数学与应用数学专业专升本专业综合课考纲

合集下载

辽宁师范大学《数学与应用数学专业》专升本考试大纲

辽宁师范大学《数学与应用数学专业》专升本考试大纲

42017年高职高专应届毕业生升入本科学习辽宁师范大学数学与应用数学专业综合课(理论)考试大纲说明:该门课程共计150分钟,试卷满分200分.试题内容涵盖《高等代数》、《数学分析》和《解析几何》三门数学课程内容.其中,《高等代数》课程内容占80分、《数学分析》课程内容占 80分、《解析几何》课程内容占40分。

具体如下:《高等代数》考试大纲第一章行列式ﻫ1。

行列式的定义2。

行列式的计算3.二阶、三阶行列式的几何意义第二章矩阵ﻫ1.矩阵的运算ﻫ2.初等矩阵ﻫ3。

矩阵的秩ﻫ4.求可逆矩阵的逆矩阵第三章线性方程组ﻫ1.向量空间ﻫ2.向量组的线性相关性ﻫ3。

线性方程组求解及解的结构第四章欧式空间与二次型ﻫ1.矩阵的特征根与特征向量ﻫ2.矩阵的对角化ﻫ3。

欧氏空间的正交基及标准正交基ﻫ4.用非退化线性变换和正交变换方法化二次型为标准形《数学分析》考试大纲第一章一元函数的极限与连续ﻫ1.函数的定义域及其求法ﻫ2。

数列与函数的极限ﻫ3。

函数的连续性第二章一元函数的导数与微分ﻫ1。

函数导数的定义及导数求法ﻫ2.函数微分的求法ﻫ3.微分中值定理及其应用(包括:1.罗尔中值定理及其应用;2。

拉格朗日中值定理及其应用)ﻫ4.用洛必达法则求函数的极限第三章一元函数的积分1.不定积分的概念ﻫ2。

换元积分法与分部积分法ﻫ3.定积分及其应用4。

广义积分第四章多元函数微积分1.二元函数的连续性2.二元函数的偏导数与全微分3。

泰勒公式与极值问题ﻫ4.级数收敛性的判别5。

幂级数ﻫ6.二重积分与三重积分的计算ﻫ《解析几何》考试大纲第一章向量代数ﻫ1.向量的线性运算ﻫ2。

向量的共线与共面3.向量的坐标表示ﻫ4。

向量的内积、外积及混合积ﻫ第二章平面与空间直线ﻫ1.求平面方程ﻫ2.求空间直线方程ﻫ3。

讨论平面与平面、直线与直线、直线与平面的位置关系及点到平面、点到直线的距离第三章曲面论1.柱面2。

锥面3.旋转曲面。

山东专升本数学考试大纲

山东专升本数学考试大纲

山东专升本数学考试大纲
山东专升本数学考试大纲包括以下几个主要内容:
一、数集与排列组合
1. 数集的表示与性质
2. 常用数集的内涵和外延表示法
3. 排列与组合的基本概念与性质
4. 排列与组合的计算方法
二、函数与方程
1. 函数的概念与基本性质
2. 二次函数的性质与图象
3. 一次函数、指数函数和对数函数的性质与图象
4. 方程与不等式的基本概念与解法
5. 二次方程与二次不等式的解法
三、三角函数与解三角形
1. 三角函数的基本概念与性质
2. 三角方程的解法
3. 解三角形的基本概念与解法
4. 平面向量的基本概念与性质
四、数列与数列极限
1. 数列的基本概念与性质
2. 等差数列与等比数列的性质与计算方法
3. 数列极限的概念与性质
五、导数与微分
1. 函数的导数与微分的概念
2. 导数与微分的基本性质与计算方法
3. 极值与最值的判定
4. 函数的图象与曲率
六、不定积分与定积分
1. 不定积分与定积分的定义与性质
2. 基本初等函数的不定积分与定积分
3. 定积分的计算方法与应用
七、常微分方程
1. 常微分方程的基本概念与解法
2. 一阶线性常微分方程的解法与应用
3. 可分离变量、齐次方程与线性齐次方程的解法
以上是山东专升本数学考试大纲的主要内容,具体的考试内容以官方发布的考试大纲为准。

19.数学与应用数学专业本科插班生考试大纲

19.数学与应用数学专业本科插班生考试大纲

《高等代数》考试大纲考试对象数学与应用数学专升本学生考试目的考生应该理解和掌握《高等代数》中的映射、数域、一元多项式、n阶行列式、线性方程组、矩阵、向量空间、线性变换、欧氏空间、二次型等基本概念、基本知识。

要求考生具备逻辑推理、抽象思维与综合分析问题的能力。

能运用高等代数中的基本知识、基本理论进行推理和论证。

考生还应熟练掌握高等代数中常用的计算方法,掌握基本运算中的技能、技巧,提高综合计算和解决问题的能力。

考试方法1、考试方法:(闭卷笔试)2、记分方式:百分制,满分为100分3、命题的指导思想和原则命题的总的指导思想是:全面考查学生对本课程的基本原理、基本概念和主要知识点学习、理解和掌握的情况,特别是灵活解决问题的能力。

命题的原则是:题目数量多、份量小,范围广,最基本的知识一般要占60%左右,稍微灵活一点的题目要占20%左右,较难的题目要占20%左右。

客观性的题目应占比较重的份量。

4、题目类型选择题填空题计算题综合应用题证明题考试内容及要求一、基本概念(一)知识范围(1). 映射映射的定义满射、单射与双射映射的相等映射的合成逆映射2.数域数域的定义最小的数域(二)要求1.熟记映射、满射、单射、双射的定义,理解它们之间的联系与区别。

能根据定义判定所给的法则是否为映射,为何种映射。

理解映射的相等与映射的合成概念。

2.会正确地判定所给的数集是否为数域。

二、一元多项式(一)知识范围1.一元多项式的概念、运算及整除性一元多项式的定义及运算多项式整除的定义整除的基本性质带余除法定理2.多项式的最大公因式因式、公因式、最大公因式的定义辗转相除法多项式互素的判别方法多项式互素的性质3.多项式的因式分解不可约多项式的性质因式分解存在唯一性定理多项式的典型分解式4.多项式的重因式与根多项式有无重因式的判断多项式的值与根余式定理综合除法5.复数域、实数域、有理数域上的多项式代数基本定理复数域上多项式的典型分解式实数域上多项式的典型分解式有理数域上多项式的可约性艾森斯坦因判别法有理数域上多项式的有理根整系数多项式的有理根(二)要求1.理解一元多项式的基本概念,熟记整除的定义,掌握整除的基本性质并会运用这些性质证明有关的基本问题。

广东专升本数学综合考纲

广东专升本数学综合考纲

广东专升本数学综合考纲主要包括以下内容:一、考试性质广东专升本数学综合考试是选拔性的考试,通过考试来选拔具有数学基础的人才继续接受本科阶段的教育。

考试的内容和难度都有一定的要求,考生需要具备扎实的基础知识和一定的解题能力。

二、考试范围1. 函数、极限、连续:要求考生掌握函数的概念和性质,包括单调性、奇偶性、周期性等;极限的概念和计算方法,以及连续性的定义和性质。

2. 一元函数微分学:要求考生掌握导数的概念和计算方法,包括导数的定义、几何意义、可导与连续之间的关系;微分的概念和计算方法。

此外,还要求考生掌握一些基本函数的极值点和函数单调性的判断方法。

3. 一元函数积分学:要求考生掌握不定积分和定积分的概念和性质;不定积分和定积分的计算方法,包括换元法、分部积分法等;积分的应用,如定积分的微元法。

4. 线性代数:要求考生掌握矩阵的概念和性质,包括可逆矩阵、矩阵的乘法、矩阵的秩等;向量空间的概念和性质,包括基、向量、坐标变换等;特征值和特征向量的概念和方法。

此外,还需要掌握一些基本的线性方程组解法。

5. 概率论与数理统计:要求考生掌握概率的基本概念和性质,如样本空间、事件、概率等;数理统计的基本概念和方法,如参数的点估计、区间估计等;一些基本的概率分布,如正态分布、泊松分布等。

三、考试形式和难度考试的内容范围较广,难度适中。

考生需要具备一定的基础知识和解题能力,才能在考试中取得好成绩。

建议考生在备考时注重基础知识的掌握和解题技巧的培养,多做题、多练习。

四、考试题型和分值考试题型主要包括选择题、填空题和解答题,分值分布如下:1. 选择题:共20小题,每小题3分,共60分。

2. 填空题:共5小题,每小题4分,共20分。

3. 解答题:包括计算题、证明题和应用题等,共70分。

根据以上考纲,考生在备考时需要注重基础知识的学习和掌握,多做题、多练习,提高解题能力和速度。

同时,还需要注重解题技巧的培养,掌握一些常见的解题方法和技巧,以提高解题效率和准确性。

2024天津专升本数学考纲

2024天津专升本数学考纲

2024天津专升本数学考纲2024年天津专升本数学考纲的发布,引起了广大考生的关注和关心。

数学作为一门基础学科,对于专升本考生来说,具有重要的地位和作用。

了解和熟悉考纲,对于备考有着重要的指导意义。

下面,本文将详细介绍2024年天津专升本数学考纲的内容要点。

一、考试形式和时间安排2024年天津专升本数学考试采取闭卷考试形式,考试时间为120分钟。

考试分为两个部分,第一部分为选择题,占总分的50%,第二部分为解答题,占总分的50%。

二、考试内容和知识点2024年天津专升本数学考试的内容包括以下几个知识点:1.函数与方程考生需要熟练掌握函数的定义、性质和图像,以及常见函数的性质和变换。

对于一次、二次、三次函数及其图像要有深入的了解。

方程是数学中的重要概念,考生需要熟练掌握一元一次方程和一元二次方程的解法,以及方程的应用。

2.数列与数列极限数列是数学中的重要概念,考生需要了解数列的定义和性质,熟练掌握等差数列和等比数列的求和公式和通项公式。

数列极限是数列中的重要概念,考生需要了解数列极限的定义和性质,以及数列极限的求解方法。

3.导数与微分导数是微积分中的重要概念,考生需要了解导数的定义和性质,熟练掌握常见函数的导数公式和求导法则。

微分是导数的重要应用,考生需要了解微分的定义和性质,以及微分的应用。

4.积分与定积分积分是微积分中的重要概念,考生需要了解积分的定义和性质,熟练掌握常见函数的积分公式和求积法则。

定积分是积分的重要应用,考生需要了解定积分的定义和性质,以及定积分的应用。

5.概率与统计概率与统计是数学中的重要分支,考生需要了解概率的基本概念和性质,熟练掌握概率的计算方法和应用。

统计是概率的重要应用,考生需要了解统计的基本概念和性质,以及统计的计算方法和应用。

三、考试要求和评分标准2024年天津专升本数学考试要求考生具备以下几个方面的能力:1.基本概念的掌握考生需要掌握数学中的基本概念,包括函数、方程、数列、导数、微分、积分、概率和统计等。

广东专升本数学综合考纲

广东专升本数学综合考纲

广东专升本数学综合考纲摘要:一、前言二、广东专升本数学综合考纲的内容1.函数、极限与连续2.导数与微分3.积分4.常微分方程5.向量代数与空间解析几何6.多元函数微分学7.多元函数积分学8.无穷级数三、广东专升本数学综合考纲的作用1.指导考生复习2.评估考生水平3.选拔优秀学生四、备考广东专升本数学综合的建议1.掌握基础知识2.加强练习3.注重思维能力的提升4.做好时间规划正文:广东专升本数学综合考纲是为了指导考生复习,评估考生在数学方面的综合水平,以及选拔优秀的学生进入本科阶段学习而制定的。

本文将详细介绍广东专升本数学综合考纲的内容、作用以及备考建议。

一、广东专升本数学综合考纲的内容考纲涵盖了函数、极限与连续、导数与微分、积分、常微分方程、向量代数与空间解析几何、多元函数微分学、多元函数积分学以及无穷级数等多个方面的内容。

这些内容是数学的基础知识,对于提高考生的数学素养和逻辑思维能力具有重要意义。

二、广东专升本数学综合考纲的作用1.指导考生复习:考纲列出了需要掌握的知识点,帮助考生明确复习方向,合理安排复习计划。

2.评估考生水平:通过对考纲内容的考查,可以了解考生在数学方面的掌握程度,为选拔优秀学生提供依据。

3.选拔优秀学生:通过设置考纲,使得选拔过程更加公平、公正,有利于选拔出具有潜力和实力的学生。

三、备考广东专升本数学综合的建议1.掌握基础知识:基础知识是数学学习的基础,只有扎实的基础知识,才能在考试中取得好成绩。

2.加强练习:数学学习需要不断练习,通过大量练习可以提高解题能力,培养数学思维。

3.注重思维能力的提升:数学学习不仅仅是解题,更重要的是培养思维能力,学会用数学方法分析问题。

4.做好时间规划:备考过程中,要合理安排时间,确保每个知识点都得到充分复习。

乐山师范学院数学与应用数学专业专升本考纲

乐山师范学院数学与应用数学专业专升本考纲

乐山师范学院数学与应用数学专业专升本专业综合考试大纲一、考试范围,参考书考试范围: 数学分析, 高等代数,各占50%.参考书: 华东师大编《数学分析》,高等教育出版社.徐德余主编的《高等代数》四川大学出版社.二、题型, 分值比例, 考试时间选择题20%,填空题20%,解答题40%,证明题20%.考试时间120分钟.三、数学分析考试内容及要求实数集与函数1、内容实数,数集,确界原理,函数概念,具有某些特征的函数。

2、要求了解实数的小数表示形式,理解实数的有序性、稠密性与封闭性,实数集确界原理,函数的定义及复合函数、有界函数、反函数、单调函数和初等函数的定义,掌握邻域的概念,实数绝对值的有关性质,基本初等函数的定义、性质及其图象。

数列极限1、内容数列极限的概念,收剑数列的性质,数列极限存在的条件。

2、要求理解数列发散、单调、有界和无穷小数列等有关概念和收敛数列性质,掌握数列极限的ε定义及收敛数列的四则运算定理、迫敛性定理、单调有界定理和柯西准则。

-N函数的极限1、内容函数极限的概念,函数极限的性质,函数极限存在的条件,两个重要极限,无穷小量与无穷大量,阶的比较。

2、要求了解函数极限的几何意义,理解函数极限的定义,掌握函数极限的基本性质、海涅定理与柯西准则、两个重要极限、无穷小(大)量及其阶的比较。

函数的连续性1、内容函数连续的概念,连续函数的性质,初等函数的连续性。

2、要求了解函数的间断点及其种类、初等函数的连续性,理解函数在一点连续和在某区间上一致连续的概念,掌握连续函数的局部性质、运算性质、复合函数和反函数的连续性、闭区间上连续函数的性质。

导数与微分1、内容导数概念,求导法则,微分,高阶导数与高阶微分。

2、要求了解导数的物理意义和导数、微分的几何意义,理解导数、微分的定义和一阶微分形式的不变性,掌握导数的四则运算法则、复合函数的求导法则、高阶导数与高阶微分的计算方法。

微分中值定理及其应用1、内容中值定理,几种特殊类型的不定式极限与罗比塔法则,泰勒公式,函数的单调性与极值,函数的凸性与拐点,函数作图,方程的近似解。

数学分析专升本考试大纲

数学分析专升本考试大纲

《数学分析》专升本考试大纲一、课程名称:数学分析二、适用专业:数学与应用数学三、考试方法:闭卷考试四、考试时间:120分钟五、试卷结构:总分:100分;判断题:10分;填空题20分;选择题15分;计算证明应用题:55分六、参考教材:1、林元重著,新编数学分析(上、下册),武汉大学出版社,2015年3月第1版2、陈纪修、於崇华、金路编,数学分析(上、下册),高等教育出版社,2004年6月第二版3、华东师范大学数学系编,数学分析(上、下册),高等教育出版社,2011年5月第四版七、考试内容及基本要求第1章极限论1.1引言(一) 考核要求1. 了解数学分析是什么.2. 掌握实数的性质(有序性,稠密性,阿基米德性.实数的四则运算),掌握实数的基本概念和最常见的不等式.3.掌握函数概念和函数的不同的表示方法.4. 掌握函数的有界性,单调性,奇偶性和周期性.(二) 考核范围1. 数学分析是什么.2. 实数的基本性质和绝对值的不等式,区间与邻域,集合的上下界.3. 函数的定义与表示法,复合函数与反函数,初等函数.4. 函数的有界性,单调性,奇偶性和周期性.1.2 数列极限概念(一) 考核要求ε-定义证明极限,学会证明1. 深刻理解并掌握数列极限概念,学会用数列极限的N数列极限的基本方法.2. 掌握数列极限的基本性质,掌握四则运算法则.3. 掌握夹逼准则,理解数集确界及确界原理,掌握单调有界准则,理解柯西收敛准则.(二) 考核范围1. 数列极限概念.2. 数列极限的唯一性,有界性,保号性,保不等式性,四则运算法则.3. 数列极限的夹逼准则和单调有界准则,数集的确界及确界原理,数列的子列及相关定理(包括致密性定理),柯西收敛准则.1.3 函数极限概念及性质(一) 考核要求1. 正确理解和掌握函数极限的M ε-定义、εδ-定义,掌握极限与左右极限的关系,能够用定义证明和计算函数的极限.2. 理解并掌握函数极限的基本性质(唯一性,有界性,保号性,保不等式性,四则运算法则),会用这些性质计算函数的极限.(二) 考核范围1. 函数极限的M ε-定义、εδ-定义,左右极限.2. 函数极限的唯一性,有界性,保号性,保不等式性,四则运算法则.1.4 函数极限存在的准则与两个重要极限(一) 考核要求1. 理解并掌握函数极限的归结原则,了解函数极限的单调有界定理,理解函数极限的柯西准则.能够写出函数极限的归结原理和柯西准则.2. 熟练掌握两个重要极限.(二) 考核范围1. 函数极限的归结,函数极限的单调有界定理,函数极限的柯西准则.2. 两个重要极限.1.5 无穷小量与无穷大量(一) 考核要求掌握无穷小量与无穷大量以及它们的阶数的概念.(二) 考核范围无穷小量与无穷大量,高阶无穷小,同阶无穷小,等价无穷小,无穷大.1.6 连续性概念(一) 考核要求深刻理解并掌握函数连续性概念.(二) 考核范围1. 函数连续,函数左右连续,区间上函数连续的概念.2. 间断点及其分类.1.7 连续函数的局部性质与初等函数的连续性(一) 考核要求掌握连续函数的局部性质和和初等函数的连续性.(二) 考核范围1. 连续函数的局部有界性,局部保号性,四则运算.2. 复合函数的连续性,反函数的连续性,初等函数的连续性.1.8 闭区间上连续函数的性质(一) 考核要求1. 理解闭区间上连续函数的最大最小值定理,介值性定理.2. 理解并掌握一致连续性概念,理解一致连续性定理.(二) 考核范围1. 连续函数的最大最小值定理,介值性定理.2. 一致连续性概念,一致连续性定理.1.9 实数的连续性与上(下)极限(一)考核要求1. 理解区间套定理、聚点定理,了解上(下)极限及其性质.2. 理解有限覆盖定理,了解几个基本定理的等价性.(二)考核范围1. 区间套定理、聚点定理,上(下)极限及其性质.2. 有限覆盖定理,几个基本定理的等价性.第2章一元函数微分学2.1 导数的概念(一) 考核要求1. 理解并掌握导数的定义,掌握导数的几何意义,了解导数的物理意义.2. 了解增量——微分公式,掌握可导与连续的关系.了解费马定理、达布定理.(二) 考核范围1. 变化率——导数,单侧导数,导函数,几个基本导数公式,几何意义.2. 增量——微分公式,可导与连续的关系.2.2 导数的运算法则(一) 考核要求1. 熟练掌握导数的四则运算法则,理解反函数的求导法则.2. 熟练掌握复合函数的求导法则及基本导数公式.3. 知道求分段函数在分段点处的导数.(二) 考核范围1.导数的四则运算法则,反函数的求导法则.2. 复合函数的求导法则,对数求导法,基本导数公式.2.3 参变量函数和隐函数的导数(一) 考核要求掌握参变量函数的求导法则,知道求隐函数的导数,会运用求导法则求相关变化率.(二) 考核范围参变量函数的求导法则,隐函数的求导法,相关变化率.2.4 微分(一) 考核要求1. 深刻理解并掌握微分的概念,掌握微分的运算方法,了解微分在近似计算中的应用.2. 理解微分与导数的关系,会利用微分法则求参变量函数和隐函数的导数.(二) 考核范围1. 微分的概念,微分的运算法则,一阶微分形式的不变性,微分在近似计算中的应用.2. 利用微分法则求参变量函数和隐函数的导数.2.5 高阶导数与高阶微分(一) 教学目的1. 掌握高阶导数的概念和计算,掌握高阶导数的莱布尼茨公式.2. 了解高阶微分及其计算,知道高阶导数与高阶微分的关系.(二) 考核范围1. 高阶导数及其计算,高阶导数的莱布尼茨公式.2. 高阶微分及其计算.2.6 拉格朗日定理和函数的单调性、极值(一) 考核要求1. 掌握罗尔定理和拉格朗日中值定理的条件、结论及证明方法,会应用中值定理证明一些不等式和一些中值公式,了解达布定理和导数极限定理.2. 掌握求函数的单调区间和极值及最值的一般方法.(二) 考核范围1. 极值概念与费马定理.2. 罗尔定理,拉格朗日中值定理,应用中值定理证明不等式和中值公式举例,达布定理,导数极限定理.3. 函数的单调性与极值,函数的最值,最值应用题举例.2.7 柯西中值定理和不定式极限(一) 考核要求掌握柯西中值定理,掌握罗比达法则,会求各种形式的不定式极限.(二) 考核范围柯西中值定理及其简单应用举例,洛必达法则,不定式极限计算举例.2.8 泰勒公式(一) 考核要求理解带两种余项形式的泰勒公式,掌握基本初等函数的麦克劳林公式(熟记六个),会利用它们求不定式极限,了解泰勒公式在求高阶导数、函数极值以及近似计算方面的应用.(二) 考核范围1. 带佩亚诺余项和带拉格朗日余项的泰勒公式和麦克劳林公式,几个基本初等函数的麦克劳林公式.2. 泰勒公式应用举例(不定式极限,高阶导数,函数极值,近似计算).2.9其它应用(一) 考核要求1. 掌握函数凸性与拐点的概念,会求函数凹凸区间与拐点,了解函数凸性在证明不等式方面的应用.2.会求曲线的渐近线,了解函数作图的一般步骤,会描绘函数的图像.f x=近似解的牛顿切线法.3. 了解求方程()0(二) 考核范围f x=的近似解.函数的凸性与拐点,凸性的判定,渐近线,函数作图,方程()0第3章一元函数积分学3.1 不定积分的概念与线性运算(一) 考核要求理解原函数与不定积分的概念,熟练掌握基本积分公式及不定积分的线性运算法则,了解不定积分的几何意义,了解连续分段函数的原函数的求法.(二) 考核范围原函数与不定积分的概念,基本积分公式与线性运算法则,不定积分的几何意义.3.2 换元积分法与分部积分法(一) 考核要求理解并熟练掌握第一、二换元积分法与分部积分法.(二) 考核范围第一、二换元积分法,分部积分法.3.3 有理函数和三角函数有理式的不定积分(一) 考核要求掌握有理函数不定积分的计算方法,会计算一些三角函数有理式的不定积分,会计算一些简单无理函数的不定积分,了解欧拉变换法.(二) 考核范围有理函数的不定积分,三角函数有理式的不定积分,两类无理函数的不定积分.3.4 定积分的概念与牛顿——莱布尼茨公式(一) 考核要求-定义,了解定积分的几何1. 深刻理解并掌握定积分的概念,知道定积分概念的εδ意义和物理意义.2. 熟练掌握牛顿——莱布尼茨公式,会利用牛顿——莱布尼茨公式计算一些特殊的和式极限.(二) 考核范围-定义),牛顿—定积分的几何背景和物理背景,定积分的定义(极限形式的定义和εδ—莱布尼茨公式.3.5 可积函数类与定积分的性质(一) 考核要求1. 理解函数可积的必要条件,函数可积的充要条件(可积准则),掌握三类可积函数,对这些定理的证明及其证明思路只要求读懂,不作其它较高要求.2. 理解并掌握定积分的若干基本性质,能证明一些简单的积分不等式.(二) 考核范围1. 可积的必要条件,上(下)和与上(下)积分,可积的充要条件(可积准则),可积函数类.2. 定积分的基本性质,积分第一中值定理.3.6 微积分学基本定理、定积分的计算(续)(一) 考核要求1. 掌握微积分学基本定理,会求变上(下)限的定积分的导数.2. 熟练掌握换元积分法与分部积分法.3. 理解积分第二中值定理,理解泰勒公式的积分型余项,了解定积分近似计算.(二) 考核范围变上(下)限的定积分,微积分学基本定理,换元积分法与分部积分法,积分第二中值定理,泰勒公式的积分型余项,定积分近似计算.3.7 (3.8)定积分的应用(一) 考核要求1. 领会微元法的要领,掌握平面图形面积、由平行截面面积求体积、平面曲线弧长的计算公式,了解曲线的曲率,旋转曲面的面积.2. 领会定积分在物理应用方面的基本方法.(二)考核范围1. 微元法概述.2. 平面图形的面积,由平行截面面积求体积,平面曲线的弧长与曲率,旋转曲面面积.3. 功,液体静压力,引力.3.9 无穷积分与瑕积分(一) 考核要求1. 掌握无穷积分与瑕积分的定义和计算.2. 理解无穷积分的基本性质,掌握非负函数无穷积分的收敛性判别的比较判别法,掌握绝对收敛和条件收敛的概念,理解狄利克雷判别法和阿贝尔判别法(不作其它较高要求).3. 了解瑕积分与无穷积分的关系,了解瑕积分的收敛性判别法.(二) 考核范围1. 无穷积分与瑕积分的定义和计算.2. 无穷积分的基本性质,比较判别法(包括极限形式及特殊形式),绝对收敛与条件收敛,狄利克雷判别法与阿贝尔判别法.3. 瑕积分的收敛性判别法.第4章 级数论4.1 数项级数的基本概念及性质(一) 考核要求1. 理解数项级数收敛与发散的定义,掌握收敛级数的基本性质,能够根据定义或性质判别一些简单简单级数的敛散性.2. 掌握等比级数与调和级数.3. 理解级数收敛的柯西准则,对应用柯西准则判别级数的敛散性不作较高要求.(二) 考核范围数项级收敛与发散的定义和基本性质,等比级数,调和级数,柯西准则.4.2 正项级数(一) 考核要求1. 掌握判别正项级数敛散性的基本方法:比较判别法,比式判别法和根式判别.2. 了解积分判别法和拉贝判别法.(二) 考核范围1. 比较判别法,比式判别法,根式判别法.2. 积分判别法,拉贝判别法.4.3 变号级数(一) 考核要求1. 掌握交错级数的莱布尼茨判别法,掌握绝对收敛与条件收敛概念.2. 理解狄利克雷判别法与阿贝尔判别法,对其应用一般不作较高要求.3. 理解绝对收敛级数的两条重要性质,对其应用不作较高要求.(二) 考核范围1. 交错级数及其莱布尼茨判别法,绝对收敛与条件收敛.2. 狄利克雷判别法与阿贝尔判别法.3. 绝对收敛级数的重排,绝对收敛级数的乘积.4.4 函数项级数及其一致收敛性(一) 考核要求1. 深刻理解并掌握函数列和函数项级数一致收敛性的定义,理解一致收敛的柯西准则.2. 掌握一致收敛的另一充要条件(即lim sup ()()0n n x D f x f x →∞∈-=lim sup ()0n n x DR x →∞∈=),掌握判别函数项级数的魏尔斯特拉斯判别法即优级数判别法.3. 理解判别函数项级数收敛性的狄利克雷判别法和阿贝尔判别法,对其应用不作较高要求.(二) 考核范围1. 函数列与函数项级数一致收敛性的定义,一致收敛的柯西准则.2. 一致收敛的另一充要条件,魏尔斯特拉斯判别法.3. 函数项级数收敛性的狄利克雷判别法和阿贝尔判别法.4.5 一致收敛函数序列与函数项级数的性质(一) 考核要求理解并掌握一致收敛函数列和函数项级数的连续性,逐项积分与逐项求导法则.(二) 考核范围一致收敛函数列与函数项级数的连续性,逐项积分与逐项求导法则.4.6 幂级数及其性质(一) 考核要求掌握幂级数的收敛半径及收敛域的求法,掌握幂级数的基本性质和运算法则.(二) 考核范围幂级数的收敛半径,收敛半径的计算公式,收敛区间和收敛域的概念.4.7 函数的幂级数展开(一) 考核要求掌握泰勒级数和麦克劳林级数,熟记一些初等函数的幂级数展开式,掌握初等函数的幂级数展开.(二) 考核范围泰勒级数,麦克劳林级数,五种基本初等函数的幂级数展开式,初等函数的幂级数展开(直接法和间接法).4.8 傅里叶级数(一) 考核要求1. 理解三角级数和傅里叶级数定义,掌握傅里叶级数的收敛定理,能够按照收敛定理将比较简单的函数展开成傅里叶级数.2. 掌握以2l为周期的函数的展开式,掌握偶函数和奇函数的傅里叶级数的展开,掌握正弦级数,余弦级数.3. 了解收敛定理的证明,了解傅里叶级数的一致收敛性.(二) 考核范围1. 三角级数;正交函数系,傅里叶级数,收敛定理,傅里叶级数的展开式举例.2. 以2l为周期的函数的展开式,掌握偶函数和奇函数的傅里叶级数的展开式,函数的奇延拓与偶延拓及正弦级数与余弦级数.3.黎曼引理,收敛定理的证明,贝塞尔不等式,一致收敛性定理.第5章多元函数微分学5.1多元函数与极限(6)(一) 考核要求1. 理解二元及多元函数的定义.了解平面中邻域,开域,闭域的定义.-定义,知道二元函数极限存在的充要条件,了解方向2. 理解二元函数重极限的εδ极限与累次极限,了解重极限与累次极限的区别与联系.(二) 考核范围1. 二元函数及多元函数,平面中的邻域,开域,闭域.2. 二元函数重极限定义,二元函数极限存在的充要条件,方向极限与累次极限.5.2 二元函数的连续性(一) 考核要求1. 理解二元函数的连续性的定义,知道二元初等函数的连续性.R上的完备性定理,知道有界闭区域上连续函数的整体性质.2. 了解有关二维空间2(二) 考核范围1. 二元函数的连续性的定义,二元初等函数的连续性.R中的聚点定理,致密性定理,闭区域套定理,有限覆盖定理.2. 23. 有界闭域上连续函数的最大最小值定理,介值性定理和一致连续性.(1) 基本要求:掌握二元函数的连续性的定义,了解有界闭域上连续函数的性质.(2) 较高要求:掌握有界闭域上连续函数性质的证明要点.5.3 偏导数与全微分(一) 考核要求1. 理解并掌握多元函数偏导数的定义,知道偏导数的几何意义,能够熟练的求出初等函数的偏导数和高阶偏导数,能够求二元函数在一些特殊的导数,知道混合偏导数与求导顺序无关的条件.2. 理解并掌握二元函数可微和全微分的定义,掌握微分法则,掌握可微的必要条件,理解可微的充分条件,了解高阶全微分及其运算.(二) 考核范围1. 多元函数偏导数与高阶偏导数,偏导数的几何意义,混合偏导数与求导顺序无关的条件.2. 二元函数可微和全微分的定义,微分法则,可微的必要条件,可微的充分条件,高阶全微分及其运算.5.4 复合函数微分法与方向导数(一) 考核要求理解并熟练掌握复合函数求导的链式法则,掌握方向导数与梯度的定义及其运算,了解二元函数的梯度的几何意义.(二) 考核范围1. 复合函数链式法则,复合函数的全微分,一阶全微分形式不变性.2. 方向导数与梯度5.5 多元函数的泰勒公式(一) 考核要求理解并掌握多元函数的泰勒公式,了解泰勒公式的一个推论——中值定理.(二) 考核范围泰勒公式与中值定理,泰勒公式的计算与应用举例.5.6 隐函数及其微分法(一) 考核要求1. 理解隐函数定理和可微性定理,掌握隐函数微分法.2. 了解隐函数组及其可微性定理,知道求隐函数组的偏导数.(二) 考核范围1. 隐函数存在性定理,隐函数可微性定理.2. 隐函数组及其可微性定理,反函数组定理.5.7 多元函数偏导数的几何应用(一) 考核要求1. 理解空间曲线(两种表示形式)的切线方程的推导,掌握空间曲线的切线与法平面方程的求法,理解曲面(两种表示形式)的切平面方程的推导,掌握曲面的切平面与法线的求法.2. 了解二元函数全微分的几何意义,了解三元函数梯度的几何意义.(二) 考核范围1. 空间曲线的切线与法平面方程,曲面的切平面与法线方程.2. 二元函数全微分的几何意义,、三元函数梯度的几何意义.5.8多元函数的极值与条件极值(一) 考核要求1. 掌握二元函数的极值的必要条件与充分条件.2. 了解拉格朗日乘数法,会用拉格朗日乘数法求条件极值.(二) 考核范围1. 二元函数的极值,必要条件与充分条件.2. 条件极值,拉格朗日乘数法,用条件极值的方法证明不等式.第6章多元函数积分学6.1 二重积分(一) 考核要求1. 了解平面点集的面积定义及其性质,理解二重积分的定义和性质,理解有界闭区域上的连续函数可积的结论,理解并熟练掌握化二重积分为累次积分的计算公式.2. 理解二重积分变量变换公式的证明,掌握用极坐标计算二重积分.(二) 考核范围1. 二重积分的定义和性质,化二重积分为累次积分的计算公式.2. 二重积分的变量变换公式,用极坐标计算二重积分.6.2 三重积分(一) 考核要求1. 掌握三重积分的定义,了解三重积分的性质,熟练掌握化三重积分为累次积分的计算公式(柱体法和截面法).2. 了解三重积分变量变换公式,掌握用球坐标和柱坐标计算三重积分.(二) 考核范围1. 三重积分的定义,化三重积分为累次积分的计算公式(柱体法和截面法).2. 三重积分变量变换公式,柱坐标变换公式,球坐标变换公式.6.3 n重积分和广义重积分(一) 考核要求了解n重积分和广义二重积分的概念和性质,了解广义二重积分的收敛性判别.(二) 考核范围n重积分的定义,计算公式,广义二重积分的性质,收敛性判别.6.4 重积分的应用(一) 考核要求掌握用重积分计算计算面积和体积,掌握曲面面积的计算公式,了解物体的重心,转动惯量与引力及其计算公式.(二) 考核范围平面区域的面积,立体的体积,曲面的面积,物体重心,转动惯量,引力.6.5 第一型曲线积分(一) 考核要求理解并掌握第一型曲线积分的定义,性质和计算公式.(二) 考核范围第一型曲线积分的定义,性质和计算公式.6.6 第二型曲线积分(一) 考核要求1. 理解并掌握第二型曲线积分的定义,性质,坐标形式和计算公式.2. 了解两类曲线积分之间的联系.(二) 考核范围1. 第二型曲线积分的定义,性质,坐标形式和计算公式.2. 两类曲线积分之间的联系.6.7 格林公式(一) 考核要求理解并掌握格林公式以及曲线积分与路线无关的条件.(二) 考核范围格林公式,曲线积分与路线无关的条件.6.8 第一型曲面积分(一) 考核要求理解并掌握第一型曲面积分的定义和计算公式.(二) 考核范围第一型曲面积分的定义和计算公式.6.9 第二型曲面积分(一) 考核要求理解并掌握第二型曲面积分的定义、性质,了解两类曲面积分的联系,掌握第二型曲面积分的计算公式.(二) 考核范围有向曲面的概念,第二型曲面积分的定义、性质,两类曲面积分的联系,第二型曲面积分的计算公式.6.10 高斯公式与斯托克斯公式(一) 考核要求理解并掌握高斯公式和斯托克斯公式.(二) 考核范围高斯公式,斯托克斯公式,沿空间曲线的第二型积分与路径无关的条件.*6.11 含参变量的积分(一) 考核要求1. 理解并掌握含参变量的定积分的连续性,可微性和可积性定理,掌握计算含参变量的定积分基本方法.2. 了解含参变量的广义积分的一致收敛性概念和性质,了解一致收敛性判别法(魏尔斯特拉斯判别法,狄里克雷判别法和阿贝尔判别法.3. 了解含参变量的广义积分的连续性,可微性与可积性定理,了解含参变量的定积分基本方法.4. 了解Γ函数与β函数的定义、性质及其联系.(二) 考核范围1. 含参变量的定积分的连续性,可微性和可积性定理的证明,定理的应用.2. 含参变量的广义积分的一致收敛性概念和性质,一致收敛性判别法.3. 连续性,可微性与可积性定理,定理的应用.4.Γ函数与β函数的定义、性质及其联系,余元公式.萍乡学院工程与管理学院2019年3月20日。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

乐山师范学院2013年专升本数学与应用数学专业综合课考试大纲一、考试方式及时间:闭卷笔试、120分钟二、考试科目及各科目分值考试总分100分,其中课程一:《数学分析》(50分)、课程二:高等代数(50分)。

三、试题类型(各题型可明确分值)选择题20%,填空题20%,解答题40%,证明题20%.四、各科目参考书目及复习范围:课程一:数学分析一、总体要求:考生应该理解或了解《数学分析》中实数集与函数、数列与函数的极限、函数的连续性、导数与微分、微分中值定理及其应用、实数完备性、不定积分、定积分及其应用、反常积分、数项级数、函数列级函数项级数、幂级数、傅里叶级数、多元函数极限与连续、多元函数的微分学、隐函数定理及其应用、含参量积分、曲线积分、重积分、曲面积分的基本概念与基本理论。

本课程的内容按照基本要求的高低用不同的词汇加以区分。

对概念、理论从高到低用“理解”、“了解”二级区分,对运算、方法从高到底用“熟练掌握”、“掌握”、“会”或“能”三级区分。

二、参考书目:华东师大编《数学分析》,高等教育出版社.三、复习范围及要求实数集与函数1、内容实数,数集,确界原理,函数概念,具有某些特征的函数。

2、要求了解实数的小数表示形式,理解实数的有序性、稠密性与封闭性,实数集确界原理,函数的定义及复合函数、有界函数、反函数、单调函数和初等函数的定义,掌握邻域的概念,实数绝对值的有关性质,基本初等函数的定义、性质及其图象。

数列极限1、内容数列极限的概念,收剑数列的性质,数列极限存在的条件。

2、要求理解数列发散、单调、有界和无穷小数列等有关概念和收敛数列性质,掌握数列极限的N -ε定义及收敛数列的四则运算定理、迫敛性定理、单调有界定理和柯西准则。

函数的极限1、内容函数极限的概念,函数极限的性质,函数极限存在的条件,两个重要极限, 无穷小量与无穷大量,阶的比较。

2、要求了解函数极限的几何意义,理解函数极限的定义,掌握函数极限的基本性质、海涅定理与柯西准则、两个重要极限、无穷小(大)量及其阶的比较。

函数的连续性1、内容函数连续的概念,连续函数的性质,初等函数的连续性。

2、要求了解函数的间断点及其种类、初等函数的连续性,理解函数在一点连续和在某区间上一致连续的概念,掌握连续函数的局部性质、运算性质、复合函数和反函数的连续性、闭区间上连续函数的性质。

导数与微分1、内容导数概念,求导法则,微分,高阶导数与高阶微分。

2、要求了解导数的物理意义和导数、微分的几何意义,理解导数、微分的定义和一阶微分形式的不变性,掌握导数的四则运算法则、复合函数的求导法则、高阶导数与高阶微分的计算方法。

微分中值定理及其应用1、内容中值定理,几种特殊类型的不定式极限与罗比塔法则,泰勒公式,函数的单调性与极值,函数的凸性与拐点,函数作图,方程的近似解。

2、要求了解导函数的极限定理与导函数的介值性定理、函数凸性的概念,理解中值定理及其分析意义与几何意义、泰勒定理、函数在某一区间上单调以及严格单调的意义和条件,掌握中值定理的证明方法、罗比塔法则及其应用、泰勒公式、函数单调性与单调区间的判别法、极值的判别法。

实数完备性1、内容实数完备性六个等价定理,闭区间上连续函数整体性质的证明,上、下极限。

2、要求了解数列上极限、下极限的概念及其与数列极限的关系,理解六个基本定理的实质意义和相互等价性,掌握区间套、聚点、开覆盖等概念、六个基本定理的条件与结论及证明的基本思想方法和应用。

不定积分1、内容不定积分概念与基本积分公式,换元积分法与分部积分法,几类可化为有理函数的积分。

2、要求了解积分与微分的互逆关系,理解原函数与不定积分的关系及其几何意义,掌握不定积分的线性运算法则、基本积分公式、换元积分法、分部积分法、有理函数的积分、三角函数有理式的积分、简单无理函数的积分。

定积分1、内容定积分的概念,定积分条件,微积分学基本定理。

2、要求了解可积的必要条件及上和、下和的性质,理解并掌握定积分的思想、定积分的性质、微积分学基本定理,掌握换元积分法和分部积分法并能解决计算问题。

定积分应用1、内容平面图形面积计算,已知截面面积求体积,曲线弧长与曲率,重心坐标、平均值、变力作功。

2、要求掌握各种平面图形面积的计算方法、曲线弧长的各种表达形式及其计算方法、定积分在物理学上的应用,理解并掌握由截面面积函数求空间立体体积的计算公式的应用、利用微元法计算旋转曲面的面积。

反常积分1、内容反常积分概念,无穷积分的性质与收敛判别,瑕积分的性质与收敛判别。

2、要求了解无穷积分、瑕积分的性质与收敛性判别法,理解非正常积分的概念,掌握无穷积分与瑕积分的计算方法。

数项级数1、内容级数的敛散性,正项级数,一般项级数。

2、要求理解并掌握级数、部分和、收敛、发散的概念,理解级数的收敛准则及其性质,熟练掌握正项级数敛散性判别法的比较原则、比式、根式判别法,理解交错级数的概念,进而掌握其敛散性判别法,弄清绝对收敛的含义并掌握其有关的性质及一般项级数的敛散性判别法。

函数列与函数项级数1、内容一致收敛性,一致收敛的函数列与函数项级数的性质。

2、要求理解并掌握函数列(或函数项级数)及一致收敛的概念和性质,掌握函数项级数的几个重要判别法,并能利用它们去进行判别,掌握一致收敛函数列与函数项级数的极限与和函数的连续性、可积性、可微性,并能解决实际问题。

幂级数1、内容幂级数,函数的幂级数展开。

2、要求掌握幂级数的概念、性质、收敛域、一致收敛性,理解并会求幂级数的收敛区间及半径,理解和函数的性质,掌握幂级数的有关运算,理解并掌握函数的幂级数展开并会计算函数值。

傅里叶级数1、内容傅里叶级数,以l2为周期的傅里叶级数,收敛定理的证明。

2、要求正确理解三角级数,正交函数系等概念,掌握傅里叶级数的定义及收敛定理,理解以 2为周期的函数的傅里叶级数与其周期延拓函数的傅里叶级数的关系,理解并掌握一个其图形由有限段光滑弧线构成的函数,都可以用傅里叶级数表示,掌握并区别奇、偶函数的傅里叶展开式,理解并会应用傅里叶级数的收敛性定理。

多元函数极限与连续1、内容平面点集与多元函数的概念,二元函数的极限,二元函数的连续性,2、教学目的及要求掌握平面点集的有关概念,并能求出函数的定义域,绘出其图形,理解并掌握二元函数的极限,能利用累次极限解决问题,搞清重极限与累次极限的关系,理解二元函数的连续性,掌握有界域上连续函数的性质。

多元函数的微分学1、内容可微性,复合函数的微分法,方向导数与梯度,泰勒定理与极值。

2、要求理解偏导数、全微分、方向导数、梯度等概念。

熟练掌握偏导数的计算,特别是求复合函数偏导数的运算,会求空间曲线的切线方程,法平面方程;空间曲面的切平面方程,法线方程;掌握泰勒公式的意义和用途,并能写出简单二元函数的泰勒公式或马克劳林公式;熟练掌握求二元函数的局部极值和最大(小)值的方法,并能解决一些简单的应用问题。

隐函数定理及其应用1、内容隐函数,隐函数组,几何应用,条件极值。

2、要求理解隐函数概念,掌握隐函数(组)定理及反函数组定理,要求能运用定理验证方程(或方程组)确定隐函数(或隐函数组),能熟练而准确地求隐函数(或隐函数组)与反函数组的偏导数,了解隐函数存在的几何意义以及坐标变换的一些结果,会求平面曲线的切线方程和法线方程,空间曲线的切线方程与法平面方程,空间曲面的切平面方程与法线方程,熟练掌握求条件极值的拉格朗日乘数法,并能把实际中的某些极值问题抽象为数学中的条件极值问题。

含参量积分1、内容参量正常积分,含参量反常积分,欧拉积分。

2、要求理解含参量正常积分的概念,掌握含参量正常积分的连续性、可积性与可微性,积分顺序的交换并熟练掌握它们的应用,理解含参量反常积分一致收敛的概念,掌握其判别的方法,掌握含参量反常积分的分析性质,并能应用其计算积分,了解欧拉积分。

曲线积分1、内容第一型曲线积分,第二型曲线积分。

2、要求理解并掌握第一型曲线积分的概念、性质、计算,理解并掌握第二型曲线积分及其性质、计算方法,了解两类曲线积分之间的联系。

重积分1、内容二重积分概念,二重积分的计算,格林公式和曲线积分与路线的无关性,二重积分的变量变换,三重积分,重积分的应用。

2、要求掌握重积分的概念、可积条件、性质,会用累次积分的方法计算二重积分,能够根据积分区域和被积函数的特征进行适当的变量替换,熟练掌握极坐标替换,一般坐标替换。

理解并掌握格林公式及曲线积分与路线的无关性,并能解决有关计算问题。

会用累次积分的方法计算三重积分。

会用柱面坐标、球面坐标与广义柱、球面坐标变换计算三重积分;会用二重积分计算光滑曲面的面积,用二、三重积分计算物体重心坐标和物体的转动惯量以及平面图形的面积、立体的体积。

曲面积分1、内容第一型曲面积分,第二型曲面积分。

2、要求理解并掌握第一型曲面积分的概念、性质、计算,理解并掌握曲面侧的概念,掌握第二型曲面积分的概念、性质及计算方法,了解两类曲面积分之间的联系,理解并掌握高斯公式和斯托克斯公式,并能运用它们解决某些计算问题。

课程二:高等代数一、总体要求:考生应该理解或了解《高等代数》中行列式、矩阵、线性方程组、多项式、线性空间、线性变换、欧几里得空间、二次型的基本概念与基本理论。

本课程的内容按照基本要求的高低用不同的词汇加以区分。

对概念、理论从高到低用“理解”、“了解”二级区分,对运算、方法从高到底用“熟练掌握”、“掌握”、“会”或“能”三级区分。

二、参考书目:徐德余主编的《高等代数》四川大学出版社.三、复习范围及要求行列式1、内容排列,n阶行列式定义,n阶行列式的性质,n阶行列式的各种计算方法(含展开),克兰姆法则,拉普拉斯定理,行列式的乘法规则。

2、要求正确理解n阶行列式的定义,熟练掌握它的性质和各种计算方法,熟悉几种特殊的行列式和拉普拉斯定理,会用克兰姆法则解方程组。

矩阵1、内容矩阵的定义与运算,矩阵乘积的行列式与秩,矩阵的逆,矩阵分块,初等矩阵,n维向量及其线性相关性,向量组的秩,分块矩阵的广义初等变换及其应用。

2、要求理解并掌握矩阵以及n阶矩阵的行列式的概念,掌握矩阵的运算规则,熟练掌握用初等变换求标准型和逆矩阵的几种求法,熟练掌握矩阵的秩和向量组的秩的关系,会用分块法来解决矩阵的运算及秩的关系问题。

线性方程组1、内容消元法,线性方程组有解的判别定理,齐次线性方程组,一般线性方程组。

2、要求掌握方程组系数矩阵,增广矩阵以及它们的秩的关系,能熟练应用有解判别定理和矩阵的初等变换解方程组,能求方程组的特解、一般解,导出组的基础解系和方程组的全部解。

多项式1、内容整数的一些整除性质,一元多项式的定义及运算,多项式的整除性,最大公因式,互素,不可约多项式,因式分解,重因式,多项式函数,根与一次因式的关系,复系数、实系数多项式的因式分解,有理系数多项式的可约性及其有理根,有根与可约的关系。

相关文档
最新文档