万有引力定律的发现过程
万有引力定律推导过程

万有引力定律推导过程1.牛顿的实验:牛顿进行了许多关于物体运动的实验证明了万有引力的存在。
他观察到当一个苹果从树上掉下来时,它会向地面加速下落。
从这个实验可以推断出地球对苹果施加了一个向下的力,即重力。
牛顿进一步猜测,这个力是由地球对苹果的吸引力引起的,并且这个力可能与地球和苹果之间的距离有关。
2.牛顿的第一定律:牛顿的第一定律,即惯性定律,指出物体在没有外力作用下将保持匀速直线运动或静止。
根据这个定律,地球既然维持了固定的轨道运动,必然有一个对物体的吸引力,这个力会保持物体在地球周围匀速移动,而不改变其路线和速度。
3.开普勒行星运动规律:约翰·开普勒是17世纪的一个天文学家,他通过观察行星运动规律提出了三个定律。
这些定律为我们理解万有引力定律提供了重要线索。
-第一个定律:轨道定律,行星绕太阳运动的轨道是椭圆,太阳在椭圆的一个焦点上。
-第二个定律:面积定律,行星在相等时间内扫过的面积相等。
-第三个定律:调和定律,行星公转周期的平方与其椭圆长轴的立方之比是一个常数。
4.引力是一个与距离有关的力:基于开普勒的第一定律,地球对物体的引力必然与物体与地球之间的距离有关。
假设引力与距离的关系为F∝1/r²,其中F是引力,r是物体与地球之间的距离。
这是因为距离越远,物体受到的引力越小,距离越近,物体受到的引力越大。
5.引力的大小与质量有关:在牛顿的实验中,他发现对于任何两个物体,它们之间的引力与它们的质量成正比。
假设两个物体的质量分别为m1和m2,它们之间的引力为F。
于是我们得到F∝m1m2基于以上的观察结果和假设,牛顿得出了万有引力定律的表达式:F=G*(m1*m2)/r²其中F是两个物体之间的引力,G是一个常数,即万有引力常数,m1和m2是两个物体的质量,r是它们之间的距离。
这个定律描述了质点之间的相互作用力,不仅适用于地球和苹果之间的引力,也适用于其他天体之间的引力。
通过这个定律,我们可以解释地球绕太阳运动、月球绕地球运动以及行星与卫星之间的相互作用等现象。
牛顿发现万有引力的故事

牛顿发现万有引力的故事篇1:1666年的秋天,在英国北部林肯郡一个名叫乌尔斯索普的村庄里,发生了这样一件"小事":一天傍晚,学习了一天的牛顿感到有些疲倦,他想休息一下,于是,信步来到自家的苹果园里,坐在一棵苹果树下,欣赏着满园的果实.面对这美妙和谐的大自然,牛顿总是隐隐约约地感到,在神秘的自然界后面,一定有某种规律在支配着它的运动,可是这个规律是什么呢?苹果的阵阵幽香,不知不觉又使牛顿沉浸于天体运动之谜的思考之中.。
一个苹果从恰好树上落下来。
这时候,他忽然想到,为什么苹果总是垂直落向地面呢?为什么苹果不向外侧或向上运动,而总是向着地球中心运动呢?无疑地,这是地球向下拉着它,有一个向下的拉力作用在物体上,而且这个向下的`拉力总和必须指向地球中心,而不是指向地球的其他部分。
所以苹果总是垂直下落,或者总是朝向地球的中心。
苹果向着地球,也可看成是地球向着苹果,物体和物体之间是相互朝着对方运动的。
物体之间的作用力必须正比于它们的质量。
这个力,就是我们后来所称的万有引力。
篇2:牛顿二十三岁时,鼠疫流行于伦敦。
剑桥大学为预防学生受传染,通告学生休学回家避疫,学校暂时关闭。
牛顿回到故乡林肯郡乡下。
在乡下度过的休学日子里,他从没间断过学习和研究。
万有引力、微积分、光的分析等发明的基础工作,都是这个期间完成的。
那时,乡下的孩子是常常用投石器打几个转转之后,把石抛得很远。
他们还可以把一桶牛奶用力从头上转过,而牛奶不掉下来。
这些事实使他怀疑起来:“什么力量使投石器里面的石头,以及水桶里的牛奶不掉下来呢?对于这个问题,他曾想到刻卜勒和伽利略的思想。
他从浩瀚的宇宙太空,周行不息的行星,广寒的月球,直至庞大的地球,进而想到这些庞然大物之间力的相互作用。
这时,牛顿一头扎进”引力“的计算和验证中了。
牛顿计划用这个原理验证太阳系各行星的行动规律。
他首先推求月球距地球的距离,由于引用的资料数据不正确,计算的结果错了。
万有引力定律的发现历程

万有引力定律的发现历程高一(6)班在很早以前,人们就在持续地探索天体运动的奥妙。
当科学的接力棒传到了牛顿手中时,他站在前人的肩上,发挥他卓越的才能,建立了万有引力定律。
牛顿发现万有引力定律的过程中,其主要的思路与使用的物理学方法大致体现在以下几方面。
一、使用科学想象和推理,论证了行星运行都要受到一个力的作用牛顿对行星运动的研究工作首先是从研究月球开始的。
据说,有一次牛顿正在思考这个问题时,忽然看到一个苹果从树上掉了下来,他吃了一惊,同时便陷入了沉思。
当时已知苹果是受重力作用而下落的,牛顿作了合理的设想,设想这种作用力的范围要比通常所想象的还要大得多,比如说,很可能一直延伸到月球那么高,由此外推出:各行星如卫星的运动都要受到同一种力的作用。
二、使用数学方法,推导出行星运行所受到的向心力遵从平方反比定律牛顿由开普勒第三定律推知向心力平方反比定律。
其数学推导为:设某一行星的质量为m,将行星的运动视为匀速圆周运动。
由牛顿第二定律:运行周期,R—圆周轨道半径。
再由开普勒第三定律。
式中μ是一个与行星无关而只与太阳的性质相关的量,称为太阳的高斯常数;m为行星质量。
由上式可知:引力与行星的质量成正比。
三、使用归纳概括方法,牛顿总结出了万有引力定律牛顿由研究月球、地球,以至研究行星、恒星、卫星等推出了一切物体相互间均存有引力的结论。
又由牛顿第三定律,得出吸引物体和被吸引物体的区分是相对的,所以引力牛顿就完成了万有引力的发现工作。
G为引力恒量,m1 m2分别为两个相互吸引的物体的质量,R为物体m2与m1的质心间距离。
四、使用科学观察和科学实验验证万有引力定律理论牛顿的万有引力定律是经过科学观察和科学实验的检验后才得到普遍承认的,哈雷慧星回归周期的预言被证实以及海王星的发现在天王星发现都证实了万有引力定律的准确性。
万有引力定律的发展过程

万有引力定律的发展过程嘿,咱今儿个就来讲讲那万有引力定律的发展过程呀!你说这引力,那可真是神奇得很呢!就好像有一双无形的大手,把万物都紧紧抓住。
最早啊,人们就对天上的星星月亮好奇得不行。
为啥它们能在天上不掉下来呢?这问题困扰了好多人好久好久。
后来呢,有个叫哥白尼的家伙站出来了,他说太阳才是中心,这可把大家的世界观都给颠覆啦!接着开普勒又发现了行星运动的规律,就像是找到了解开谜题的钥匙。
再后来啊,牛顿闪亮登场啦!他呀,那脑袋瓜可太好使了。
据说有一天他坐在苹果树下,一个苹果掉下来砸到了他脑袋上。
嘿,你说巧不巧,他就突然想到,这苹果掉下来是因为地球的引力,那月亮绕着地球转是不是也是因为这种引力呢?牛顿可真厉害,就这么一琢磨,竟然搞出了万有引力定律!这就好比他找到了那根把万物都串起来的线。
你想想看,这宇宙中那么多的星球,它们之间都有着这种神奇的引力在相互作用呢!就像我们人与人之间也有各种各样的联系一样。
如果没有万有引力,那这世界还不知道会变成啥样呢!星星会乱跑,月亮可能也不知道飞到哪里去啦!万有引力定律可不单单是在天上有用哦,在我们生活中也到处都是呢!比如我们能稳稳地站在地上,那也是因为地球的引力呀。
还有那些运动员扔出去的球,它的轨迹也和引力有关系呢。
你说这引力是不是特别有意思?它看不见摸不着,却又无处不在。
就好像是一个神秘的朋友,一直默默地影响着我们的世界。
这就是科学的魅力呀,总是能发现那些我们平时注意不到的东西,然后让我们恍然大悟,哇,原来世界是这样的!万有引力定律的发展过程,那真的是人类智慧的结晶呀!从最初的好奇到后来的探索,再到最终的发现,每一步都充满了艰辛和惊喜。
这就像是一场漫长的冒险,那些科学家们就是勇敢的探险家,一点点地揭开宇宙的神秘面纱。
咱得感谢那些伟大的科学家们呀,没有他们,我们哪能知道这么多关于宇宙的奥秘呢?所以呀,我们也要保持对世界的好奇心,说不定哪天我们也能发现点什么神奇的东西呢!。
万有引力定律的发现历程

万有引力定律的发现历程在很早以前,人们就在不断地探索天体运动的奥妙.亚里士多德曾提到过力的概念,他认为力是产生非自然运动的原因,力的作用只有在相互接触时才能传递,因此,对于遥远的天体,这个力是毫无用处的.开普勒为天体运动奥妙的揭开做出了重大贡献,但却未解开天体运动的动力学之谜.1645 年法国天文学家布里阿德提出一个假设:从太阳发出的力,和离太阳距离的平方成反比.笛卡儿1644 年提出“旋涡”假说,把行星的运动归结为动力学原因.1666 年意大利的玻列利提出引力是距离的幂的某种函数.1673 年惠更斯在研究摆的运动时给出了向心加速度理论.英国的胡克已经觉察到引力和重力有同样的本质,1674 年他提出引力随离吸引中心距离而变化,1680 年他又进一步提出了引力反比于距离的平方的假设.哈雷的伦恩从圆形轨道与开普勒定律出发,导出了作用于行星的引力与它们到太阳的距离的平方成反比.当科学的接力棒传到了牛顿手中时,他便向万有引力定律的红线冲刺了.他站在前人的肩上,发挥他卓越的才能,建立了万有引力定律,为科学做出了重大的贡献.牛顿发现万有引力定律的过程中包含着丰富的物理学思想和物理学方法论内容,其主要的思路与运用的物理学方法大致体现在以下几方面.一、运用科学想象和推理,牛顿论证了行星运行都要受到一个力的作用牛顿对行星运动的研究工作首先是从研究月球开始的.牛顿想象,如果没有任何力作用于月球的话,根据牛顿当时已发现的牛顿第一定律可知,月球就应当做匀速直线运动.但月球是绕地球作圆周运动,所以月球必定要受到力的作用.牛顿当年写道:“没有这种力的作用月球不可能保持在自己的轨道上;如果这个力比轨道所需的力小,则它使月球偏离直线的程度不够;如果这个力比轨道所要求的力大,则它使月球偏离直线的程度太大,并使月球的轨道更靠近地球.”那么迫使月球绕地球旋转的力的性质是如何的呢?据说,有一次牛顿正在思考这个问题时,忽然看到一个苹果从树上掉了下来,他吃了一惊,同时便陷入了沉思.当时已知苹果是受重力作用而下落的,他推想,如果苹果树长得很高,熟透了的苹果会不会落地呢?当然是会的!但如果苹果树长得象月球那么高,树上的苹果是否还会落地呢,牛顿作了合理的设想,设想这种作用力的范围要比通常所想象的还要大得多,比如说,很可能一直延伸到月球那么高,因此,这样既使苹果树长得象月球那么高,苹果仍会落地的.正是这种作用力使地球对月球施加影响.同时,从开普勒第一定律(行星沿椭圆轨道绕太阳运行,太阳位于这些椭圆的一个焦点上)可知,各行星和卫星都是沿椭圆形路径运动(非匀速直线运动)因此,根据牛顿第一定律便可推知,各行星如卫星的运动都要受到一种力的作用.二、运用类比方法,牛顿推证了行星运行所受到的力是一种连续地指向一确定中心的作用力牛顿在由地面上的苹果下落联想到天上的月球也受一种力的作用,但进而思考,月球为什么不会象树上的苹果那样落地呢?这样他又联想到物体的旋转问题:绳子的一端系着一块石头,另一端抓在我们手中,让石头作旋转运动,这时如果我们松手,石头就会沿直线轨道飞出去,这说明石头之所以作圆周运动是由于一种力拉着石头.进而类比,这块石头好比月球,而我们的手又相当于地球,手通过绳子施于石头的力又很相似于地球施于月球的作用力.牛顿接着又描述了从高山上平抛一个铅球的理想实验,他设想,从高山上铅球平抛出去,本来应当笔直的前进,可是在重力作用下,它就沿抛物线落到了地面.如果平抛速度增加,它就会落得更远一些,再增加抛出速度,则铅球可能会绕地球半圈.当抛出速度足够大时,铅球就会绕地球一圈、两圈、乃至永远绕地球作圆周运动而不落回到地面上,这说明,只要有一个指向确定中心点的力,又具有足够的初速度,则物体就可作圆周运动.把月球类比于这个铅球,则可知,月球受一个指向确定中心点的力,所以才会作圆周运动.行星也应如此.牛顿进一步在开普勒第二定律的基础上改换问题的提法,开普勒第二定律是说:对于任何一个行星来说,它的矢径(行星到太阳的联线)在任何地点、在相等的时间内,沿轨道所扫过的面积相等.(这条定律也适用于月球绕地球的运行)牛顿则寻找在相等的时间间隔内物体若受一指向确定中心的力的作用,物体到中心联线扫过的面积存在什么规律?牛顿从数学上证明了(证明过程从略)在这种情况下,各面积之间存在相等的关系.牛顿接着又证明了这个命题的逆命题,即在任何一曲线上运动的物体,如果它到一确定点的连线在相等时间内扫过相等的面积,则物体受一指向该确定点的向心力.牛顿接着由开普勒第二定律所概括的现象推出行星或卫星受一连续的指向一确定中心的力,并且这个中心就在椭圆的一个焦点上.三、运用数学方法,牛顿推导出行星运行所受到的向心力遵从平方反比定律牛顿在由开普勒第二定律得到的存在一个连结指向一确定中心点的力作用于行星上的基础上,进一步去寻找物体在前人提出的椭圆轨道上运动时,所受的指向椭圆焦点的向心力的规律.牛顿利用了开普勒第一定律,用数学方法证明了(证明过程从略)沿所有圆锥曲线(或双曲线、抛物线、圆、椭圆等)在任何时刻的向心力必定与该物体到焦点的距离平方成反比,其数学形式为F =c/R 2即——向心力定律 式中R 是从该物体中心到椭圆焦点的距离,c 为该物体的一个常数.牛顿由开普勒第三定律进一步推知向心力平方反比定律.其数学推导为:设某一行星的质量为m ,行星的运行轨道近似圆(由于行星椭圆轨道的偏心率很小,如地球为0.0167,因而其轨道可近似看作圆)根据开普勒第二定律,可将行星视为匀速圆周运动由牛顿第二定律.F =ma =m ·22224)2(T mR T R R m R v ππ== 式中m —行星质量,T —行星运行周期,R —圆周轨道半径.再由开普勒第二定律.T 2= kR 3 代入上式得224kR m F π= 令k24πμ= 得 2Rm F μ= 式中μ是一个与行星无关而只与太阳的性质有关的量,称为太阳的高斯常数;m 为行星质量.由上式可知:引力与行星的质量成正比.牛顿通过研究引力使不同大小的物体同时落地和同磁力的类比,得出引力的大小与被吸引物体的质量成正比,从而把质量引进了万有引力定律.牛顿又进一步用实验作了验证:他用摆做了一系列实验,实验的结果以千分之一的准确度表明,对于各种不同的物质,万有引力与质量的比例始终是一个常数.牛顿又接着作了大胆的假设,行星受到的引力与太阳的质量有关,并用数学作了推证地球对一切物体包括太阳的引力应为2R M F μ'= μ′—地球的高斯常数,M —太阳的质量 太阳对地球的引力为2Rm F μ=,式中m —地球的质量,μ—太阳的高斯常数 根据牛顿第三定律有:F =F ′即2RM μ'2R m μ= G m M ='=μμ G 是一个与地球和太阳的性质都无关的恒量,所以引力的平方反比定律的数学形式为2R Mm G F = 四、运用演绎推理方法,牛顿把引力的平方反比定律推广到一切物体,得出一切物体间均存在引力的结论牛顿得到平方反比定律之后,寻求进一步的原因:符合这个定律的力是什么性质的力?它是由什么决定的?牛顿首先由月球运行情况探讨了使月球保持轨道运行的力与重力之间的关系.由平方反比定律可知,月球受一指向地球的力的作用,它与月球到地心距离的平方成反比.通过数学计算和实验验证,牛顿得到了月球受的向心力就是重力的结论,这样牛顿就把地面落体运动的原因和月球运行的原因归于同一了.此后,牛顿运用牛顿第三定律推知,地球对月球也有引力,地球对太阳也有吸引力.牛顿由木星卫星和木星有吸引、土星与土星卫星有吸引,行星与太阳之间有吸引力等现象出发,认为这些和月地之间的现象系“同类现象,使月球不能出离轨道的力的原因可推至于一切行星”.这样,牛顿就把天体和其运行中心之间的力都归于引力.此后,他又由土星、木星会合点附近相互间的“运动失调”以及太阳使月球的“运动失调”现象,提出行星之间和恒星与卫星之间均有引力的作用,于是才提出了万有引力的假说.这样,牛顿由研究月球、地球,以至研究行星、恒星、卫星等推出了一切物体相互间均存在引力的结论.五、运用归纳概括方法,牛顿总结出了万有引力定律,完成了万有引力定律的发现工作牛顿对提出的万有引力假说进行了充分的论证,牛顿由原来得出的天体运行向心力平方反比定律,得出万有引力符合平方反比关系;由引力使不同大小物体同时落地,得出引力的大小和被吸引物体的质量成正比;又由牛顿第三定律,得出吸引物体和被吸引物体的区分是相对的,所以引力也和吸引物体的质量成正比,从而得出引力符合221Rm m G F =.这样,牛顿就完成了万有引力的发现工作. 牛顿发现的万有引力定律的内容为:宇宙间的任何物体之间都存在相互作用的吸引力,这种吸引力的大小与它们的质量的乘积成正比,与它们之间距离的平方成反比,作用力的方向是沿两物体的联线方向,即21221R m m G F = G 为引力恒量(引力常数);m 1m 2 分别为两个相互吸引的物体的质量;R 12为物体m 2 与m 1 的质心间距离.六、运用科学观察和科学实验验证万有引力定律理论牛顿的万有引力定律是经过科学观察和科学实验的检验后才得到普遍承认的:1.关于地球形状的测定牛顿根据他的引力理论指出,地球不是正球体,而是两极方向稍扁的扁球体,后经过法国科学家的几次测量证明了牛顿的推论是正确的.牛顿这个足不出户的人正确地给出了地球的形状,这显示了牛顿理论的威力.2.地月验证由运动学公式可计算出月球的向心加速度R TR v a n 2224π== 已知R =3.84×108 米;T =2.36×106 秒 得出a n =0.27 厘米/秒2又由万有引力定律,引力的大小与距离的平方成反比,月球与地球间的距离约为地球半径的60 倍,因此,其加速度应是地面加速度的1/602即a =980/602 =0 27(厘米/秒2)由此可见,计算月球向心加速度,从引力定律出发得到的结果与用其它方法得到的计算结果相同,这也从一方面验证了万有引力定律的正确性.3.哈雷慧星回归周期的证实。
万有引力定律的发现

万有引力定律的发现万有引力定律是牛顿在17世纪发现的,它是物理学中最重要的定律之一。
这个定律描述了物体之间的引力作用,它是我们理解宇宙运动的基础。
牛顿发现万有引力定律的过程是一个漫长而艰苦的过程。
他在1665年开始思考这个问题,当时他还是一个年轻的学生。
他注意到,当一个苹果从树上掉下来时,它会落到地上。
他想知道为什么苹果会落下来,而不是飞向天空。
他开始思考这个问题,并尝试用数学方法解决它。
牛顿的第一个想法是,地球上的物体会被吸引到地心。
他认为,这个吸引力是由地球的质量引起的。
他开始研究这个问题,并发现了一些有趣的事情。
他发现,如果两个物体之间的距离越近,它们之间的引力就越强。
他还发现,如果两个物体的质量越大,它们之间的引力也越强。
牛顿的第二个想法是,太阳对地球的引力也是由质量引起的。
他认为,太阳的质量比地球大得多,所以太阳对地球的引力比地球对苹果的引力强得多。
他开始研究这个问题,并发现了一些有趣的事情。
他发现,如果两个物体之间的距离越远,它们之间的引力就越弱。
他还发现,如果两个物体的质量越大,它们之间的引力也越强。
牛顿的第三个想法是,太阳对地球的引力也会影响地球的运动。
他认为,地球绕着太阳转是因为太阳对地球的引力。
他开始研究这个问题,并发现了一些有趣的事情。
他发现,地球绕着太阳转的速度越快,它离太阳的距离就越远。
他还发现,地球绕着太阳转的轨道是一个椭圆形。
牛顿最终发现了万有引力定律。
这个定律描述了物体之间的引力作用,它是我们理解宇宙运动的基础。
万有引力定律是一个简单而又优美的公式,它可以用来计算任何两个物体之间的引力。
这个公式是:F =G * (m1 * m2) / r^2其中,F是两个物体之间的引力,G是一个常数,m1和m2是两个物体的质量,r是它们之间的距离。
万有引力定律的发现是一个伟大的成就。
它不仅解释了地球和太阳之间的引力作用,还解释了行星、卫星和彗星之间的引力作用。
它是现代天文学和物理学的基础,它使我们能够更好地理解宇宙的运动。
牛顿是如何发现万有引力的故事

牛顿是如何发现万有引力的故事
咱来唠唠牛顿是咋发现万有引力的,可有意思了呢。
牛顿啊,那时候就是个特爱琢磨事儿的聪明人。
传说有一天啊,他坐在自家院子里,正悠闲地晒着太阳呢。
这时候,一个苹果“啪嗒”一声,从树上掉下来了,正好砸到了他的脑袋上。
一般人被砸了,可能就骂骂咧咧几句,然后把苹果吃了就完事儿了。
可牛顿他不一样啊,他就开始想了:“这苹果为啥是往地上掉,而不是往天上飞呢?”他就琢磨啊,这肯定是有一种力量在拉着苹果,让它只能往地面这个方向走。
然后呢,他就开始把这个事儿往大了想。
他想啊,这地球这么大,能拉住苹果,那月亮在天上,是不是也被地球拉着呢?可是月亮为啥没像苹果一样“哐当”掉到地上来呢?
他就继续研究,研究什么圆周运动啊之类的知识。
他就明白了,月亮其实是一直在往地球掉,但是它有一个速度,这个速度让它一边掉一边还能绕着地球转,就像你拿个绳子拴着个东西,然后甩起来,那东西就会绕着你的手转,这个时候绳子就像地球拉着月亮的力。
牛顿这脑袋啊,就像开了挂一样,他想这个力肯定不是地球独有的,别的东西之间应该也有这种互相吸引的力。
不管是大的星球,还是小的物体,都存在这种力。
于是呢,他就总结出了万有引力定律。
你看,就这么一个苹果砸脑袋的事儿,让牛顿发现了这么伟大的万有引力定律,这就是人家牛顿厉害的地方,能从平常事儿里看到不平常的东西。
万有引力定律公式详细推导过程

万有引力定律公式详细推导过程
有很多的同学是非常想知道,万有引力定律公式详细推导过程是什幺,小编整理了相关信息,希望会对大家有所帮助!
1 万有引力定律推导公式是什幺根据开普勒的三定律以及牛顿第三定律得出.
具体如下;F 引= F 向=mw2r=mv2/r 再由线速度与周期的关系得到
F 引=m(2πr/T)2/r=4π2mr/T2
F 引=4π2mr/T2=4π2(r3/T2)m/r2
F 引=4π2km/r2
所以可以得出结论:太阳对行星的引力跟行星的质量成正比,跟行星到太阳的距离的二次方成反比.
即:F∝m/r2
牛顿根据牛顿第三定律大胆的猜想:既然太阳对行星的引力与行星的质量成正比,也应该与太阳的质量成正比.
F 引∝Mm/r2
写成等式:F 引= GMm/r2
1 万有引力定律的定义任意两个质点有通过连心线方向上的力相互吸引。
该引力大小与它们质量的乘积成正比与它们距离的平方成反比,与两物体的化学组成和其间介质种类无关。
万有引力定律是艾萨克·牛顿在1687 年于《自然哲学的数学原理》上发表的。
万有引力定律的发现是近代经典物理学发展的必然结果。
科学史上普遍认。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
万有引力定律的发现过程
自哥白尼建立日心说到开普勒提出行星运动三定律,行星运动的基本规律已被发现,给进一步从动力学方面考察行星的运动提供了条件.到17世纪后半期,已有一些学者,其中包括著名物理学家胡克。
认为天体之间存在着相互作用的引力,行星的运动是由太阳对它们的引力引起的。
胡克等人甚至推测到太阳对行星的引力的大小跟行星与太阳之间的距离的平方成反比、但是他们都不能证明行星所做的椭圆运动是平方反比律的.对引力大小的数量级也一无所知。
1684年,这个问题在英国皇家学会争论颇为激烈,天文学家哈雷和数学家雷恩都不能解决这个疑难,胡克虽然声称他已得解,却拿不出一个公式.同年8月,哈雷带着这个问题来请教牛顿,才知道牛倾已经解决了这个问题。
在哈雷的敦促下,牛顿于1684年12月写出了了《论运动》一文,阐明了他在地面物体动力学和天体力学方面获得的成就。
1687年,他又发表了著名的《自然哲学的数学原理》,全面地总结了他的研究成果,他所发现的万有引力定律,也在这部著作中得到了系统而深刻的论证.这些论证对于在物理理论中已经确立的定律,新的假说、实验观测和理论推导之间的相互作用,提供了一个极好的范例.研究牛顿留给人们的文献可以看到,他发现万有引力定律的思路大体如下:(1)牛顿首先证明了,一个运动物体,如果受到一个指向固定中心的净力作用,不论这个力的性质和大小如何,它的运动一定服从开普勒第二定律(即等面积定律);反过来,行星运动都服从开普勒第二定律,它们就都受到一个向心力时作用.
(2)牛顿又证明,一个沿椭圆轨道运动的物体,如果受到指向椭圆焦点的向心力,这个力一定跟物体与焦点的距离的平方成反比.
(3)牛顿认为,行星所受的向心力来源于太阳的引力;卫星所受的向心力来源于行星的引力而地球吸引月球的引力,跟地球吸引树上的苹果和任何一个抛出的物体时显示出来的重力,是同一种力.这就是说,天体的运动跟地面上物体的运动,有着共同的规律,地球重力,也是随着与地心距离的增大按平方反比律而减弱的,牛顿通过计算证明,由于月球与地球的距离是地球半径的60倍,月球轨道运动的向心加速度应该等于地面上重力加速度的。
这就是著名的月地检验,它跟实际测量的结果符合得相当好.
1/ 2
(4)牛顿根据他自己提出的作用和反作用定律,推论引力作用是相互的地球作用在质量是m的物体上的引力大小恰好等于质量为m的物体作用在地球的引力.
(5)在一定的地点,石块所受的重力随石块的质量m而增加,即F与m成正比,.另一方面,如果行星的质量M改变,石块所受的重力也必将随之而改变.也就是说,如果石块与地球的距离R不变,不只有F与m成正比,而且有F与M成正比.
2/ 2。