常用的 PVA(聚乙烯醇)完全醇解或部分醇解 后与氯代烷或醇进行醚化反应可得到具有表面活性的 PVA 。

新型高分子表面活性剂-聚乙二醇6000双硬脂酸酯

新型高分子表面活性剂-聚乙二醇6000双硬脂酸酯聚乙二醇6000双硬脂酸脂(以下简称PEG6000DS),化学结构为:R-CO-(OCH2CH2)。

-O-OC-R.其中R=C17H15,n =140~150。

它是近几年发展起来的新型高分子非离子表面活性剂,因其用于香波,裕剂等配方,能提高粘度,降低盐量,具有较强的乳化、分散作用及对乳液的稳定作用,同时对头发有一定的调理作用,故在国外普遍受到人们的重视,在国内也巳逐渐被接受。

PEG6000DS的分子由疏水-亲水-疏水部分组成,它在稀表面活性剂水溶液中形成三元水合网,将表面活性剂胶束围在其中,胶束由球状转变成捧状,从而使粘度增加。

PEG6000DS的合成主要有两条途径.其-是直接酯化法,即用PEG 6000与硬脂酸直接进行酯化反应.其二是酯交换法,即硬脂酸甲脂与PEG 6000通过酯交换脱去甲醇.PEG 6000DS 外观为黄白色薄片固体。

活性物含量98%~100%。

一般理化性能见表1。

PEG 6000DS是酯类非离子表面活性剂,因为酯键的化学特性,故不宜在强酸或强碱条件下使用.一般在pH5~8范围内比较稳定,在高温下也容易破坏酯键,故也不宜长期在较高温度下使用。

室温下PEG 6000DS在水和醇中的溶解性较差,但可溶于热的水和醇中.故使用时一般先用15~20倍的大于80℃的水或2倍40℃~50℃的甲醇溶解,然后用水稀释至所需浓度.因为它作为添加剂加入香波或其它配方,一般不超过百分之几,故它的溶解性不是很大的问题.PEG 6000DS水溶液的粘度随温度不同而不同,温度高时粘度降低.在香波的基本配方中(AES,10%;6501;3%,NaCl:1.0%),加入不同浓度的PEG6000DS,香波的粘度变化情况见图1.图中AES,6501为日本LION公司产品,PEG6000DS为广州道明化学公司产品DM-638,粘度用上海天平仪器厂NDJ-1型旋转粘度计.以下同.由图可以看出,随着PEG6000DS的浓度增加,香波的粘度增加开始较平缓,后急剧增加。

表面活性剂的类型

详细描述
含氟表面活性剂的分子结构中含有一氟或多氟基团,这些基 团的存在使得含氟表面活性剂具有极佳的表面活性和化学稳 定性。它们广泛应用于石油、化工、制药、电子等领域,作 为清洁剂、乳化剂、分散剂等。
高分子表面活性剂
要点一
总结词
高分子表面活性剂是一类具有高分子量和高表面活性的物 质,具有优异的分散性、增稠性和稳定性等特点。
的水溶性和生物相容性。
氨基酸型表面活性剂在低浓度下 即可显著降低水的表面张力,具 有较好的润湿、乳化、分散和泡
沫性能。
常见的氨基酸型表面活性剂有甘 氨酸、丙氨酸等。
05
其他表面活性剂
含氟表面活性剂
总结词
含氟表面活性剂是一种具有优异性能的表面活性剂,具有高 表面活性、低表面张力、良好的化学稳定性和热稳定性等特 点。
硫酸盐类
烷基硫酸酯盐
如十二烷基硫酸钠(SDS),具有良 好的发泡、去污和乳化性能,常用于 洗涤剂、化妆品和农药等领域。
脂肪醇硫酸酯盐
如月桂醇硫酸钠(SLS),具有较好的 去污和发泡性能,常用于洗发水、沐浴 露等领域。
磺酸盐类
烷基磺酸盐
如十二烷基磺酸钠(SDS),具有较好的去污和乳化性能,常用于洗涤剂、农 药等领域。
04
两性表面活性剂
咪唑啉型
咪唑啉型表面活性剂是一种两性表面活性剂,其分子结构中同时含有阳离子和阴离 子,具有较好的水溶性和生物相容性。
咪唑啉型表面活性剂在低浓度下即可显著降低水的表面张力,具有较好的润湿、乳 化、分散和泡沫性能。
常见的咪唑啉型表面活性剂有十二烷基二甲基咪唑啉、十六烷基二甲基咪唑啉等。
季铵盐型
总结词
季铵盐型阳离子表面活性剂是一种高效 、低毒、生物降解性好的阳离子表面活 性剂。

高分子表面活性剂的合成及其应用


结构式 4
表面活性剂的作用。施胶剂品种 很多,诸如天然改性高分子表面
4 高分子表面活性剂的应用
活性剂如改性淀粉、氧化淀粉、磷 酸酯淀粉、醋酸酯淀粉、壳聚糖、
4.1 日用化学品工业
羧甲基纤维素和阳离子瓜尔胶等;
天然高分子化合物如蛋白质、 合成高分子施胶剂如聚乙烯醇、
淀粉、纤维素等可以通过水解和 聚苯乙烯-马来酸盐及其半酯的共
2 表面活性剂的分类及特性功能
2.1 高分子表面活性剂的类型 高分子表面活性剂按离子分
类,可分为阴离子型、阳离子型、
两性型和非离子型四种高分子表 面活性剂[4],如表 1 所示。
高分子表面活性剂按来源分 类可分为天然高分子表面活性剂
表 1 高分子表面活性剂分类 离子类型
阴离子型
亲水基种类 羧酸型
磺酸型
阳离子型
两性离子 非离子型
硫酸酯型 磷酸酯型
胺型
季铵盐型
氨基酸型 甜菜碱型 多元醇型
酸(钠) 羧基改性聚丙烯酰胺 羧甲基纤维素(钠) 缩合萘磺酸盐 聚苯乙烯磺酸盐 木质素磺酸盐 缩合烷基苯醚硫酸酯
氨基烷基丙烯酸酯共聚物 改性聚乙烯亚胺 含有季铵盐的丙烯酸酰胺共聚物 聚乙烯苯甲基三甲胺盐
解等特点, 所以广泛应用于食品、医药、化妆品及洗 3 高分子表面活性剂的合成方法
涤剂工业。
3.1 加成聚合
合成高分子表面活性剂是指亲水性单体均聚或
在自由基或离子型引发剂存在下,由两亲性单
与僧水性单体共聚而成,或通过合成高分子化合物 体均聚,或由亲油 / 亲水单体共聚,可以制得高分子
改性而制得。根据单体的种类、合成方法、反应条件 表面活性剂,该方法简便易行,单体种类选择和组成
结构式 1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高分子表面活性剂的发展及应用现状高分子表面活性剂的发展及应用现状石油是最重要的能源与工业原料之一,目前我国一些大油田已进入注水采油后期,如何提高石油采收率具有十分重大的意义。

兼具增粘和表面活的高分子表面活性剂是一种潜在的驱油剂。

但人们通常认为分子量高将导致界面活性降低,与原油的界面张力难以降低到超低值,这些传统观念限制了高分子表面活性剂在驱油方面的应用。

近年来,随着分子设计技术的发展,合成了一批高界面活性的高分子表面活性剂,高分子表面活性剂是指分子量达到某种程度以上(一般为103~106)又有一定表面活性的物质。

由于高分子表面活性剂兼具有增粘性和表面活性,因此在石油开采、涂料工业、医药、化妆品、蛋白质等领域中有巨大的应用前景。

高分子表面活性剂的开发始于1950年,最早使用的有淀粉、纤维素及其衍生物等天然水溶性高分子表面活性剂。

1951年Stauss将含有表面活性基团的聚合物-聚乙烯(十二烷基)吡啶命名为聚皂,从而出现了合成高分子表面活性剂。

1954年,美国wyandotte公司报道了合成聚氧乙烯聚氧丙烯嵌段共聚物非离子高分子表面活性剂。

此后,各种具有多种功能的合成高分子表面活性剂被相继开发出来,并广泛应用于诸多领域。

通常,把由亲水基团和疏水基团两部分组成、具有较强表面活性和较高分子量(103-106)的大分子称为高分子表面活性剂。

高分子表面活性剂分子结构的共同特点是分子量大且含有极性和非极性两部分[1]。

正是这种两亲性的结构使得高分子表面活性剂可以在界面吸附和在溶液中聚集。

高分子表面活性剂既属于高分子科学的研究范畴,也是胶体与界面科学的主要研究对象。

近年来,应用高分子表面活性剂模板模拟生物矿化、合成纳米材料、调控药物传输及靶向识别等的研究正在蓬勃发展。

可以预见,随着科学与技术的进步,高分子表面活性剂必将展现出更为广阔的应用前景。

高分子表面活性剂具有很强的界面吸附能力,而且其在界面上的吸附不像低分子表面活性剂那样易受物理因素的影响。

因此它在低浓度时就可显示出明显的效果。

同时,多数高分子表面活性剂具有生物相容性和环境友好性。

鉴于高分子表面活性剂具有以上优点,它己被广泛应用于油田开发、日用化工、废水处理、造纸、流体改性、控制药物释放和微一纳米材料的合成等领域。

而高分子表面活性剂的诸多应用与它在溶剂中的聚集行为密切相关,所以,高分子表面活性剂在不同界面和不同极性溶剂中的聚集行为以及高分子表面活性剂与传统表面活性剂复合体系的物理化学性能一直是人们感兴趣的研究课题1高分子表面活性剂的分类按离子类型,分为阴离子型,阳离子型、两性离子型和非离子型;按来源,分为天然、天然改性(半合成)及合成高分子表面活性剂。

高分子表面活性剂主要有以下三种结构类型:(l)亲水主干一疏水支链型,即疏水基团接在亲水主链上,如疏水改性的淀粉、疏水改性的纤维素等,其结构如图1.A所示;(2)疏水主干-亲水支链型,即亲水基团接在疏水主链上。

如乙氧基化聚丙烯酸盐、硅表面活性剂等,其结构如图1.B所示;(3)疏水基和亲水基交替排列(嵌段)型,其中最为典型的是两亲性嵌段共聚物如EO-PO 嵌段共聚物等[2]」,此类高分子表面活性剂的结构如图1.C所示。

图1.高分子表面活性剂的三种结构示意图1.1天然及改性高分子表面活性剂天然高分子物质,如水溶性蛋白质、树脂,是有名的保护胶体,现在仍在大量应用。

从动植物分离、精制或经化学改性而制得的半合成高分子表面活性剂也大量出现。

天然类高分子表面活性剂的种类较多,有纤维素类、淀粉类、腐植酸类、木质素类、聚酚类、单宁和栲胶、植物胶和生物聚合物等。

纤维素类高分子表面活性剂是这类高分子表面活性剂中研究较多的一种。

近年来纤维素类高分子表面活性剂日益受到重视,因此有必要介绍纤维素类高分子表面活性剂的研究状况。

将水溶性纤维素衍生物开发用作高分子表面活性剂是近20年来高分子表面活性剂的一个十分重要的研究和发展方向。

与一般合成高分子表面活性剂相比,纤维素类高分子表面活性剂不仅可在一定条件下显示出与之相当的增稠、分散、成膜、粘结和保护胶体等特性,而且还普遍具有其难以具备的可生物降解性、使用安全性和丰富的原材料。

一般的水溶性纤维素衍生物由于其分子量较高且其大分子链中缺少与亲水基团相匹配的疏水性基团,致使其表面活性难以提高。

通常需要在适当条件下,通过高分子化学反应,将带长链烷基的疏水性物质接枝到纤维素链段上,使其具有两亲的特性。

中科院院士徐僖教授、孙杨宣、曹亚等人分别从分子设计的角度出发,提出并进行了含亲水/亲油两亲链段纤维素类高分子表面活性剂的研究。

制备时,采用了超声共聚合成新方法,即首先通过超声波辐照作用,使原料水溶性纤维素衍生物降解形成大分子自由基,然后由此引发具有双亲结构的表面活性大单体(及第三单体)反应,再进而制备出兼具良好表面活性和较高分子量(Mw=3~11×104)的改性纤维素共聚物。

所用表面活性大单体包括壬基酚聚氧乙烯醚丙烯酸酯(ANPn,n为氧乙烯链节数)、十二烷基醇聚氧乙烯醚丙烯酸酯(AR12EOn)、硬脂酸聚氧乙烯醚丙烯酸酯(AR18EOn),第三单体为苯乙烯(St)或甲基丙烯酸甲酯(MMA)。

孙杨宣利用HEC在超声波辐照下降解形成的大分子自由基,引发ANPn(n=4)与MMA发生聚合,可制得具有高表面活性、一定粘度的含双亲链段的HEC 类共聚物,这种新型高分子表面活性剂的最低表面张力29.8 mN/m,最低界面张力 1.66 mN/m,1 %(wt)水溶液表观粘度8.07 mPa·s (25℃、1.92 s-1下测定)。

曹亚等人通过在超声波作用下产生的CMC大分子自由基,引发AR12EOn或ANPn反应得到的二元共聚物以及引发AR12EOn和St反应得到的三元共聚物,其分子量在104~105之间[3]」。

具有较高分子量,同时也具有较高的表面活性,0.5% (wt)浓度下表面张力为30 mN/m,油水界面张力为1~2 mN/m, CMC系列高分子表面活性剂分子结构式为:图2CMC系列高分子表面活性剂分子结构式天然高分子物质,如水溶性蛋白质、树脂等,是很好的保护胶体。

天然高分子表面活性剂的种类有:纤维素类、淀粉类、腐植酸类、木质素类、聚酚类、单宁和栲胶、植物胶和生物聚合物等。

其中,将水溶性纤维素及其衍生物开发用作高分子表面活性剂是长期以来高分子表面活性剂一个非常重要的发展方向。

一般的水溶性纤维素衍生物由于摩尔质量较高且分子链中缺少与亲水基相匹配的疏水基,致使其表面活性难以提高,通常需在适当条件下,通过化学反应,将带长链烷基的疏水物质接枝到纤维素链段上,使其具有两亲特性。

四川大学徐嘻院士、孙杨宣、曹亚等从分子设计出发,采用超声共聚合成,先通过超声波辐照,使原料水溶性纤维素衍生物降解形成大分子自由基,由此引发双亲结构的表面活性大单体及第三单体反应(包括壬基酚聚氧乙烯醚丙烯酸醋(ANTn,n为氧乙烯链节数)、十二烷基醇聚氧乙烯醚丙烯酸酷(AR12EOn)、硬酯酸聚氧乙烯醚丙烯酸醋(AR18EOn),第三单体为苯乙烯(St)或甲基丙烯酸甲酯(MMA),再制得兼具良好表面活性和高摩尔质量「Mw=(3~11)/104g/mol]的改性纤维共聚物[4]。

曹亚等将上述超声共聚法合成的含双亲链段纤维素类表面活性剂与用化学法接枝聚合生成的带长链的共聚物作了比较,发现前者溶液粘度较高、表面张力较小、溶解性能好,并认为:两者的结构不同导致性能差异。

由此看出,高分子的表面活性受其几何结构的直接影响。

1.2合成高分子表面活性剂在能源工业(强化采油、燃油乳化、油/煤乳化)、涂料工业(无皂聚合、高浓度胶乳)、膜科学(仿生膜、LB膜)等的强大需求的推动下,合成类高分子表面活性剂研究有了新的进展,开发出了性能良好的氧化乙烯-硅氧烷共聚物、乙烯亚胺共聚物、乙烯基醚共聚物、烷基酚-甲醛缩合物-氧化乙烯共聚物等品种。

化学合成类高分子表面活性剂的合成手段较多,一般来说,可使用两亲单体均聚,或由亲油/亲水单体共聚,还可以在水溶性较好的大分子物质上引入两亲单体而制得。

单体的种类选择和组成的变化范围较广。

合成类高分子表面活性剂具有分散、乳化、增溶、增稠等能力,毒性小,可用作分散稳定剂、乳化剂、破乳剂、药物增溶剂、保湿剂、洗涤剂、水处理剂等。

与低分子表面活性剂相比,它的优点是溶液粘度高,成膜性好,其缺点是降低表面张力能力差,合成类高分子表面活性剂合成手段较多,可由两亲单体均聚或由亲水/亲油单体共聚以及在水溶性较好的大分子物质上引入两亲单体制得,单体的种类选择和组成的变化范围较广。

像氧化乙烯-硅氧烷共聚物、乙烯亚胺共聚物、乙烯基醚共聚物、烷基酚-甲醛缩合物-氧化乙烯共聚物等,都是性能优异的高分子表面活性剂,1995年旅美学者王锦山博士在CaITlege-Mellon大学发现的原子转移自由基聚合(A-TRP),在国际上掀起了A TRP技术的研究热潮。

由此看出,合成高分子表面活性剂的研究正受到进一步的重视和深入。

近年来,有机硅、氟烃类(含氟)等高分子表面活性剂的高表面活性引起了人们的关注一如范仲勇、李娜、吴大诚等在聚氧乙烯(PEO)的端基上接上全氟烷烃基,得到一种活性极高的高分子表面活性剂。

研究发现,当全氟烷烃基质量分数约为0.4%-l%时,其水溶液表面张力可降低至15mN/m。

下面就这两类高分子表面活性剂作一介绍。

1.2.1含氟高分子表面活性剂含氟高分子表面活性剂主要是碳氢链疏水基团中的氢部分或全部为氟原子所取代的高分子表面活性剂,它不同于传统的碳氢和硅表面活性剂。

氟原子电负性大直径小,(C-F键能高、键长短,能将C-F键屏蔽起来,使其保持高度的稳定性,因而使氟碳表面活性剂具有“三高”(高表面活性、很高的耐热性、高化学稳定性)、“二憎”(憎水憎油)的特性。

同有机硅、烃类表面活性剂相比,含氟高分子表面活性剂在憎水憎油性、防污性、耐洗性、耐摩擦性、耐腐蚀性等方面都有着不可比拟的优势。

氟表面活性剂的分子排列成行,降低了水性和非水性体系的表面张力。

相反,碳氢表面活性剂在非水体系中不能正确地排列成行,因而不能降低表面张力。

含氟高分子表面活性剂按亲水基的结构分为阴离子、阳离子和非离子型三种,与具有相同亲水基的烃系相比,其所产生的一系列特性主要取决于全氟烷基。

非离子型是含氟高分子表面活性剂最主要的一种[5]。

含氟高分子表面活性剂最重要的应用之一是基于含氟聚合物的低表面能.含氟聚合物作用的机理就是在底材的外表面形成一层薄膜,使底材表面的表面张力显著降低,小于一般的液体,从而表现憎水、憎油和防污的功能。

含氟聚合物既在大气中有良好的防污效果,一旦被污染后,洗净又较容易。

1.2.2有机硅高分子表面活性剂有机硅高分子表面活性剂的疏水基是聚甲基硅氧烷链,亲水基是硅氧烷链上的一个或多个极性基团形成,疏水基骨架硅氧链具有很好的柔顺性,且链周围被甲基或其它烷基覆盖,含硅高分子表面活性剂常温下呈液态,在水或非水溶剂中都有很高的表面活性,在水中的表面张力可达20-2lmN/m。

相关文档
最新文档