数控机床主轴部件各种故障的诊断

数控机床主轴部件各种故障的诊断

当主轴伺服系统发生故障时,通常有三种表现形式:一是在CRT 或操作面板上显示报警内容或报警信息;二是在主轴驱动装置上用报警灯或数码管显示主轴驱动装置的故障,三是主轴工作不正常,但无任何报警信息。主轴伺服系统常见故障如下。

1.数控机床的维护

对于数控机床来说,合理的日常维护措施,可以有效的预防和降低数控机床的故障发生几率。

首先,针对每一台机床的具体性能和加工对象制定操作规程建立工作、故障、维修档案是很重要的。包括保养内容以及功能器件和元件的保养周期。

其次,在一般的工作车间的空气中都含有油雾、灰尘甚至金属粉末之类的污染物,一旦他们落在数控系统内的印制线路或电子器件上,很容易引起元器件之间绝缘电阻下降,甚至倒是元器件及印制线路受到损坏。所以除非是需要进行必要的调整及维修,一般情况下不允许随便开启柜门,更不允许在使用过程中敞开柜门。

另外,对数控系统的电网电压要实行时时监控,一旦发现超出正常的工作电压,就会造成系统不能正常工作,甚至会引起数控系统内部电子部件的损坏。所以配电系统在设备不具备自动检测保护的情况下要有专人负责监视,以及尽量的改善配电系统的稳定作业。

当然很重要的一点是数控机床采用直流进给伺服驱动和直流主轴伺

服驱动的,要注意将电刷从直流电动机中取出来,以免由于化学腐蚀作用,是换向器表面腐蚀,造成换向性能受损,致使整台电动机损坏。这是非常严重也容易引起的故障。

一、外界干扰

由于受到电磁干扰,屏蔽和接地措施不良的影响,主轴转速指令信号或反馈信号受到干扰,使主轴驱动出现随机和无规律性的波动。判别有无干扰的方法是:当主轴转速指令为零时,主轴仍往复转动,调整零速平衡和漂移补偿也不能消除故障。

★故障现象:主轴在运转过程中出现无规律的振动或转动。

原因分析:主轴伺服系统受电磁、供电线路或信号传输干扰的影响,主轴速度指令信号或反馈信号受到干扰,主轴伺服系统误动作。

检查方法:另主轴转速指令信号为零,调整零速平衡电位计或漂移补偿量参数值,观察是否因系统参数变化引起故障。若调整后仍不能消除该故障,则多为外界干扰信号引起主轴伺服系统误动作。

采取动作:电源进线端加装电源净化装置,动力线和信号线分开,布线要合理,信号线和反馈线要求屏蔽,接地线要可靠。

★某经济型数控车床主轴出现干扰故障

故障现象:经济型数控机床主轴一般采用变频控制,使用外置光短编码器配合机床进行螺纹加工,在加工时产生乱牙。

故障分析:乱牙的主要原因多时光电编码器与CNC装置的电缆接触不良,光电编码器器损坏、观点编码器与弹性联轴器连接松动或者其他原因。先从电器和信号连接线等方面进行检查。检查光编码器与CNC装置之间的连接线和+5电源是正常的:在主轴通电旋转后,用示波器测量光短编码器的A相和B相辨向输出端,该波形信号没后正常的辨向脉冲输出。关掉主轴电源,通过手动旋转主轴,再用示波器测量光电编码器的辨向脉冲信号,发现光短编码器的辨向信号是正常的。所以确定故障原因是电气干扰,判断干扰来自主轴调速所使用的变频器。

故障处理:在光电编码器的辨向脉冲端,零标志脉冲端和+5V电源信号零线之间并接滤波器电容后,解决了螺纹乱牙问题,消除故障二、主轴过载

切削用量过大,或频繁地正、反转变速等均可引起过载报警。具体表现为主轴电动机过热、主轴驱动装置显示过电流报警等。

★故障现象:一台配套某系统的卧式加工中心,在加工时主轴运行突然停止,驱动器显示过电流报警。

分析与处理过程:经查交流主轴驱动器主回路,发现再生制动回路故障、主回路的熔断器均熔断,经更换熔断器后机床恢复正常。但机床正常运行数天后,再次出现同样故障。由于故障重复出现,证明该机床主轴系统存在问题,根据报警现象,分析可能存在的主要原因有:?主轴驱动器控制板不良。

?连续过载。

?绕组存在局部短路。

在以上几点中,根据现场实际加工情况,过载的原因可以排除。考虑到换上元器件后,驱动器可以正常工作数天,故主轴驱动器控制板不良的可能性已较小。因此,故障原因可能性最大的是绕组存在局部短路。维修时仔细测量绕组的各项电阻,发现U相对地绝缘电阻较小,证明该相存在局部对地短路.拆开检查发现,内部绕组与引出线的连接处绝缘套已经老化;经重新连接后,对地电阻恢复正常。再次更换元器件后,机床恢复正常,故障不再出现

★故障现象:主轴电动机过热,CNC装置和主轴驱动装置现实过电流报警等。

原因分析:主轴电动机通风系统不良、动力连线接触不良、机床切削用量过大、主轴频繁正、反转等引起电流增加,电能以热能的形式散发出来,主轴驱动系统和CNC装置通过检测,显示过载报警。

检查方法:根据CNC和主轴驱动装置提示报警信息,检查引起各种故障的各种因素。

采取措施:保持主轴电动机通风系统良好,保持过滤网清净;检查动力接线端子接触情况;严格按照机床的操作规程,正确操作机床。

三、轴定位抖动

主轴的定向控制(也称主轴定位控制)是将主轴准确停在某一固定位

置上,以便在该位置进行刀具交换,精镗退刀及齿轮换挡等,有三种方式可实现主轴准停定向。

①机械准停控制。由带v形槽的定位盘和定位用的液压缸配合动作。

②磁性传感器的电气准停控制。发磁体安装在主轴后端,磁传感器安装在主轴箱上,其安装位置决定了主轴的准停点,发磁体和磁传感器之间的间隙为(1.5±0.5)mm。

③编码器型的电气准停控制。通过在主轴电动机内安装或在机床主轴上直接安装一个光电编码器来实现准停控制,准停角度可任意设定。主轴定向控制,实际上是在主轴速度控制基础上增加一个位置控制环。为检测主轴的位置,需要采用磁性传感器或位置编码器等检测元件。他们的连接采用位置编码器作为位置检测元件时,由于安装不方便,一般要通过一对1:1的齿轮联接。当采用磁性传感器作为位置检测元件时,其磁性元件可直接装在主轴上,而磁性传感头固定在主轴箱体上。为了减少干扰,磁性传感头和放大器之间的连接线需要屏蔽,且二者的连接越短越好。这两种控制方案各有优缺点,需根据机床的实际情况来选用。

产生主轴定位抖动故障的原因如下:

①上述准停均要经过减速的过程,—减速或增益等参数设置不当,均可引起定位抖动;

②采用位置编码器作为位置检测元件的准停方式时,定位液压缸活塞移动的限位开关失灵,引起定位抖动

★故障现象:某配套SIEMENS 810M的立式加工中心,在更换了主轴编码器后,出现主轴定位时不断振荡,无法完成定位的故障。

分析与处理过程:由于该机床更换了主轴位置编码器,机床在执行主轴定位时减速动作正确,分析故障原因应与主轴位置反馈极性有关,当位置反馈极性设定错误时,必然会引起以上现象。更换主轴编码器极性可以通过交换编码器的输出信号Ual/Ua2,*Ua1/*Ua2进行,当编码器定位由CNC控制时,也可以通过修改CNC机床参数进行,在本机床上通过修改810M的主轴位置反馈极性参数(MD5200bitl),主轴定位恢复正常。

★某配套YASKAWA J50M的加工中心,在机床换刀时,出现主轴定位不准的故障。

分析与处理过程:仔细检查机床的定位动作,发现机床在主轴转速小于10r/min,主轴定位位置正确,但在主轴转速大于10r/min时,定位点在不同的速度下都不一致.通过系统的信号诊断参数,检查主轴编码器信号输入,发现该机床的主轴零位脉冲输入信号在一转内有多个,引起了定位点的混乱。检查CNC与主轴编码器的连接,发现机床出厂时,主轴编码器的连接电缆线未按照规定的要求使用双绞屏蔽线,当机床环境发生变化后,由于线路的干扰,引起了主轴零位脉冲的混乱;重新使用双绞屏蔽线连接后,故障消除,机床恢复正常工作

四.主轴转速与进给不匹配

当进行螺纹切削或用每转进给指令切削时,会出现停止进给,主轴仍继续运转的故障。要执行每转进给的指令,主轴必须有每转一个脉冲的反馈信号,一般情况下为主轴编码器有问题。可以用下列方法来确定:1.CRT画面有报警显示。2.通过CRT调用机床数据或I/O 状态,观察编码器的信号状态,3.用每分钟进给指令代替每转进给来执行程序,观察故障是否消失。

★故障现象:一台配套FANUC ll系统的进口卧式加工中心,S指令无效,主轴转速仅为1~2r/min,无任何报警。

分析与处理过程:测量主轴驱动器的速度指令PcMD信号,发现在O-4500r/min的任何S指令下,VCMD总是为0,进一步测量CNC 的S模拟输出,其值亦为“0”,表明CNC的主轴速度控制指令未输出。由于CNC无报警显示,故主轴速度控制指令未输出可能的原因是主轴未满足转速输出的条件。对照系统的接口信号,通过对PLC 程序梯形图的分析发现:PLC程序中主轴高/低速换档的标志位、机床的高/低落速档检测开关输入信号均为“0”,这与实际情况不符。通过手动控制电磁阀,使机床换到低速档后,机床的低速档检测开关输入信号正确,PLC中主轴

低速换档的标志位随之变为正确的状态,满足了主轴条件。在此条件下再次启动主轴,机床恢复正常。为了进一步判断机床故障的原因,通过MDI方式,执行M42(换高速档指令)后,发现M42指令不能完

成。检查高速档电磁阀已经得电,但高速档到位信号为“0”,由此判定故障原因在机床的机械或液压部分。检查主轴箱内部,发现机床的换档机构的拨叉松动,在低速档时,由于拨叉向下动作,可以通过自重落下,因此机床可以正常工作;换高速档时,拨叉向上运动,拔出后不能插入齿轮。经重新安装后,机床恢复正常。

★故障现象:一台配套FANUC 0M的二手数控铣床,采用FANUC S 系列主轴驱动器,开机后,不论输入S**M03或S**M04指令,主轴仅仅出现低速旋转,实际转速无法达到指令值。

分析与处理过程:在数控机床上,主轴转速的控制,一般是数控系统根据不同的S代码,输出不同的主轴转速模拟量值,通过主轴驱动器实现主轴变速的。在本机床上,检查主轴驱动器无报警,且主轴出现低速旋转,可以基本确认主轴驱动器无故障。根据故障现象,为了确定故障部位,利用万用表测量系统的主轴模拟量输出,发现在不同的S**指令下,其值改变,由此确认数控系统工作正常。分析主轴驱动器的控制特点,主轴的旋转除需要模拟量输入外,作为最基本的输入信号还需要给定旋转方向。在确认主轴驱动器模拟量输入正确的前提下,进一步检查主轴转向信号,发现其输入模拟量的极性与主轴的转向输入信号不一致;交换模拟量极性后重新开机,故障排除,主轴可以正常旋转。

五.转速偏离指令值

当主轴转速超过技术要求所规定的范围时,要考虑:1.电动机过载。https://www.360docs.net/doc/823047462.html,C系统输出的主轴转速模拟量(通常为0—+-10V)没有达到与转速指令对应的值。3.测速装置有故障或速度反馈信号断线。4.主轴驱动装置故障。

★故障现象:一台配套FANUC llM系统的卧式加工中心,当执行M06换刀指令时,在主轴定向过程中,主轴驱动器发生AL-02报警。

分析与处理过程:主轴驱动器AL-02报警的含义是“速度偏差过大”。为了判定故障原因,在MDI方式下,单独执行M19主轴定向准停指令,发现驱动器也存在同样故障。据操作者介绍,此机床在不同的Y 轴位置,故障发生的情况有所不同;通常在Y轴的最低点,故障不容易发生。为了验证,维修时把主轴箱下降到了最低点,在MDI方式下,执行M19定向准停指令,发现确实主轴工作正常。根据以上现象分析,可以初步判定故障可能的原因是驱动器与电动机之间的信号电缆连接不良的可能性较大。维修时拆下电动机编码器的连接器检查,发现接头松动,内部有部分线连接不良。经重新焊接后,主轴恢复正常。

六.主轴异常噪声及振动

首先要区别异常噪声及振动发生在机械部分还是在电气驱动部分.若在减速过程中发生,一般是驱动装置再生回路有故障;主轴电动机在自由停车过程中若存在噪声和振动,则多为主轴机械部分故障;若振动周

期与转速有关,应检查主轴机械部分及测速装置,若无关,一般是主轴

驱动装置参数未调整好.

★故障现象:一台配套FANUC 6系统的立式加工中心, 在加工过程中,机床出现剧烈抖动、交流主轴驱动器显示AL-04报警。

分析与处理过程:FANUC交流主轴驱动系统AL-04报警的含义为“交流输入电路中的P1、F2、F3熔断器熔断”,故障可能的原因有:

1)交流电源输出阻抗过高。

2)逆变晶体管模块不良。

3)整流二极管(或晶闸管)模块不良。

4)浪涌吸收器或电容器不良。

针对上述故障原因,逐一进行检查。检查交流输入电源,在交流主轴驱动器的输入电源,测得R、S相输入电压为220V,但T相的交流输入电压仅为120V,表明驱动器的三相输入电源存在问题。进一步检查主轴变压器的三相输出,发现变压器输入、输出,机床电源输入均同样存在不平衡,从而说明故障原因不在机床本身。检查车间开关柜上的三相熔断器,发现有一相阻抗为数百欧姆。将其拆开检查,发现该熔断器接线螺钉松动,从而造成三相输入电源不平衡;重新连接后,机床恢复正常

★某加工中心主轴在运转时抖动,主轴箱噪声增大,影响加工质量。故障检测与分析处理:

a.先检查主轴电机部分,经检查主轴箱和直流主轴电动机正常,把检查转到主轴电机的控制系统。

b.测得的速度指令信号正常,而速度反馈信号出现不应有的脉冲信号,问题出在速度检测元件上,经检查,测速发电机碳刷完好,但换向器因碳粉堵塞,而造成一绕组断路,使测得的反馈信号出现规律性的脉冲,导致速度调节系统调节不平稳,使驱动系统输出的电流忽大忽小,从而造成电动机轴的抖动。用酒精清洗换向器,彻底消除碳粉,即可排除故障

七.主轴电机不转

CNC系统至主轴驱动装置一般有速度控制模拟量信号使能控制信号,主轴电动机不转要重点围绕这两个信号检查.检查CNC系统是否有

速度控制信号输出;检查使能信号是否接通.通过I/O状态,确定主轴启动条件如润滑、冷却的等是否满足.主轴电动机不转的其他原因有主轴驱动装置故障或主轴电动机故障.

★故障现象:某配套YASKAWA J50M的加工中心,在机床调试时,发现主轴不能正常旋转。

分析与处理过程:由于该机床主轴采用的是YASKAWA主轴驱动器,在自动方式运行时,主轴转速是通过系统输出的模拟电压控制的。利用万用表测量变频器的模拟电压输入,发现在不同转速下,模拟电压无输出,说明CNC存在问题。经现场分析,由于在YASKAWA J50M 中,“主轴模拟量输出”为选择功能,它决定于系统选择功能参数的设

定,其选择参数为#6055bit5、#6036bitl。经检查发现,该机床参数已经被修改,设定参数#6055bit5=0、#6036 bitl=1后,“主轴模拟量输出”生效,机床恢复正常。

★某采用SIEMENS 810M的立式加工中心,配套6SC6502主轴驱动器,在开机调试时,发现主轴不能正常旋转,系统无报警。

分析与处理过程:测量系统主轴模拟量输出,发现此值为“0”,因此可以确定故障是由数控系统无模拟量输出引起的。由于系统为刚出厂的原装系统,因此系统内部不良的可能性较小,出现以上故障最大的可能原因是系统的参数设定不当引起的。仔细检查系统的机床参数设定,发现全部MD参数设定均正确无误;检查系统的SD(设定)参数发现,在SETTING DATA页面下的G96转速限制值为“0”,将该值更改为机床的最大转速6000r/min后,机床主轴模拟量输出正常,主轴可以正常旋转。

★一台S1-296A数控机床,早班生产一开机,出现主轴电机不转,主轴变频系统LED也显示报警,但主轴电机外壳不热,数控系统的其它功能正常。

故障检测与分析处理:

a.用手动及JVC慢跑模式将工作台调至原位,重新启动车床使其故障再现,以便来确认其故障的真实性,结果证实故障如初。

b.用手摸主轴电机外壳温度不高,根据主轴电机没有温升,从而排除是机械负载过重引起故障。

c.检测变频器与数控系统内置PLC的有关控制接口;先测得+24,ALM一组控制信号已到位没问题,怀疑主轴电机内置过载控制信号没有送至变频器接口,当检测到已拆下的OHS1,OHS2一组控制信号线没问题,而检测过热器件那侧OHS1,OHS2信号时,该器件的闭点没有闭合,证明内置的过热器件已经损坏。因没有备件,小心拆下过热器件,精心地修磨触点,试车生产加工正常,故障排除。

相关文档
最新文档