变刚度调平设计
桩筏基础 变刚度 沉降 调平设计论文

桩筏基础论文:桩筏基础变刚度调平设计的研究【中文摘要】桩筏基础变刚度调平设计是近几十年来岩土界一直在研究的一个重要课题,许多科学工作者一对桩筏基础的研究工作进行了大量的理论分析,并做过一些模型试验和现场测试,在此基础上提出了许多的设计方法.虽然人们对桩筏基础变刚度调平有了初步的认识,但是桩筏基础变刚度调平设计还没有广泛的应用到实际的设计工作当中。
所以对桩筏基础变刚度调平设计进行更深一步的研究具有很大的实际价值。
桩筏华础变刚度调平设计是以减小差异沉降和承台内力为目标,通过调整桩长、桩距、桩径等改变基桩支承刚度的分布,达到使建筑物的沉降趋于均匀、承台内力沉降的设计方法。
本文主要是通过调整桩筏基础的桩长来实现桩筏基础的沉降量较小,同时桩筏基础的筏板内力也可以相对较小的最优化设计。
主要进行了以下几方面的工作:(1)利用Matlab语言对Mindlin应力公式计算群桩基础沉降量的过程进行编程,并通过算例比较程序得到的和手算的沉降量,结果相近,验证了本程序适用;(2)利用程序计算平均桩反力下等桩长模型试验下的群桩沉降,然后通过平均桩反力和求得的桩基沉降量确定初始桩刚度;(3)假定筏板下的桩为弹簧,桩的刚度即为弹簧刚度,利用软件ABAQ...【英文摘要】The piled raft foundation leveling design of variable stiffness is always an important subject in geotechnical field in recent decades. Many scientists has donea lot of theoretical analysis and made some model tests and field tests about the piled raft foundation research work.Based on this, many design methods are acquired. Although people have a preliminary understanding about these design methods,they haven’t taken these design methods widely to apply to the actual design work. Therefore, the further re...【关键词】桩筏基础变刚度沉降调平设计【英文关键词】piled raft foundation variable stiffness settlement levelling design【目录】桩筏基础变刚度调平设计的研究摘要4-5ABSTRACT5-6第1章绪论10-15 1.1 引言10-11 1.2 变刚度桩筏基础研究现状11-13 1.3 本文研究目的及思路13-15第2章群桩基础沉降计算15-22 2.1 引言15 2.2 单桩沉降计算方法15-17 2.3 群桩沉降计算力法17-21 2.4 小结21-22第3章群桩基础沉降计算程序22-36 3.1 引言22 3.2 MATLAB介绍22-23 3.3 群桩基础沉降计算方法23-27 3.4 程序编制27-29 3.4.1 基本假定27 3.4.2 编程思路27-29 3.5 运用程序计算实际例题29-35 3.5.1 等桩长计算29-32 3.5.2 变桩长计算32-35 3.6 小结35-36第4章桩筏基础的有限元分析36-44 4.1 引言36 4.2 桩筏基础有限元计算模型36-37 4.3 桩筏基础有限元模型37-42 4.3.1 单元类型37-40 4.3.2 有限元网格划分40 4.3.3 施加荷载40-41 4.3.4 边界条件的设置41-42 4.4 ABAQUS程序简介42-43 4.5 小结43-44第5章桩筏基础变刚度调平设计44-62 5.1 引言44 5.2 高层建筑变刚度桩筏基础模型试验介绍44-46 5.2.1 原型结构44 5.2.2 模型比尺与试验方案44-45 5.2.3 地基条件45-46 5.2.4 实验结论46 5.3 高层建筑变刚度桩筏基础模型试验的数值分析46-61 5.3.1 等桩长均匀布桩47-55 5.3.2 变桩长布桩55-61 5.3.3 数值计算结果分析61 5.4 小结61-62第6章结论与展望62-64 6.1 结论62 6.2 展望62-64参考文献64-68致谢68-69攻读硕士学位期间论文发表及科研情况69。
变刚度调平设计方法在机床基础设计中的应用

刚度和基础的厚度 , 在集 中力作 用处加 大, 在无集 中力作 用处减 小, 使 基础沿长度设计成 变刚度 , 就 可减 少重 型机床基础工程量 , 方法 简单 易行。
【 关键词】 变刚度; 调平设计; 变刚度调平设计
度, 既可以满足机床基础的变形要求 , 也可减少基础工程量。
图1 实例一地基 梁的计 算简图( 单位 : m)
方案二 : 变地基刚度方案 。 设第 一段 、 四段 、 五段的地基基床系数为 1 ×1 0 k N / m , 第二段 、 第三段经人工处理后 的地 基基床 系数为 K= 4 x 1 0
梁 的断面 1 5 . 0 T I I 宽X 3 . 3 9 n l 厚 ×3 0 . 0 m长 。混 凝土 C 3 5 :弹性 模 量 E:3 . 1 5×1 0 k N / m , 梁 的惯 性 矩 =4 8 . 7 i n , 梁 的计算简 图见 图 3 。 解一 : 天然地基 方案 。 天然地基基床系数 K : 4 . 5×1 0 k N / m ,
【 中图分 类号】 T U 3 1 8 . 1
【 文献标志码】 A
l 2 OU KN
7 \ \
1 设计 方法 简述
“ 变刚度调平设计 ”的概念和方法是 在桩基设计 应用 中 发展起来的 , 是 国家行业标 准 … 中肯定 的方法 , 对 于解 决高
/
l 2U UkN
7 \ \ \
4×1 0
0 . 0 0 5 4 7 7 9 7
6 1 3 . 53
1×1 0
O . o o 5 7 8 3 6 9
高层建筑桩筏基础变刚度调平设计分析

高层建筑桩筏基础变刚度调平设计分析摘要:新修订的中华人民共和国行业标准《建筑桩基技术规范》(JGJ94—2008)中明确指出,要减少差异沉降和承台内力的变刚度调平设计是重要修订内容之一,通过调整桩基布置,使得基底反力分布模式与上部结构的荷载分布一致,可减小筏板内力,实现差异沉降、筏板内力的最小化。
随着城市化进程的加快,高层建筑工程建设项目越来越多,探讨高层建筑桩筏基础变刚度调平设计有着重大的意义。
本文主要分析了高层建筑桩基变刚度调平中的问题及其优化对策。
关键字:高层建筑;桩筏基础;变刚度调平;设计我国高层建筑当中很大部分的上部结构为框剪、框筒结构,其刚度相对较弱、荷载不均,整个高层建筑的基础多采用桩筏、桩箱的类型进行基础施工,建成后很容易出现碟形沉降。
而高层建筑的桩基变刚度调平优化是一种非常有效的基础优化形式,高层建筑桩基变刚度调平通过调整桩基竖向支承刚度,促使桩基沉降趋向均匀,显著降低基础、承台内力,上部结构次应力。
变刚度调平需要优化桩土支承刚度分布,实施强化与弱化结合,减沉与增沉结合,长桩与短桩并用,刚性桩复合地基与天然地基并用。
1高层建筑桩基变刚度调平中的问题与分析通过大量高层建筑的实际观测发现仅加大基础抗弯刚度是不能有效减小差异沉降的效4年最大差异沉降为0.0041m,超过《建筑桩基技术规范》(JGJ94—2008)的0.002m要求,出现差异化变形、结构开裂等方面的问题,主要还是传统设计方式中的理念问题,一般原因是:高层建筑设计过程中过分注重了天然地基的利用;在设计桩筏过程中,未能及时注意到桩型、结构等问题,荷载大小分布存在不匹配的情况,未能充分利用复合桩基对系统的刚度分布进行调整,以便减小差异沉降,或对桩反力分布、利用筏板刚度调整荷载减小差异沉降的期望过高。
2减沉设计(1)桩长及桩身断面选择:选择桩长应尽可能穿过压缩性高的土层,桩端持力层压缩性应相对较低,在承台产生一定沉降时桩仍可充分发挥并能继续保持其全部极限承载力;选择桩身断面应使桩身结构强度确定的单桩容许承载力与地基土对桩的极限承载力二者匹配,以充分发挥桩身材料的承载能力。
变刚度调平优化设计1

高层建筑桩筏基础变刚度调平优化设计李永乐1王江锋1王茜2(1.华北水利水电学院河南,郑州,450045;2.中交第一公路勘察设计研究院有限公司)摘要:有限元计算结果表明:考虑上部结构—桩筏基础—地基共同作用时,桩筏基础在均匀布桩条件下呈中间大边缘小的“碟型”分布。
差异沉降是由于上部结构次生应力和筏板内力产生的。
通过对地基土刚度以及桩长、桩径、桩距等五种桩基刚度的调整,并分析不同刚度对基础差异沉降影响可知:改变桩长的布桩形式并结合地基土刚度调整的中心布桩形式是高层建筑桩筏基础最佳设计方案。
1.引言:目前高层建筑桩筏基础设计中,多数采用均匀等长、等径的满堂均匀布桩的方法,用有限元分析结果表明,这种满堂布桩的方法,地基的碟形沉降仍不可避免。
这是由于地基是一个完整的三维体,作用在某一点处的荷载在其余各点处也会产生位移,各点相互作用的结果,使得中间部分沉降最大,而角点沉降相对较小。
筏板中心与筏板边、角点的沉降差是导致基础内力和上部结构次生应力的根源。
虽然增加上部结构和筏板的刚度可以减小差异沉降,但是这种减小是有限的,当上部结构和筏板的刚度增加到一定程度时,对减小差异沉降效果不再明显,若继续增加,必将造成不必要的浪费。
因此,通过合理地调整地基土刚度和桩基的支承刚度,充分利用每根桩的承载力并且发挥地基土的承载能力,可达到显著减少甚至消除基础差异沉降并且降低工程造价的目的。
2上部结构—桩筏基础—地基共同作用模型的建立2.1实体模型介绍本次研究实例为15层建筑,上部结构采用纯框架结构,框架层高3.6m,纵横方向柱距均为8m,分为3跨;各层框架柱截面尺寸为800mm×800mm,梁截面尺寸为600mm×400mm,梁柱砼等级为C30,弹性模量为3×104MPa,泊松比μ=0.17,密度ρ=2500kg/m3;楼板厚度为0.20m,材料参数同梁柱;基础采用桩筏基础,筏板厚度为1m,悬挑长度为2m,筏板砼等级为C30;场地地质条件为:地表至4.0m深范围内为稍密或中密粉土,4.0~8.5m深范围内为可塑或软塑粉质粘土,8.5~12.0m深范围内为中密粉土,12m以下为硬塑粉质,地下水位在地表以下6.0m左右。
桩基变刚度调平设计研究成果综述

桩基变刚度调平设计研究成果综述摘要:本文主要概述了桩基变刚度调平的设计原理、设计原则,并简要介绍了目前使用较多的几种桩基变刚度调平设计方法。
关键词:基坑桩基础变刚度调平一.引言随着我国经济建设步伐的加快,越来越多的高层建筑出现在城市中,其中有相当比例的上部结构为刚度相对较弱、荷载不均的框剪、框筒结构,基础多采用桩筏,桩箱基础,且采用均匀布桩或厚筏(或箱型承台)。
由于地基是一个完整地三位体,作用在某点处的荷载在其余各点处也会产生位移,各点相互作用的结果,使得基础中间部分的沉降最大,而角点沉降相对较小,即碟形分布。
同时桩顶的反力分布也是不均匀的,其呈现出内部桩的反力小于边桩反力,边桩反力小于角桩反力的特点,即桩顶反力呈马鞍形分布(图1)。
图1 框筒、框剪结构均匀布桩反力及沉降图而由于碟形沉降而差生的沉降差,会导致基础自身以及上部结构出现附加弯矩、附加剪力乃至开裂;桩顶反力的马鞍形分布会导致基础整体弯矩增加。
这些负面效应都对结构的安全和正常使用产生不利影响,并且增加了施工中的钢筋用量。
二.问题的研究与解决在常规的桩基计算方法中,通常只考虑静力平衡条件,没有考虑接触面的变形协调,也没有考虑上部结构、基础、桩土的共同作用及群桩效应,是造成碟形沉降的主要因素。
而沉降差是导致基础内力和上部结构次应力、板厚增加、配筋增多的根源。
这主要是由于传统设计理念存在认识误差造成的,主要表现在:(1)设计中过分追求高层建筑基础利用天然地基;(2)桩筏设计中,忽视桩的选型和结构形式,荷载大小与分布相匹配;(3)桩筏设计中,忽视合理利用复合桩基调整刚度分布减小差异沉降的作用;(4)桩筏设计中对利用筏板刚度调整荷载.桩反力分布及减小差异沉降的期望值过高。
如何避免传统设计方法的缺陷,如何有效地控制沉降差的产生成为工程师们的一项重要研究课题。
由于对桩筏基础沉降,尤其是沉降差计算结果的可行性与合理性方面的运算困难,在过去相当长的时期,人们大多是被动地增加筏板厚度,这对相对较小的筏板有效;或增加筏底布桩的数量、几何尺度(桩长与桩径)、增大桩筏基础的整体刚度,通过降低沉降的绝对值而满足对沉降差的设计标准。
馨雅名庭东地块项目桩基础变刚度调平设计

圈函
.
圃
一
l
= Q( 假 定桩反力,程序按上部总荷载 除以总桩数 )
基础底板 减薄,变成柔性薄板 。
/ S( 按规 范计算 的桩沉 降) 。照然 P K P M采 用的短期
刚度 跟 桩 实 际 工 作 状 态 下 的长 期 刚度 是 有 差 异 的 。 而 盈 建 科 软 件 采 用 采 用 的 刚 度 计 算 公 式 本 身 没 有 问 题 , 但 采 用 平 均 桩 反 力 作 为假 定 桩 反 力 显 然 也 不 符 合 实 际情 况 。实 际桩 的 反力 跟 桩 的刚 度 、上 部 荷 载 、 基 础 及 上 部 结 构 的 刚 度 部 有 关 系 , 要 得 到 准 确 的 桩 反 力 是 一 件 比较 困 难 的 事 情 。本 工程 中 采 用 分 块 计
意图如 图 1 所示 。
_ _ __ _ _ __ _ _
车 库 的 模 型 进 行 拼 接 。 塔 楼 区域 先 参 照单 独 计 算 时
接 部位结构构件 的刚度将塔楼 的荷载分散到 周边 地
基 中 的 做 法 来 抵 抗 差异 沉 降 , 这 样 做 势 必 增 加结 构 成 本 ,造 成 浪 费 。2 0 0 8版 《 建 筑桩 基 技 术规 范 》提
口
ห้องสมุดไป่ตู้
;
在 减 小 差 异 沉 降 , 降低 基 础 底 板 内 力 和 上 部 结 构 次 内 力 , 以 节 约 资 源 ,提 高 建筑 物 使 用 寿 命 ,确 保 正 常 使 用功 能 ” 。 为 了达 到 控 制 差 异 沉 降和 节 约 成 本 的 目的 , 我 们 决 定 采 用 变 刚度 调 平 设 计 理 论 , 突破 传 统 设 计 理 念 ,通 过 调 整 地 基 和 基 桩 的 竖 向 支 承 刚 度 分 布 , 使 桩 土 反 力 和 上 部 结 构 传 来 的 荷 载 不仪 整 体 平 衡 , 而 且 实 现 局 部 平 衡 , 从 而 最 大 限度 地 减 小 差 异沉 降 , 降 低 基 础 底 板 内 力 和 上 部 结 构 次 应 力 , 使 2 . 基 础 持 力 层 及 桩 型 选 取
桩筏基础共同作用分析及变刚度调平设计的开题报告

桩筏基础共同作用分析及变刚度调平设计的开题报告一、选题背景随着城市建设和基础设施建设的不断扩大,土木工程领域中各种基础设施的建设也越来越多。
在基础设施中,桩筏基础是一种被广泛应用的基础类型。
桩筏基础是指通过深入地下的桩来支撑筏板形成的基础体系,它通常应用于复杂地层条件下的大型建筑物或桥梁等结构。
桩筏基础的优点在于它可以在较差地质条件下提供较好的基础稳定性和承载能力。
桩筏基础的稳定性和承载能力主要取决于桩和筏板之间的共同作用。
具体来说,桩和筏板之间的互动力学行为会直接影响基础的刚度和稳定性。
同时,若土层的刚度存在变化,也会导致桩筏基础的承载能力和稳定性受到影响。
因此,对桩筏基础共同作用的分析和基于变刚度的调平设计具有一定的实际意义。
二、研究目的本研究旨在深入分析桩筏基础的共同作用机理,并结合多种工程实例,分析在不同地层条件和变刚度情况下桩筏基础的变形和承载能力。
此外,我们还将探讨变刚度调平设计方法,以提高桩筏基础的承载能力和稳定性。
三、研究方法本研究将采用有限元模拟方法对桩筏基础的共同作用机理进行分析,并结合现场实测数据进行验证。
同时,我们还将研究桩筏基础的变刚度情况下的变形和承载能力,并尝试设计基于变刚度的调平方案。
四、预期结果本研究的预期结果包括如下几个方面:1. 桩筏基础的共同作用机理的深入认识和分析;2. 不同地层条件下桩筏基础的变形和承载能力的分析和比较;3. 基于多种因素的变刚度调平设计方案,并进行仿真验证;4. 针对桩筏基础设计和施工中的问题提出改进建议。
五、研究意义通过对桩筏基础的共同作用机理和变刚度调平设计的深入研究,可以提高现有桩筏基础设计的科学性和合理性,同时对于改善桩筏基础的稳定性和承载能力具有重要的实际意义。
此外,本研究的结果也将为桥梁、大型建筑物等结构的设计和施工提供重要的理论依据。
变刚度调平设计

变刚度调平设计桩基变刚度调平优化设计⼀、概述⾼层建筑有相当⽐例的上部结构为刚度相对较弱、荷载不均的框剪、框筒结构,其基础采⽤桩筏、桩箱基础,建成后其沉降呈蝶形分布,桩顶反⼒呈马鞍形分布。
这些⼯程的基础设计多数沿⽤传统理念,采⽤均匀布桩与厚筏(或箱形承台)。
这种传统理念可以概括为四点:1、基桩的总承载⼒不⼩于总荷载,桩群形⼼与荷载重⼼重合或接近;即满⾜⼒和⼒矩的平衡。
2、桩的布置⼤体均匀,有的还主张在⾓部和边部适当加密;因为实测桩顶反⼒⾓部最⼤,边部次之,中部最⼩;3、沉降量和整体倾斜满⾜规范要求;4、筏板厚度在满⾜抗冲切的前提下随建筑物层数和⾼度成正⽐增⼤,厚度达3-4m者鲜见,或为增加刚度⽽采⽤箱形承台;常规设计计算⽅法只考虑静⼒平衡条件,⽽没有考虑上部结构、筏板、桩⼟的共同作⽤。
⽽实际情况中,群桩效应将导致桩的⽀承刚度由外向内递减;对于框剪、框筒结构,荷载集度是内⼤外⼩,⽽其上部结构的刚度对变形的制约能⼒相对较弱。
若采⽤传统设计⽅法,则碟形差异沉降较明显,易引起开裂,影响正常使⽤的要求。
⽽采⽤变刚度调平设计理论调整桩基布置,使得基底反⼒分布模式与上部结构的荷载分布⼀致,可减⼩筏板内⼒,实现差异沉降、承台(基础)内⼒和资源消耗的最⼩化。
⼆、传统设计理念的盲区传统设计理念的盲区归纳起来有以下四个⽅⾯:1、设计中过分追求⾼层建筑基础利⽤天然地基将箱基或厚筏应⽤于荷载与结构刚度极度不均的超⾼层框筒结构天然地基,由此导致基础的整体弯矩和挠曲变形过⼤,差异变形超标,甚⾄出现基础开裂。
2、桩筏基础中,忽视桩的选型应与结构形式、荷载⼤⼩相匹配的原则将⼩承载⼒挤⼟桩⽤于⼤荷载⾼层建筑的情况,由此导致超规范密布⼤⾯积挤⼟桩,既不能有效减⼩差异沉降和承台内⼒,⼜极易引发成桩质量事故。
3、桩筏基础中,忽视合理利⽤复合桩基调整刚度分布、减⼩差异沉降的作⽤由于荷载分布不均,布桩必然稀密不⼀,承台分担荷载作⽤在疏桩区不予利⽤,必然导致该部分⽀承刚度偏⾼,既不利于调平,⼜不利于节材。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
桩基变刚度调平优化设计一、概述高层建筑有相当比例的上部结构为刚度相对较弱、荷载不均的框剪、框筒结构,其基础采用桩筏、桩箱基础,建成后其沉降呈蝶形分布,桩顶反力呈马鞍形分布。
这些工程的基础设计多数沿用传统理念,采用均匀布桩与厚筏(或箱形承台)。
这种传统理念可以概括为四点:1、基桩的总承载力不小于总荷载,桩群形心与荷载重心重合或接近;即满足力和力矩的平衡。
2、桩的布置大体均匀,有的还主张在角部和边部适当加密;因为实测桩顶反力角部最大,边部次之,中部最小;3、沉降量和整体倾斜满足规范要求;4、筏板厚度在满足抗冲切的前提下随建筑物层数和高度成正比增大,厚度达3-4m者鲜见,或为增加刚度而采用箱形承台;常规设计计算方法只考虑静力平衡条件,而没有考虑上部结构、筏板、桩土的共同作用。
而实际情况中,群桩效应将导致桩的支承刚度由外向内递减;对于框剪、框筒结构,荷载集度是内大外小,而其上部结构的刚度对变形的制约能力相对较弱。
若采用传统设计方法,则碟形差异沉降较明显,易引起开裂,影响正常使用的要求。
而采用变刚度调平设计理论调整桩基布置,使得基底反力分布模式与上部结构的荷载分布一致,可减小筏板内力,实现差异沉降、承台(基础)内力和资源消耗的最小化。
二、传统设计理念的盲区传统设计理念的盲区归纳起来有以下四个方面:1、设计中过分追求高层建筑基础利用天然地基将箱基或厚筏应用于荷载与结构刚度极度不均的超高层框筒结构天然地基,由此导致基础的整体弯矩和挠曲变形过大,差异变形超标,甚至出现基础开裂。
2、桩筏基础中,忽视桩的选型应与结构形式、荷载大小相匹配的原则将小承载力挤土桩用于大荷载高层建筑的情况,由此导致超规范密布大面积挤土桩,既不能有效减小差异沉降和承台内力,又极易引发成桩质量事故。
3、桩筏基础中,忽视合理利用复合桩基调整刚度分布、减小差异沉降的作用由于荷载分布不均,布桩必然稀密不一,承台分担荷载作用在疏桩区不予利用,必然导致该部分支承刚度偏高,既不利于调平,又不利于节材。
4、桩筏设计中,对利用筏板刚度“调整荷载、桩反力分布及减小差异沉降”的期望值过高筏板对调整荷载和桩反力、减小差异沉降可起到一定作用,但这是以高投入为代价,且效果不理想。
三、基本概念住宅建筑多采用剪力墙结构;办公楼等公共高层建筑主要采用框架-核心筒结构,部分采用框架-剪力墙、筒中筒结构、框支剪力墙结构。
这两大类结构体系的力学特性有很大差别。
第二类结构的整体刚度差,刚度与荷载分布不均,上部结构与基础、基础相互作用特性更复杂。
就设计而言,第二类更复杂,工程实际中由于设计不当而引发的问题更多。
《建筑桩基技术规范》JGJ94-2008提出变刚度调平设计理念,其基本思路是:考虑地基、基础与上部结构的共同作用,对影响沉降变形场的主导因素——桩土支承刚度分布实施调整,“抑强补弱”,促使沉降趋向均匀。
具体包括:1、高层建筑内部的变刚度调平;2、主裙房间的变刚度调平。
对于前者,主导原则是强化中央,弱化外围。
对于荷载集中、相互影响大的核心区,实施增大桩长(当有两个以上相对坚硬持力层时)或调整桩径、桩距;对于外围区,实施少布桩、布较短桩,发挥承台承载作用。
对于主裙房间的变刚度调平,主导原则是强化主体,弱化裙房。
裙房采用天然地基时首选方案,必要时采取增沉措施。
当主裙房差异沉降小于规范容许值,不必设沉降缝,连后浇带也可取消。
最终达到筏板上部结构传来的荷载与桩土反力不仅整体平衡,而且实现局部平衡。
由此,最大限度地减小筏板内力,使其厚度减薄变为柔性薄板。
调平设计过程就是调整布桩,进行共同作用迭代计算的过程。
变刚度调平设计的标准定义是:通过调整基桩的竖向支承刚度分布,使桩基沉降趋于均匀,基础或承台内力和上部结构次应力显著降低的设计方法。
四、变刚度调平的基本原理高层建筑地基(桩土)作为上部结构-基础-地基(桩土)体系中的组成部分,其沉降受三者共同的制约。
共同作用的总体平衡方程为:要使沉降趋于均匀,唯有依靠调整桩土支承刚度[K]s(p,s),使之与荷载分布和相互作用效应相匹配。
这也是优化高层建筑地基基础设计、减少乃至消除差异沉降的有效、可行而又经济的途径。
五、影响差异沉降的因素1、荷载大小及分布(1)对相同地质、基础尺寸和埋深条件,沉降量随荷载增大而增加,差异沉降随之增大。
对高层建筑而言,其差异沉降问题较多层建筑更为突出。
(2)荷载分布的不均,导致沉降分布不均;而且往往成为差异沉降的主因。
(3)荷载分布特征,与高层建筑主体的结构形式及建筑体型有关,而且这两者是决定荷载分布的主要因素。
体型变化包含:建筑主体的体型,主体与裙房相连形成主裙连体体型;而主裙连体是荷载差异最大的建筑体型。
2、上部结构刚度上部结构刚度主要指结构的整体刚度,最制约差异沉降起到一定的作用,也就是所谓对基础刚度的贡献。
(1)落地剪力墙体系(简称剪力墙结构)由于其刚度大且分布均匀连续,对基础刚度的贡献最大;(2)框架-核心筒(简称框筒)体系,虽然核心筒的刚度很大,但外围框架的刚度相对较小,因而对制约基础内外差异变形的刚度贡献不大。
(3)筒中筒结构体系,其外筒为密集框架(间距不大于4m)构成,主要目的在于增强结构的抗侧力性能,对基础的刚度贡献略大于框筒结构。
3、地基、桩基条件对于天然地基上筏板基础,地基的均匀性是制约差异沉降的关键因素,地基土的压缩性是影响沉降量和差异沉降的主要因素。
天然地基承载力满足建筑物荷载要求,但沉降变形不见得满足,因而在这种情况下,变形控制分析十分重要。
桩基是高层建筑的主要基础形式,然而不是桩基就能圆满解决差异沉降问题。
【但桩是调整支承刚度分布的、灵活有效的竖向支承体,因此变刚度调平设计是桩基础优化设计的核心内容】4、相互作用效应承台-桩-土的相互作用效应导致:(1)均布荷载下桩、土反力分布呈内小外大的马鞍形分布;(2)基础应力场随面积增大而加深;(3)群桩沉降随桩距减小和桩数增加而增大;(4)基础或承台的沉降呈中部大外围小的蝶形分布;(5)相邻基础因相互影响而倾斜;(6)核心筒不仅因荷载集度高而且受外围框架区应力场的相互影响而导致沉降加大;等等。
六、变刚度调平设计原则总体思路:以调整“桩土支承刚度分布”为主线,根据荷载、地质特征和上部结构布局,考虑相互作用影响,采取增强与弱化结合,减沉与增沉结合,刚柔并济,局部平衡,整体协调,实现差异沉降、承台(基础)内力和资源消耗的最小化。
1、调整桩土支承刚度,使之与荷载匹配根据建筑物体型、结构、荷载及地质条件,选择桩基、复合桩基、刚性桩复合地基,合理布局,调整桩土支承刚度,使之与荷载匹配。
对于荷载分布极度不均的框筒结构,核心筒区宜采用常规桩基,外框架区宜采用复合桩基;对于中低压缩性地基,高度不超过60m的框筒结构,高度不超过100m的剪力墙结构,可采用刚性桩复合地基或核心筒区局部刚性桩复合地基;通过变化桩长、桩距调整刚度分布。
2、减小各区位应力场影响为减小各区位应力场的相互重叠对核心区有效刚度的削弱,桩土支承体布局宜做到竖向错位或水平向拉开。
采取长短桩结合、桩基与复合桩基结合、复合地基与天然地基结合以减小相互影响,优化刚度分布。
3、考虑桩土相互作用影响,采取强化指数考虑桩土的相互作用效应,支承刚度的调整宜采用强化指数进行控制。
(1)核心区强化指数宜为 1.05~1.30;外框为二排柱者应大于一排柱,满堂布桩者应大于柱下和筒下布桩,内外桩长相同者应大于桩长不同、桩底竖向错位、水平间距较大的布局。
(2)外框区的弱化指数宜为0.95~0.85;外框区的弱化指数根据核心区强化指数越大,相应的弱化指数越小的关系确定。
在全筏总承载力特征值与总荷载标准值平衡的条件下,控制核心区强化指数,外框区的弱化指数随之实现。
核心区强化指数:为核心区【抗力比】与【荷载比】之比:4、主裙连体设计原则对主裙连体建筑,应按增强主体、弱化裙房的原则设计,裙房宜优先采用天然地基、疏短桩基;对于较坚硬地基,可采用改变基础形式加大基底压力、设置软垫等增沉措施。
5、基桩选型和桩端持力层的确定桩基的基桩选型和桩端持力层确定,应有利于应用后注浆增强技术,应确保单桩承载力具有较大的调整空间。
基桩宜集中布置于柱、墙下,以降低承台内力,最大限度发挥承台底地基土分担荷载作用,减小柱下桩基与核心筒桩基的相互作用。
6、共同作用分析宜在概念设计的基础上,进行上部结构-基础(承台)-桩土的共同作用分析,优化细化设计;差异沉降控制宜严于规范值,以提高耐久性可靠度,延长建筑物正常使用寿命。
七、桩基变刚度设计细则1、框筒结构(1)核心筒和外框柱的基桩宜按集团式布置于核心筒和柱下,以减小承台内力和减小各部分的相互影响。
荷载高集度区得核心筒,桩数多,桩距小,不考虑承台分担荷载效应。
对于非软土地基,外框区应按复合桩基设计,既充分发挥承台分担荷载效应,减少用桩量,又可降低内外差异沉降。
当存在2个以上桩端持力层时,宜加大核心筒桩长,减小外框区桩长,形成内外桩基应力场竖向错位,以减小相互影响,降低差异沉降。
(2)以桩筏总承载力特征值与总荷载效应标准组合值平衡为前提,强化核心区,弱化外框区。
核心区强化指数:对于核心区与外框区桩端平面竖向错位或外框区柱下桩数不超过5根时,宜取1.05~1.15,外框架为一排柱取低值,二排柱取高值;对于桩端平面处在同一标高且柱下桩数超过5根时,核心区强化指数宜取1.2~1.3,一排柱取低值。
外框区弱化指数根据核心区强化指数越高、弱化指数越低的关系确定;或按总承载力特征值与总荷载标准值平衡,由单独控制核心区强化指数,使外框区相应弱化。
(3)对于框剪、框支剪力墙、筒中筒结构形式,可参照框筒结构变刚度调平原则布桩。
对荷载集度高的电梯井、楼梯间予以强化,其强化指数按其荷载分布特征确定。
2、剪力墙结构剪力墙结构不仅整体刚度好,且荷载由墙体传递于基础,分布较均匀。
对于荷载集度较高的电梯井和楼梯间应强化布桩。
基桩宜布置在墙下,对于墙体交叉、转角处应予以布桩。
当单桩承载力较小,按满堂布桩时,应适当强化内部、弱化外围。
3、桩基承台设计由于按前述变刚度调平原则优化布桩,各分区自身实现抗力与荷载平衡,促使承台所受冲切力、剪切力和整体弯矩降至最小,因而承台厚度可相应减小。
【按传统设计理念,桩筏基础的筏式承台往往采用与天然地基相同要求确定其最小板厚、梁高等】对变刚度调平设计的承台,应按计算结果确定截面和配筋。
最小板厚和梁高:(1)对于柱下梁板式承台,梁的高跨比和平板式承台板的厚跨比,宜取1/8(相当于天然地基最小板厚1/6的3/4);(2)梁板式筏式承台的板厚与最大双向板格短边净跨之比,不宜小于1/16,且不小于400mm;(3)对于墙下平板式承台,厚跨比不宜小于1/20,且厚度不小于400mm。