桩基1-4章
项目一桩基础工程基本知识

单元五桩基础工程施工单元概述:一般情况下,工业与民用建筑物多采用浅基础,它造价低廉,施工简便。
当遇到天然浅土层软弱,可以采用各种地基处理的方法进行人工加固,从而形成人工处理地基浅基础。
如果是土层软弱,建筑物为高层建筑、上部荷载很大的工业建筑或者对变形和稳定有严格要求的一些特殊建筑,无法采用浅基础时,则经过技术经济比较后就要采用深基础。
桩基础是一种最常用的深基础形式之一,适用范围很广。
本单元将重点介绍桩基础的施工。
学习目标:1、了解桩基础的组成、作用和分类;钢筋混凝土预制桩的预制、起吊和运输工作,能根据具体情况正确选择沉桩方法、沉桩设备和沉桩顺序,正确的选择接桩方法;掌握预制桩施工工艺和施工要点。
2、了解灌注桩的种类、特点和适用性。
掌握沉管灌注桩的施工工艺流程、质量控制;熟悉泥浆护壁成孔灌注桩护筒的作用及要求,水下浇筑混凝土方法?。
3、熟悉桩基工程常见的质量通病及防治措施;熟悉桩基础的检测和桩基础工程施工方案。
4、了解桩基工程施工方案编制方法,熟悉泥浆护壁成孔灌注桩专项施工方案的编制。
具有组织地基处理及桩基础施工的能力;能够编制桩基工程的专项施工方案。
学习重点:1、预制桩施工:预制桩的制作、起吊、运输、堆放等施工方法;打桩的质量控制。
2、灌注桩施工:钻孔灌注桩、沉管灌注桩和人工挖孔桩的施工方法、质量要求及施工中常见问题的分析与处理。
3、桩基础的检测内容、验收等的相关知识。
教学建议:1、每周安排一次多媒体教学,运用现代教学手段,采用ppt课件,穿插一些现场施工图片,播放一些桩基础施工工艺flash动画演示或现场施工工艺录像,使学生加强感性认识。
2、力求理论紧密联系实践,每章安排一次施工现场参观,进行现场模拟教学。
3、实习课安排在建筑施工工地进行,结合工程实际,增强实习效果,使学生最大限度的实现学习目标。
4、本单元学习建议采用项目教学法、案例教学法。
关键词桩基础Pile Foundation;灌注桩cast-in-place pile预制钢筋混凝土桩Pre-cast reinforced concrete piles;施工工艺Construction Technology;质量控制 Quality Control;钻孔灌注桩 Bored piles;质量通病Common Quality Defect ;振动灌注桩vibro-pile;检测与验收 Inspection and Acceptance项目一桩基础工程基本知识【职业能力目标】桩基础是一种常用的深基础形式,适用范围很广。
桩基础施工知识一

埋置护筒时注意事项:
back
(1) 护筒平面位置应埋设正确,偏差不宜大于 50mm; (2) 护筒顶标高应高出地下水位和施工最高水位 1.5~2.0m。在无水地层钻孔,因护壁顶部设有溢浆 口,因此筒顶也应高出地面0.2~0.3m; (3) 护筒底应低于施工最低水位(一般低于 0.1~0.3m即可)。深水下沉埋设的护筒应沿导向架借 自重、射水、震动或锤击等方法将护筒下沉至稳定 深度;入土深度:粘性土应达到0.5~lm,砂性土则 3~4m; (4)下埋式及上埋式护筒挖坑不宜太大(一般比护 筒直径大1.0~0.60m),护筒四周应夯填密实的粘土, 护筒底应埋置在稳定的粘土层中,否则也应换填粘 土并夯密实,其厚度一般为0.50m。
制备泥浆
泥浆作用:
(1)在孔内产生较大的悬浮液压力,可防止坍孔; (2)泥浆向孔外土层渗漏,在钻进过程中,由于钻头 的活动,孔壁表面形成一层胶泥,具有护壁作用,同时 将孔内外水流切断,能稳定孔内水位; (3)泥浆比重大,具有浮渣作用,利于钻渣的排出。 因此在钻孔过程中,孔内应保持一定稠度的泥浆,一般 比重以1.1~1.3为宜,在冲击钻进大卵石层时可用1.4以上 ,粘度为10~25s,含砂率小于6%。在较好的粘土层中 钻孔,也可灌入清水,使钻孔时孔内自造泥浆,达到固 壁效果。调制泥浆的粘土塑性指数不宜小于15。
back
back
挖孔灌注桩
施工方法:
依靠人工(用部分机械配合)或机械在地基中挖出桩孔 ,然后浇筑钢筋混凝土或混凝土所形成桩。
特点:
受设备限制,施工简单。挖孔桩桩径较大,一般大 于1.4m;为确保施工安全,挖孔深度不宜太深。能直接 检验孔壁和孔底土质以保证桩的质量。为增大桩底支承 力,可用开挖办法扩大桩底。
适用:
基础工程桩基变形(1)

' j 1 i 1 m n
z ij ij z i 1 i 1 j E si
(5-59)
桩基变形验算
其中等效附加压力近似取承台底平均附加压力,以矩 形为例有: F G
P0 A B md
(5-58)
当计算矩形桩基础中心点的沉降时,(5-59)可 简化为:
03
桩基变形 验算
桩基变形验算
一般桩基础的沉降由三部分组成: 1.桩身材料的弹性压缩 2.桩端以下土层在桩侧阻力和桩端阻力两者反力作用下的压缩变形 3.桩周土在桩侧阻力的反力和承台底部压力共同作用下的压缩变形 分析沉降的三个组成部分: 1.桩材的弹性压缩与桩长成正比、与桩材的弹性模量成反比,如桩不是 很长(小于40m)计算得桩材的弹性压缩量很小,可忽略不计。 2.对嵌岩桩可忽略桩端以下土层的沉降、或端承型桩基的地质条件不复 杂、荷载均匀、桩端以下没有软弱土层,也可以不计桩端以下土层的沉 降。 3.桩周土的沉降在不计前两种沉降的条件下,只会引起承台底的脱空, 不产生桩基础的沉降。 综上:一般桩基可不进行沉降验算,只需按承载力计算,但是重要建 筑必须验算。
桩基变形验算
观察分析
1. 公式5-64与5-59区别
. . .
2. 5-59、5-63、5-64三个n值含义 5-59、5-65中m值含义
. . .
3.为什么群桩效应不用考虑桩身沉降,而单桩等沉降需要考虑?
桩基变形验算
2、软土地基减沉复合疏桩基础
定义:减沉复合疏桩基础:当软土地基上多层建筑地基承载力基本满足要 求时,为减小沉降,可设置穿越软弱土层进入相对较好土层的疏布摩擦 型桩的复合桩基,其荷载由桩和桩间土共同分担
桩基变形验算
桩基础的设计计算 m值法

桩基础的设计计算1.本章的核心及分析方法本节将介绍考虑桩与桩侧土共同抵抗外荷载作用时桩身的内力计算,从而解决桩的强度问题。
重点是桩受横轴向力时的内力计算问题。
桩在横轴向荷载作用下桩身的内力和位移计算,国内外学者提出了许多方法。
目前较为普遍的是桩侧土采用文克尔假定,通过求解挠曲微分方程,再结合力的平衡条件,求出桩各部位的内力和位移,该方法称为弹性地基梁法。
以文克尔假定为基础的弹性地基梁法从土力学观点看是不够严密的,但其基本概念明确,方法简单,所得结果一般较安全,在国内外工程界得到广泛应用。
我国公路、铁路在桩基础的设计中常用的"m"法、就属此种方法,本节将主要介绍"m"法。
2.学习要求本章应掌握桩单桩按桩身材料强度确定桩的承载力的方法," "法计算单桩内力的各种计算参数的使用方法,多排桩的主要计算参数及其各自的含义。
掌握承台计算方法,群桩设计的要点及注意事项,了解桩基设计的一般程序及步骤。
本专科生均应能独立完成单排桩和多排桩的课程设计。
第一节单排桩基桩内力和位移计算一、基本概念(一)土的弹性抗力及其分布规律1.土抗力的概念及定义式(1)概念桩基础在荷载(包括轴向荷载、横轴向荷载和力矩)作用下产生位移及转角,使桩挤压桩侧土体,桩侧土必然对桩产生一横向土抗力,它起抵抗外力和稳定桩基础的作用。
土的这种作用力称为土的弹性抗力。
(2)定义式(4-1)式中:--横向土抗力,kN/m2;--地基系数,kN/m3;--深度Z处桩的横向位移,m。
2.影响土抗力的因素(1)土体性质(2)桩身刚度(3)桩的入土深度(4)桩的截面形状(5)桩距及荷载等因素3.地基系数的概念及确定方法(1)概念地基系数C表示单位面积土在弹性限度内产生单位变形时所需施加的力,单位为kN/m3或MN/m3。
(2)确定方法地基系数大小与地基土的类别、物理力学性质有关。
地基系数C值是通过对试桩在不同类别土质及不同深度进行实测及后反算得到。
桩基础1

原由
桩侧和桩端阻力的大 小以及它们分担荷载 的比例有很大差异
(二)按使用功能分类 • 当上部结构完工后,承台下部的桩不但要承受上部结 当上部结构完工后, 构传递下来的竖向荷载, 构传递下来的竖向荷载,还担负着由于风和震动作用 引起的水平和力矩,保证建筑物的安全稳定。 引起的水平和力矩,保证建筑物的安全稳定。
(五)按桩径大小分类
(1)小桩:d≤250mm; )小桩: ; (2)中等直径桩:250mm<d<800mm )中等直径桩: < < (3)大直径桩: d≥800mm )大直径桩:
三、桩的施工工艺简介
(一)预制桩 在工厂(或者现场)预制成桩以后再运至现场, 在工厂(或者现场)预制成桩以后再运至现场,在设计桩 位处以沉桩机械沉至地基土中设计深度的施工方法的桩 (1)钢筋混凝土桩 1、预制桩种类 (2)预应力钢筋混凝土桩 (3)钢桩 (1)锤击式 2、预制桩的施工工艺 (2)静压式 (3)振动式
第四章 桩基础
4.1 概述 4.2 桩基础的类型 4.3 桩的承载力 4.4 桩基础设计
第一节 概述
桩基础 桩基) (桩基) 桩体 低桩承台 连接桩顶 的承台
当承台底面 低于地下地 面以下时 当承台底面 高于地面时
相应基础
低承台桩基础
高桩承台
相应基础
高承台桩基础
低承台桩基础
高承台桩基础
一、桩基设计原则
(2)粘性土中单桩竖向承载力:
对于超固结、非灵敏性土(CD)
' ' Qu = u p ∑ σ Vi K si tan φai li + σ Vb ( N q − 1) Ab
桩的竖向承载力——按抗剪强度指标
(3)无粘性土中单桩竖向承载力:
桩基础的设计计算

上式中:E、I——桩的弹性模量及截面惯矩
zx——桩侧土抗力zx=Cxz=mZxz,C为地基系数; b1——桩的计算宽度; xz——桩在深度z处的横向位移(即桩的挠度)。
将上式整理可得:
d4xz dZ4
mEb1I Zxz
0
(1)
或
d4xz dZ4
a5Zxz
0
式中:——桩—土变形系数,
5
mb 1
EI
从上式中不难看出:桩的横向位移与截面所在深度、桩的刚度(包括桩身材料和截面尺寸)
以及桩周土的性质等有关,是与桩土变形相关的系数。
式(1)为四阶线性变系数齐次常微分方程,在求解过程中注意运用材料力学中有关梁的 挠度xz与转角z、弯矩Mz和剪力Qz之间的关系即
将式(7)代入式(2)得
x z Q 3 E 0A x 0 IM 2 E 0B x 0 I A 1 B 1 (Q 2 E 0A 0 I M E 0 B 0 ) I M 2 E 0 C 1 I Q 3 E 0D 1
Q 3 E 0(A 1 I A x 0 B 1 A 0 D 1 ) M 2 E 0(A 1 I B x 0 B 1 B 0 C 1 )
2)当基础侧面为数种不同土层时,将地面或局部冲刷线以下hm深度内各土层的mi,根据换算前 后地基系数图形面积在深度hm内相等的原则,换算为一个当量m值,作为整个深度的m值。
3)桩底面地基土竖向地基系数Co为: C0=m0h
(二)单桩、单排桩与多排桩
单桩、单排桩:指在与水平外力H作用面相垂直的平面上,由单根或多根桩组成的单根(排) 桩的桩基础,如下图a)、b)所示,对于单桩来说,上部荷载全由它承担。
B 0 也都是Z的函数,根据Z值制
《基础工程》教案(四1——单桩承载力)

黏性土
1 软塑 0.75 I L 1 可塑、硬塑 0 I L 0.75 坚硬 I L 0
中密 密实 中密 密实 中密 密实 中密 密实 中密 密实 中密 密实
黑龙江工程学院
粉土 粉砂、细砂 中砂 粗砂、砾砂 圆砾、角砾 碎石、卵石 漂石、块石
本表采用。
基础工程
第四章 桩基础 之单桩承载力
表 4-2 修正系数 值
hd
桩端土情况 透水性土 不透水性土
4~20 0.70 0.65
20~25 0.70~0.85 0.65~0.72
>25 0.85 0.72
注: h 为桩的埋置深度,取值同式(4-4); d 为桩的设计直径。
表 4-3 清底系数 m0 值
黑龙江工程学院
23
基础工程
第四章 桩基础 之单桩承载力
②
S n 1 2 ,且24h未稳定 Sn
黑龙江工程学院
13
基础工程
第四章 桩基础 之单桩承载力
3、极限荷载和轴向容许承载力的确定 直接计算法 曲线分析法
黑龙江工程学院
14
基础工程
第四章 桩基础 之单桩承载力
①直接计算法——P-S曲线明显转折
破坏荷载
极限荷载 P j 容许荷载
黑龙江工程学院
4
基础工程
第四章 桩基础 之单桩承载力
单桩承载力之单桩轴向容许承载力的确定
计算目的: 1、确定桩长 2、验算桩长
黑龙江工程学院
5
基础工程
第四章 桩基础 之单桩承载力
4.1.1 单桩工作机理
(一) 荷载传递与土对桩的支承力 1、桩顶轴向位移(沉降)=桩身弹性压缩+桩底土层压缩 桩身弹性压缩桩与侧土的相对位移
桩基础1-2

4
即:
即有: 即有:
令
d x bp ⋅ mz⋅ x + =0 4 dz EI bpm α =5 EI
4
于是方程变为
d x 5 +α zx = 0 4 dz
Hale Waihona Puke 4(二) m值的确定 值的确定
※ 较为恰当的途径是通过桩的现场水平荷载试 验来测定m值 验来测定 值。 ※ 当无静载试验资料时,可按表5.4.5取值。 当无静载试验资料时,可按表5.4.5取值。 5.4.5取值
桩头嵌固于承台底板中的刚性短桩
因不能转动而发生平移,由平移而获得土抗力。 因不能转动而发生平移,由平移而获得土抗力。当土抗力不 足以平衡水平荷载或嵌固处的弯矩超过抗截面极限抗矩 此类刚性短桩就发生破坏。 时,此类刚性短桩就发生破坏。
弹性长桩
桩头自由情况 由逐渐发展的桩截面抗矩和土抗力来承担逐渐增大的 水平荷载, 水平荷载,当桩中弯矩超过桩截面抗矩或土失去稳定 时,弹性长桩便趋于破坏。 弹性长桩便趋于破坏。 桩头嵌固 破坏也是弯曲破坏形态, 破坏也是弯曲破坏形态,但是其极限抗矩可能在嵌固 处和土中两处出现。 处和土中两处出现。
算例: 算例:
承台设计
(弯、剪、冲切计算)
1.中国交通部规范(1983) 1.中国交通部规范(1983) 中国交通部规范
bp = K0Kφb
bp = K0Kφb
2. 我国建筑桩基技术规范(1994) 我国建筑桩基技术规范( )
bp = Kf ⋅ K0 ⋅ K ⋅ b
Kf形状换算系数K0受力换算系数 K桩间相互影响系数b0计算宽度
3. 港口工程技术规范(1983) 港口工程技术规范( )
(三) 桩的计算宽度. 桩的计算宽度. 在以上推导桩分析的过程中,是将单桩的轴对称 在以上推导桩分析的过程中, 问题化为平面深题处理。 问题化为平面深题处理。计算模式与实际情况有所不 同。此外,还有群桩中多根桩的相互影响等问题。苏 此外,还有群桩中多根桩的相互影响等问题。 联在推导m法时引用了计算宽度的概念。 b p 联在推导m法时引用了计算宽度的概念。目前对 法时引用了计算宽度的概念 的处理方法主要有以下几种: 的处理方法主要有以下几种:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 总则1.0.1为了在桩基设计与施工中贯彻执行国家的技术经济政策,做到安全适用、技术先进、经济合理、确保质量、保护环境,制定本规范。
1.0.2本规范适用于各类建筑(包括构筑物)桩基的设计、施工与验收。
1.0.3桩基的设计与施工,应综合考虑工程地质与水文地质条件、上部结构类型、使用功能、荷载特征、施工技术条件与环境;并应重视地方经验,因地制宜,注重概念设计,合理选择桩型、成桩工艺和承台形式,优化布桩,节约资源;强化施工质量控制与管理。
1.0.4在进行桩基设计与施工时,除应符合本规范外,尚应符合现行的有关标准的规定。
2 术语、符号2.1 术语2.1.1桩基piled foundation由设置于岩土中的桩和与桩顶联结的承台共同组成的基础或由柱与桩直接联结的单桩基础。
2.1.2复合桩基composite piled foundation由基桩和承台下地基土共同承担荷载的桩基础。
2.1.3基桩foundation pile桩基础中的单桩。
2.1.4复合基桩composite foundation pile单桩及其对应面积的承台下地基土组成的复合承载基桩。
2.1.5 减沉复合疏桩基础composite foundation with settlement-reducing piles软土地基天然地基承载力基本满足要求的情况下,为减小沉降采用疏布摩擦型桩的复合桩基。
2.1.6单桩竖向极限承载力标准值ultimate vertical bearing capacity of a single pile单桩在竖向荷载作用下到达破坏状态前或出现不适于继续承载的变形时所对应的最大荷载,它取决于土对桩的支承阻力和桩身承载力。
2.1.7极限侧阻力标准值ultimate shaft resistance相应于桩顶作用极限荷载时,桩身侧表面所发生的岩土阻力。
2.1.8 极限端阻力标准值ultimate tip resistance相应于桩顶作用极限荷载时,桩端所发生的岩土阻力。
2.1.9单桩竖向承载力特征值characteristic value of the vertical bearing capacity of a single pile单桩竖向极限承载力标准值除以安全系数后的承载力值。
2.1.10变刚度调平设计optimized design of pile foundation stiffness to reduce differentialsettlement考虑上部结构形式、荷载和地层分布以及相互作用效应,通过调整桩径、桩长、桩距等改变基桩支承刚度分布,以使建筑物沉降趋于均匀、承台内力降低的设计方法。
2.1.11承台效应系数pile cap coefficient竖向荷载下,承台底地基土承载力的发挥率。
2.1.12负摩阻力negative skin friction ,negative shaft resistance桩周土由于自重固结、湿陷、地面荷载作用等原因而产生大于基桩的沉降所引起的对桩表面的向下摩阻力。
2.1.13下拉荷载down drag作用于单桩中性点以上的负摩阻力之和。
2.1.14土塞效应plugging effect敞口空心桩沉桩过程中土体涌入管内形成的土塞,对桩端阻力的发挥程度的影响效应。
2.1.15灌注桩后注浆post grouting for cast-in-situ pile灌注桩成桩后一定时间,通过预设于桩身内的注浆导管及与之相连的桩端、桩侧注浆阀注入水泥浆,使桩端、桩侧土体(包括沉渣和泥皮)得到加固,从而提高单桩承载力,减小沉降。
2.1.16 桩基等效沉降系数equivalent settlement coefficient for calculating settlement of piledfoundations弹性半无限体中群桩基础按Mindlin 解计算沉降量M w 与按等代墩基Boussinesq 解计算沉降量B w 之比,用以反映Mindlin 解应力分布对计算沉降的影响。
2.2 符 号2.2.1 作用和作用效应F k —— 按荷载效应标准组合计算的作用于承台顶面的竖向力;G k —— 桩基承台和承台上土自重标准值;k H ——按荷载效应标准组合计算的作用于承台底面的水平力;ik H ——按荷载效应标准组合计算的作用于第i 基桩或复合基桩的水平力;xk M 、yk M ——按荷载效应标准组合计算的作用于承台底面的外力,绕通过桩群形心的x 、y 主轴的力矩;N ik ——荷载效应标准组合偏心竖向力作用下第i 基桩或复合基桩的竖向力;n gQ ——作用于群桩中某一基桩的下拉荷载; f q ——基桩切向冻胀力。
2.2.2 抗力和材料性能s E ——土的压缩模量;t f 、c f ——混凝土抗拉、抗压强度设计值;rk f ——岩石饱和单轴抗压强度标准值;s f 、c q ——静力触探双桥探头平均侧阻力、平均端阻力;m ——桩侧地基土水平抗力系数的比例系数;s p ——静力触探单桥探头比贯入阻力;sik q ——单桩第i 层土的极限侧阻力标准值;pk q ——单桩极限端阻力标准值;sk Q 、pk Q ——单桩总极限侧阻力、总极限端阻力标准值;k u Q ——单桩竖向极限承载力标准值;R ——基桩或复合基桩竖向承载力特征值;a R ——单桩竖向承载力特征值;a h R ——单桩水平承载力特征值;h R ——基桩水平承载力特征值;gk T ——群桩呈整体破坏时基桩抗拔极限承载力标准值;uk T ——群桩呈非整体破坏时基桩抗拔极限承载力标准值;γ、e γ——土的重度、有效重度。
2.2.3几何参数p A ——桩端面积;ps A ——桩身截面面积;c A ——计算基桩所对应的承台底净面积;c B ——承台宽度;d ——桩身设计直径;s d ——钢管桩外直径;D ——桩端扩底设计直径;l ——桩身长度;c L ——承台长度;a s ——基桩中心距;u ——桩身周长;n z ——桩基沉降计算深度(从桩端平面算起)。
2.2.4计算系数E α——钢筋弹性模量与混凝土弹性模量的比值;c η——承台效应系数;f η——冻胀影响系数;s ζ、p ζ——桩嵌岩段侧阻力系数、端阻力系数;s ψ、p ψ——大直径桩侧阻力、端阻力尺寸效应系数;p λ——桩端土塞效应系数;s λ——钢管桩侧阻挤土效应系数;ψ——桩基沉降计算经验系数;c ψ——成桩工艺系数;e ψ——桩基等效沉降系数;α、α——Boussinesq 解的附加应力系数、平均附加应力系数。
3 基本设计规定3.1 一般规定3.1.1桩基础应按下列两类极限状态设计:1 承载能力极限状态:桩基达到最大承载能力、整体失稳或发生不适于继续承载的变形;2 正常使用极限状态:桩基达到建筑物正常使用所规定的变形限值或达到耐久性要求的某项限值。
3.1.2根据建筑规模、功能特征、对差异变形的适应性、场地地基和建筑物体型的复杂性以及由于桩基问题可能造成建筑破坏或影响正常使用的程度,应将桩基设计分为表3.1.2所列的三个设计等级。
桩基设计时,应根据表3.1.2确定设计等级。
表3.1.2建筑桩基设计等级3.1.3桩基应根据具体条件分别进行下列承载能力计算和稳定性验算:1 应根据桩基的使用功能和受力特征分别进行桩基的竖向承载力计算和水平承载力计算;2 应对桩身和承台结构承载力进行计算;对于桩侧土不排水抗剪强度小于10kPa、且长径比大于50的桩应进行桩身压屈验算;对于混凝土预制桩应按吊装、运输和锤击作用进行桩身承载力验算;对于钢管桩应进行局部压屈验算;3 当桩端平面以下存在软弱下卧层时,应进行软弱下卧层承载力验算;4 对位于坡地、岸边的桩基应进行整体稳定性验算;5 对于抗浮、抗拔桩基,应进行基桩和群桩的抗拔承载力计算;6 对于抗震设防区的桩基应进行抗震承载力验算。
3.1.4下列建筑桩基应进行沉降计算:1 设计等级为甲级的非嵌岩桩和非深厚坚硬持力层的建筑桩基;2 设计等级为乙级的体型复杂、荷载分布显著不均匀或桩端平面以下存在软弱土层的建筑桩基;3 软土地基多层建筑减沉复合疏桩基础。
3.1.5 对受水平荷载较大,或对水平位移有严格限制的建筑桩基,应计算其水平位移。
3.1.6 应根据桩基所处的环境类别和相应的裂缝控制等级,验算桩和承台正截面的抗裂和裂缝宽度。
3.1.7桩基设计时,所采用的作用效应组合与相应的抗力应符合下列规定:1 确定桩数和布桩时,应采用传至承台底面的荷载效应标准组合;相应的抗力应采用基桩或复合基桩承载力特征值。
2计算荷载作用下的桩基沉降和水平位移时,应采用荷载效应准永久组合;计算水平地震作用、风载作用下的桩基水平位移时,应采用水平地震作用、风载效应标准组合。
3验算坡地、岸边建筑桩基的整体稳定性时,应采用荷载效应标准组合;抗震设防区,应采用地震作用效应和荷载效应的标准组合。
4 在计算桩基结构承载力、确定尺寸和配筋时,应采用传至承台顶面的荷载效应基本组合。
当进行承台和桩身裂缝控制验算时,应分别采用荷载效应标准组合和荷载效应准永久组合。
5桩基结构设计安全等级、结构设计使用年限和结构重要性系数oγ应按现行有关建筑结构规范的规定采用,除临时性建筑外,重要性系数γ不应小于1.0。
oγ应按现行国家标准《建筑抗震6 当桩基结构进行抗震验算时,其承载力调整系数RE设计规范》(GB 50011)的规定采用。
3.1.8以减小差异沉降和承台内力为目标的变刚度调平设计,宜结合具体条件按下列规定实施:1 对于主裙楼连体建筑,当高层主体采用桩基时,裙房(含纯地下室)的地基或桩基刚度宜相对弱化,可采用天然地基、复合地基、疏桩或短桩基础。
2对于框架-核心筒结构高层建筑桩基,应加强核心筒区域桩基刚度(如适当增加桩长、桩径、桩数、采用后注浆等措施),相对弱化核心筒外围桩基刚度。
3对于框架-核心筒结构高层建筑天然地基承载力满足要求的情况下,宜于核心筒区域设置增强刚度、减小沉降的摩擦型桩。
4对于大体量筒仓、储罐的摩擦型桩基,宜按内强外弱原则布桩。
5对上述按变刚度调平设计的桩基,宜进行上部结构—承台—桩—土共同工作分析。
3.1.9软土地基上的多层建筑物,当天然地基承载力基本满足要求时,可采用减沉复合疏桩基础。
3.1.10对于本规范第3.1.4条规定应进行沉降计算的建筑桩基,在其施工过程及建成后使用期间,应进行系统的沉降观测直至沉降稳定。
3.2 基本资料3.2.1 桩基设计应具备以下资料:1 岩土工程勘察文件:1)桩基按两类极限状态进行设计所需用岩土物理力学参数及原位测试参数;2)对建筑场地的不良地质作用,如滑坡、崩塌、泥石流、岩溶、土洞等,有明确判断、结论和防治方案;3)地下水位埋藏情况、类型和水位变化幅度及抗浮设计水位,土、水的腐蚀性评价,地下水浮力计算的设计水位;4)抗震设防区按设防烈度提供的液化土层资料;5)有关地基土冻胀性、湿陷性、膨胀性评价。