不等式与不等式组章节复习(二)(人教版)

合集下载

人教版初一数学下册不等式与不等式组复习

人教版初一数学下册不等式与不等式组复习

实际问题(包含不等关系)设未知数・列不等式(组)数学问题(一元一次不等式(组))实际问题的解答数学问题的解(不等式(组)的解集)第九章《不等式与不等式组》本章复习琴L數字目际【知识与技能】i.了解一元一次不等式及其相关概念,经历“把实际问题抽象为不等式”的过程,能够“列出不等式或不等式组表示问题中的不等关系”,体会不等式(组)是刻画现实世界中不等关系的一种有效的数学模型.2•通过观察、对比和归纳,探索不等式的性质,能利用它们探究一元一次不等式的解法.3. 了解解一元一次不等式的基本目标(使不等式逐步转化为x>a或x v a的形式),熟悉解一元一次不等式的一般步骤,掌握一元一次不等式的解法,并能在数轴上表示出解集,体会解法中蕴含的化归思想•4. 了解不等式组及其相关概念,会解由两个一元一次不等式组成的不等式组,并会用数轴确定解集•【过程与方法】用提问法引导学生复习本章所有知识点,再通过典型题、热点题的剖析与训练提高学生的解题能力.【情感态度】通过一些经典的、现实的、有意义的、富有挑战性的题型的训练,培养学生主动学习、探究学习、互相交流等学习品质,激发学生的学习兴趣.【教学重点】一元一次不等式(组)的解法及列不等式(组)解应用问题.【教学难点】与一元一次不等式(组)有关的综合型问题,应用型问题.一、知识框图,整体把握1.利用不等式(组)解决实际问题的基本过程检验二、回顾思考,梳理知识1•不等式的三个性质:不等式性质1:不等式两边加(或减)同一个数(或式子),不等号的方向不变•不等式性质2:不等式两边乘(或除以)同一个正数,不等号的方向不变不等式性质3:不等式两边乘(或除以)同一个负数,不等号的方向改变2.—元一次不等式的解法与一元一次方程的解法基本相同,只是在系数化为 1时,若两边 同乘(或除以)同一个负数,不等号的方向要改变,解未知数为 x 的不等式,就是将不等式逐 步变成x > a (或x v a )的形式.3•解一元一次不等式组的关键是求不等式的公共解集 .4.设未知数、列不等式(组)是解有关应用题的关键步骤,解相关应用题时,必须根据问 题中的相关信息,将问题数学化,进而对其中的数量关系进行梳理,有条理地、逐步深入地考 虑如何寻求解决问题的方法. 、典例精析,复习新知L 解下网不等式.并把它们的解集在数轴上表示出来二(mx - y - 5 =0, *,- 例2当m 为何值时,方程组 .._ - ' ■' 12A + 3my -7=0. 解:先解关于x ,y 的方程组,再由-列出关于m 的不等式组,解不等 式组便可求出m 的范围.15m 47 A = ---- 兀 ----- 3 m +2 7m - 107 = 3m 2+2 . (15m+7>0, 3m" +2 >0,/. \(7m- 10<0.一元 不等式组 (1) 卫+3 一 2.T ~ 5 15m + 7 3m 2 +2解方程组得 2•本章知识安排的前后顺序结合实际 问题,讨论 一兀一次 不等式的 解法 实际问题不等式的性质不等式及其解集例3 (1)若不等式组「2x-3a v 7b ,的解集是5v x v 22.求a , b 的值.L 6b-3x v 5a(2)已知不等式组十3的解集为x >2,求a 的范围. {x > aL <£(九+7心解:(1)原不等式组可化为 - x >— .5a ).依题意,得1/3 (6b-5a )v x v 1/2 (3a+7b ).又由题意知,该不等式组的解集为 5v x v 22.所以[三⑶皿222-解得lb 二乂[x>2f(2)原不等式组可化为 •依题意,知x >2,所以a < 2.例4若关于x 的不等式-3x+m > 0有5个正整数解,求m 的取值范围.解:解不等式得x v m/3,因为它有5个正整数解,所以x 的正整数解是x = 1, 2, 3, 4,5. 而x v 5的正整数解为1, 2, 3, 4,不符合题意,所以m/3比5大,而x v 6的正整数解为1, 2, 3, 4, 5,符合题意,所以m/3不超过6,综上5v m/3<6.所以15v m < 18.想一想,若关于 x 的不等式-3x+m >0有5个正整数解,则m 的取值范围又如何呢?(答案:15< m v 18)例5有3人携带会议材料乘坐电梯,这3人的体重共210kg ,每捆材料重20kg ,电梯最大 负荷为1050kg ,则该电梯在此3人乘坐的情况下,最多还能搭载 ___________________ 捆材料.分析:本题不等关系是:210+会议材料重量W 1050.设还可搭载x 捆材料,贝U: 210+20X W 1050,解得x < 42.故最多还能搭载42捆材料.例6某校七年级春游,现有36座和42座两种客车可供选择.若只租36座客车若干辆,则 正好坐满;若只租42座客车,则能少租一辆,且有一辆车没有坐满,但超过 30人.已知36座 客车每辆租金400元,42座客车每辆租金440元.(1)该校七年级共有多少人参加春游? ( 2) 请你帮该校设计一种最省钱的租车方案.由题意x 应取8,参加春游人数为:36X 8=288 (人). (2)方案①:租36座车8辆的费用:8X 400=3200 (元);方案②:租42座车7辆的费用:7X 440=3080 (元);方案③:因为 42X 6+36X 仁288,租42座车6辆和36座车1辆的总费用:6X 440+1 X解:(1)设租36座的车x 辆.据题意得:36.Y <42(X -1), 36 常 >42(兀一 2) +30,解得:「 lx <9.400=3040 (元).所以方案③:租42座车6辆和36座车1辆最省钱.【教学说明】例1~例4可让学生自主探究,交流,达成共识,得出结论;例6是关于一元一次不等式组解决实际问题的综合应用,有一定的典型性与难度,教师要引导学生分析题意中隐含的相等关系与不等关系,并将其转化为数学式•四、师生互动,课堂小结一元一次不等式(组)的解法及应用是中考的必考知识点,不仅在所有的题型中都可出现,而且还渗透到其它知识点之中实行考查,所以同学们一定要重视本节的基础知识及综合演练,只有这样,才能确保后续学习顺利进行•〔锂谍叵作翌1.布置作业:从教材“复习题9”中选取.2•完成练习册中本课时的练习本课时的重点是让学生在充分交流的基础上建立本章的知识框架图,并反思如何运用一元一次不等式及一元一次不等式组来解决实际问题,引导学生在练习中体验本章知识的运用。

第9章 不等式与不等式组 人教版七年级数学下册单元复习课件(共27张PPT)

第9章 不等式与不等式组 人教版七年级数学下册单元复习课件(共27张PPT)

A.a-1<b-1
B.-2a>-2b
C.1a+1<1b+1
2
2
D.ma>mb
变式练习
8.(2021惠州模拟)已知x>y,则下列不等式不成立的是( D )
A.x-6>y-6
B.3x>3y
C.-2x<-2y
D.-3x+6>-3y+6
9.【例2】不等式4x+1>x+7的解集在数轴上表示正确的是 ( A)
(2)设购买甲种型号的防护服 m 套,由题意,得 310m+460(100-m)≤36 000,解得 m≥662,
3
∵m 为整数,∴m 的最小值为 67,
答:购买甲种型号的防护服至少为 67 套.
并求它的所有整数解的和.
3
解:解不等式组得-3≤x<2,则整数解为-3,-2,-1,0,1, 故所有整数解的和为-5.
解:(1)设购买甲种型号的防护服x套,则购买乙种型号的防护 服(100-x)套,由题意,得 310x+460(100-x)=40 000,解得x=40, 则100-x=60(套). 答:购买甲种型号的防护服40套,购买乙种型号的防护服60套.
对点训练
1.设a>b,用“<”或“>”填空:
(1)a+2 > b+2;
(2)-4a < -4b;
(3)a _____ b.
2
2
知识点二:解不等式 求不等式解集的过程称为解不等式.
2.利用不等式的性质解不等式3x<2x+1,得 x<1 .
知识点三:解一元一次不等式 (1)去分母;(2)去括号;(3)移项;(4)合并同类项;(5)未知数的系 数化为1.在(1)~(5)的变形中,一定要注意不等号的方向是否需 要改变.
第九章 不等式与不等式组
第9课时 《不等式与不等式组》单元复习

人教版初中数学七年级数学下册第五单元《不等式与不等式组》检测(有答案解析)(2)

人教版初中数学七年级数学下册第五单元《不等式与不等式组》检测(有答案解析)(2)

一、选择题1.关于x 的方程3a x -=的解是非负数,那么a 满足的条件是( )A .3a >B .3a ≤C .3a <D .3a ≥ 2.已知点()3,2P a a --关于原点对称的点在第四象限,则a 的取值范围在数轴上表示正确的是( ).A .B .C .D .3.不等式()31x -≤5x -的正整数解有( )A .1个B .2个C .3个D .4个4.在数轴上表示不等式2(1﹣x )<4的解集,正确的是( )A .B .C .D .5.如果a b >,可知下面哪个不等式一定成立( )A .a b ->-B .11a b < C .2a b b +> D .2a ab >6.不等式组3114x x +>⎧⎨-≤⎩的最小整数解是( )A .5B .0C .-1D .-27.已知点()121M m m --,在第四象限,则m 的取值范围在数轴上表示正确的是( ) A . B .C .D .8.不等式组10840x x ->⎧⎨-≤⎩的解集在数轴上表示为( )A .B .C .D . 9.若关于x 的不等式组0722x m x -<⎧⎨-≤⎩的整数解共有3个,则m 的取值范围是( )A .5<m <6B .5<m ≤6C .5≤m ≤6D .6<m ≤710.不等式组36030x x +>⎧⎨-≤⎩的解集在数轴上表示正确的是( ) A .B .C .D .11.若关于x 的不等式组132(2)x a x x ≥-⎧⎨≤+⎩仅有四个整数解,则a 的取值范围是( ) A .12a ≤≤ B .12a ≤< C .12a <≤ D .12a << 12.下列命题是假命题的是( ).A .两条直线被第三条直线所截,如果同位角相等,那么内错角的角平分线互相平行B .在实数7.5-15327-,π-,22中,有3个有理数,2个无理数 C .在平面直角坐标系中,点(21,7)P a a -+在x 轴上,则点P 的坐标为(7,0)-D .不等式组513(1)131722x x x x ->+⎧⎪⎨-≤-⎪⎩的所有整数解的和为7 二、填空题13.a b ≥,1a -+_____1b -+14.若||1(2)3m m x --=是关于x 的一元一次方程,则m 的值是___________. 15.已知点()6,29P m m --关于x 轴对称的点在第三象限,则m 的整数解是______. 16.当前我国的新冠疫情虽然有所控制,但防控仍不可掉以轻心,为做好秋季防疫工作,王老师带现金6820元为年级采购了额温枪和消毒酒精两种防疫物品,额温枪每个125元,消毒酒精每瓶55元,购买后剩余100元、10元、1元的钞票若干张(10元钞票和1元钞票剩余数量均不超过9张,且采购额温枪的数量大于消毒酒精的数量).若把购买两种防疫物品的数量交换,剩余的100元和10元的钞票张数恰好相反,但1元钞票的张数不变,则购买消毒酒精的数量为__________________瓶.17.已知关于x 的不等式组0,10x a x +>⎧⎨->⎩的整数解共有3个,则a 的取值范围是___________. 18.关于x 的不等式组0821x m x -≥⎧⎨->⎩有3个整数解,则m 的取值范围是______. 19.若不等式25123x x +-≤-的解集中x 的每一个值,都能使关于x 的不等式3(1)552()x x m x -+>++成立,则m 的取值范围是__________.20.方程组24x y k x y +=⎧⎨-=⎩的解满足1x >,1y <,k 的取值范围是:__________.三、解答题21.解不等式(或组):(1)2934x x++≤ (2)()47512432x x x x ⎧-<-⎪⎨->-⎪⎩22.某企业新增了一个化工项目,为了节约资源,保护环境,该企业决定购买A 、B 两种型号的污水处理设备共10台,具体情况如下表:经预算,企业最多支出136万元购买设备,且要求月处理污水能力不低于2150吨.A 型B 型 价格(万元/)15 12 月污水处理能力(吨/月) 250 200(1)该企业有哪几种购买方案?(2)哪种方案更省钱?并说明理由.23.某校计划安排初三年级全体师生参观黄石矿博园.现有36座和48座两种客车供选择租用,若只租用36座客车若干辆,则正好坐满;若只租用48座客车,则能少租一辆,且有一辆车没有坐满,但超过了30人;已知36座客车每辆租金400元,48座客车每辆租金480元.(1)该校初三年级共有师生多少人参观黄石矿博园?(2)请你帮该校设计一种最省钱的租车方案.24.解不等式,并把解集在数轴上表示出来.(1)()4521x x +≤+(2)()1113125y y y +<--25.定义一种新运算“a b ⊗”的含义为:当a b ≥时,a b a b ⊗=+;当a b <时,a b a b ⊗=-.例如:32325⊗=+=,()()22224-⊗=--=-.(1)填空:()21-⊗=________;(2)如果()()3x 732x 2-⊗-=,求x 的值.26.受疫情影响,口罩价格不断走高.3月20日当天口罩的价格是年初的1.5倍;3月20日当天,王老师购买4盒口罩比年初多花了48元.(1)那么3月20日当天口罩的价格为每盒多少元?(2)3月20日,按照(1)中的口罩价格,某售卖点共卖出1000盒口罩.3月21日,政府决定投入储备口罩并规定其销售价在3月20日的基础上下调0.7%a 出售.该售卖点按规定价出售一批储备口罩和非储备口罩,该售卖点的非储备口罩仍按3月20日的价格出售,3月21日当天的两种口罩总销量比3月20日增加了20%,且储备口罩的销量占总销量的56,两种口罩销售的总金额比3月20日至少提高了1%10a ,求a 的最大值.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】求出方程的解,根据已知得出a-3≥0,求出即可.【详解】解:解方程a-x=3得:x=a-3,∵方程的解是非负数,∴a-3≥0,解得:a≥3,故选:D .【点睛】本题考查了一元一次方程的解,解一元一次不等式,解一元一次方程的应用,关键是得出一个关于a 的不等式.2.C解析:C【分析】根据点()3,2P a a --关于原点对称的点在第四象限,可得点P 在第二象限,因此就可列出不等式,解不等式可得a 的取值范围.【详解】解:∵点()3,2P a a --关于原点对称的点在第四象限,∴点()3,2P a a --在第二象限,∴3020a a -<⎧⎨->⎩, 解得:2a <.则a 的取值范围在数轴上表示正确的是:.故选C .【点睛】本题主要考查不等式的解法,根据不等式的解集,在数轴上表示即可,关键在于点P 的坐标所在的象限.3.B解析:B【分析】直接利用一元一次不等式的解法分析得出答案.【详解】解:3(x-1)≤5-x3x-3≤5-x ,则4x≤8,解得:x≤2,故不等式3(x-1)≤5-x 的正整数解有:1,2共2个.故选:B .【点睛】本题主要考查了一元一次不等式的整数解,正确解不等式是解题的关键.4.A解析:A【解析】根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得不等式解集,然后得出在数轴上表示不等式的解集. 2(1– x )<4去括号得:2﹣2x<4移项得:2x >﹣2,系数化为1得:x >﹣1,故选A .“点睛”本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.5.C解析:C【分析】由基本不等式a >b ,根据不等式的性质,逐一判断.【详解】解:A 、∵a >b ,∴-a <-b ,故本选项不符合题意;B 、∵a >b ,∴当a 与b 同号时有11a b ,当a 与b 异号时,有11a b>,故本选项不符合题意;C 、∵a >b ,∴a+b >2b ,故本选项符合题意;D 、∵a >b ,且a >0时,∴a 2>ab ,故本选项不符合题意;故选:C .【点睛】本题考查了不等式的性质.不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.6.C解析:C【分析】分别求出各不等式的解集,再求出其公共解集并在数轴上表示出来,写出这个不等式组的最小整数解即可.【详解】解:3114x x +>⎧⎨-≤⎩①②解不等式①得 x >-2,解不等式②得 x≤5,所以不等式组的解集为-2<x≤4,所以,这个不等式组的最小整数解是-1,故选C .【点睛】本题考查了解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解题的关键.7.B解析:B【分析】由点()121M m m --,在第四象限,可得出关于m 的一元一次不等式组,解不等式组即可得出m 的取值范围,再对照四个选项即可得出结论.【详解】解:由点()121M m m --,在第四象限,得1-2010m m >⎧⎨-<⎩, ∴0.51m m <⎧⎨<⎩即不等式组的解集为:0.5m <,在数轴上表示为:故选:B .【点睛】此题考查了象限及点的坐标的有关性质、在数轴上表示不等式的解集、解一元一次不等式组,需要综合掌握其性质8.A解析:A【分析】先对不等式组进行化简,找出它们的公共部分,然后在数轴上分别表示出x 的取值范围.【详解】解:不等式组10840x x ->⎧⎨-≤⎩①②由①得,x >1,由②得,x ⩾2, 故不等式组的解集为:x ⩾2, 在数轴上可表示为:故选:A.【点睛】本题考查了解一元一次不等式组和在数轴上表示不等式组的解集,注意在数轴上表示解集时,空心圈和实心圈的区别.9.B解析:B【分析】分别求出不等式组中不等式的解集,利用取解集的方法表示出不等式组的解集,根据解集中整数解有3个,即可得到m 的范围.【详解】解不等式x ﹣m <0,得:x <m ,解不等式7﹣2x ≤2,得:x ≥52,因为不等式组有解,所以不等式组的解集为52≤x<m,因为不等式组的整数解有3个,所以不等式组的整数解为3、4、5,所以5<m≤6.故选:B.【点睛】此题考查了一元一次不等式组的整数解,表示出不等式组的解集,根据题意找出整数解是解本题的关键.10.C解析:C【分析】先分别求出各不等式的解集,再求其公共解集即可.【详解】36030xx+>⎧⎨-≤⎩①②,解①得:2x>-,解②得:3x≤,在数轴上表示如图所示:不等式组的解集为23x-<≤.故选:C.【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.11.C解析:C【分析】先解含参的不等式组,根据不等式组仅有四个整数解得到关于a的不等式组,求解即可.【详解】解:132(2)x ax x≥-⎧⎨≤+⎩①②,解不等式①,得1x a≥-,解不等式②,得:4x≤,∵不等式组仅有四个整数解,∴011a<-≤,解得12a<≤,故选:C .【点睛】本题考查解不等式组,根据解集的情况得到关于a 的不等式组是解题的关键.12.C解析:C【分析】根据平行线的判定、无理数、平面直角坐标系和不等式组的解判断即可.【详解】解:A 、两条直线被第三条直线所截,如果同位角相等,那么内错角的角平分线互相平行,是真命题;B 、在实数7.5-,π-,2中,有3个有理数,2个无理数,是真命题;C 、在平面直角坐标系中,点P (2a-1,a+7)在x 轴上,a+7=0,a=-7,则点P 的坐标为(-15,0),原命题是假命题;D 、不等式组513(1)131722x x x x ->+⎧⎪⎨-≤-⎪⎩的所有整数解的和为7,是真命题; 故选:C .【点睛】本题考查了命题与定理:命题写成“如果…,那么…”的形式,这时,“如果”后面接的部分是题设,“那么”后面解的部分是结论.命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.二、填空题13.≤【分析】根据不等式的性质判断即可【详解】∵a≥b ∴-a≤-b ∴-a+1≤-b+1故答案为≤【点睛】本题考查不等式的性质需要特别注意不等式两边同时乘除一个负数不等号要变号解析:≤【分析】根据不等式的性质判断即可.【详解】∵a≥b∴-a≤-b∴ -a+1≤-b+1故答案为≤.【点睛】本题考查不等式的性质,需要特别注意不等式两边同时乘除一个负数不等号要变号.14.-2【分析】根据一元一次方程的定义列出关于m 的方程组求解即可【详解】解:∵∴解得m=-2故答案为-2【点睛】本题主要考查了一元一次方程的定义和不等式组的解法根据一元一次方程的定义列出关于m 的方程组成 解析:-2【分析】根据一元一次方程的定义列出关于m 的方程组求解即可.【详解】解:∵||1(2)3m m x --= ∴2011m m -≠⎧⎨-=⎩,解得m=-2. 故答案为-2.【点睛】本题主要考查了一元一次方程的定义和不等式组的解法,根据一元一次方程的定义列出关于m 的方程组成为解答本题的关键.15.5【分析】利用平面直角坐标系中点的坐标特点得出m 的取值范围【详解】解:∵点P(m ﹣62m ﹣9)关于x 轴的对称点在第三象限∴点P 在第二象限∴m ﹣6<0且2m ﹣9>0解得:<m<6∴m 的取值范围是<m<解析:5【分析】利用平面直角坐标系中点的坐标特点得出m 的取值范围.【详解】解:∵点P (m ﹣6,2m ﹣9)关于x 轴的对称点在第三象限,∴点P 在第二象限,∴m ﹣6<0且2m ﹣9>0, 解得:92<m<6, ∴m 的取值范围是92<m<6, ∴m 的整数解为5;故答案为 5.【点睛】本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-),要注意先判断出点P 在第二象限.16.30【分析】设额温枪的数量为消毒酒精的数量为剩余100元钞票的数量为a10元为b 根据题意列出方程组然后分别代入可能的a 和b 即可求得【详解】解:∵题中所有的钱数(68201255510010)均是0或解析:30【分析】设额温枪的数量为x ,消毒酒精的数量为y ,剩余100元钞票的数量为a ,10元为b ,根据题意列出方程组,然后分别代入可能的a 和b ,即可求得.【详解】解:∵题中所有的钱数(6820,125,55,100,10)均是0或5结尾,且1元钞票的数量不超过9张∴1元钞票的数量是5设额温枪的数量为x ,消毒酒精的数量为y ,剩余100元钞票的数量为a ,10元为b 根据题意得()()682012555100105682012555100105x y a b y x b a ⎧-+=++⎪⎨-+=++⎪⎩两式子相减可整理得:97x y b a -=- ∵9b ≤∴9x y -=,7b a -=∴b a -有三种情况①b=7,a=0②b=8,a=1③b=9,a=2将三种情况分别代入上述方程组计算得情况①和②算出x 和y 不是整数,不符合题意情况③情况符合题意:=39x 和=30y ,且39>30,符合题意故购买的消毒酒精的数量为30瓶故答案为:30【点睛】本题考查四元一次方程组与不等式的应用,找出题中数量关系,列出方程组,并整体得出两个未知数的方程是解题的关键,要注意钞票张数是整数. 17.2<a≤3【分析】先求出每个不等式的解集再求出不等式组的解集根据整数解共有3个即可得出关于a 的不等式组求解即可【详解】解:解不等式①得:x-a 解不等式②得:x <1∴不等式组的解集为-a <x <1∵不等解析:2<a≤3.【分析】先求出每个不等式的解集,再求出不等式组的解集,根据整数解共有3个即可得出关于a 的不等式组,求解即可.【详解】解:0,10x a x +>⎧⎨->⎩①②, 解不等式①得:x >-a ,解不等式②得:x <1,∴不等式组的解集为-a <x <1,∵不等式组的整数解共有3个,即-2,-1,0,∴-3≤-a <-2,∴2<a≤3,故答案是:2<a≤3.【点睛】本题考查了解一元一次不等式组,不等式组的整数解的应用,解此题的关键是能根据不等式组的整数解和已知得出关于a 的不等式组.18.0<m≤1【分析】不等式组整理后表示出不等式组的解集由不等式组有3个整数解确定出m 的范围即可【详解】解:不等式组整理得:解得:由不等式组有3个整数解即整数解为123则m 的取值范围是0<m≤1故答案为解析:0<m≤1【分析】不等式组整理后,表示出不等式组的解集,由不等式组有3个整数解,确定出m 的范围即可.【详解】 解:不等式组整理得:72x m x ≥⎧⎪⎨<⎪⎩, 解得:72m x ≤<, 由不等式组有3个整数解,即整数解为1,2,3,则m 的取值范围是0<m≤1.故答案为:0<m≤1.【点睛】本题考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.19.【分析】首先通过解不等式得出的解集和的解集然后根据题意建立一个关于m 的不等式从而确定m 的范围即可【详解】解得解得∵不等式的解集中的每一个值都能使关于的不等式成立解得【点睛】本题主要考查不等式的解集掌 解析:35m <- 【分析】首先通过解不等式得出25123x x +-≤-的解集和3(1)552()x x m x -+>++的解集,然后根据题意建立一个关于m 的不等式,从而确定m 的范围即可.【详解】 25123x x +-≤-, 解得45x ≤. 3(1)552()x x m x -+>++, 解得12m x -<. ∵不等式25123x x +-≤-的解集中x 的每一个值,都能使关于x 的不等式3(1)552()x x m x -+>++成立,1425m -∴>, 解得35m <-. 【点睛】本题主要考查不等式的解集,掌握解不等式的方法是解题的关键.20.【分析】先求出方程组的解再得出关于k 的不等式组求出不等式组的解集即可【详解】解:解方程组得:∵关于xy 的方程组的解满足∴解得:-1<k <3故答案为-1<k <3【点睛】本题考查了解二元一次方程组和解一解析:13k -<<【分析】先求出方程组的解,再得出关于k 的不等式组,求出不等式组的解集即可.【详解】解:解方程组得:22x k y k +⎧⎨-⎩==, ∵关于xy 的方程组24x y k x y +⎧⎨-⎩==的解满足1x >,1y <, ∴2121k k +⎧⎨-⎩><, 解得:-1<k <3,故答案为-1<k <3.【点睛】本题考查了解二元一次方程组和解一元一次不等式组,能得出关于k 的不等式组是解此题的关键.三、解答题21.(1)12x ≤;(2)6x >【分析】(1)解一元一次不等式,先去分母,然后移项,合并同类项,最后系数化1求解; (2)先分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【详解】解:(1)2934x x ++≤ 去分母,得:4243108x x ++≤移项,得:4310824x x +≤-合并同类项,得:784x ≤系数化1,得:12x ≤∴不等式的解集为x≤12(2)()47512432x x x x ⎧-<-⎪⎨->-⎪⎩①② 解不等式①,得:2x >-解不等式②,得:6x >∴不等式组的解集为6x >.【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.22.(1)有3种购买方案:第一种是购买3台A 型污水处理设备,7台B 型污水处理设备;第二种是购买4台A 型污水处理设备,6台B 型污水处理设备;第三种是购买5台A 型污水处理设备,5台B 型污水处理设备;(2)购买3台A 型污水处理设备,7台B 型污水处理设备更省钱【分析】(1)设购买污水处理设备A 型号x 台,则购买B 型号(10﹣x )台,由不等量关系购买A 型号的费用+购买B 型号的费用≤136;A 型号每月处理的污水总量+B 型号每月处理的污水总量≥2150,列出不等式组,然后找出最合适的方案即可.(2)计算出每一方案的花费,通过比较即可得到答案.【详解】设购买污水处理设备A 型号x 台,则购买B 型号(10﹣x )台,根据题意,得1512(10)136250200(10)2150x x x x +-≤⎧⎨+-≥⎩, 解这个不等式组,得:1353x ≤≤.∵x 是整数,∴x=3或x=4或x=5.当x=3时,10﹣x=7;当x=4时,10﹣x=6;当x=5时,10-x=5.答:有3种购买方案:第一种是购买3台A 型污水处理设备,7台B 型污水处理设备; 第二种是购买4台A 型污水处理设备,6台B 型污水处理设备;第三种是购买5台A 型污水处理设备,5台B 型污水处理设备;(2)当x=3时,购买资金为15×3+12×7=129(万元),当x=4时,购买资金为15×4+12×6=132(万元),当x=5时,购买资金为15×5+12×5=135(万元).因为135>132>129,所以应购污水处理设备A 型号3台,B 型号7台.答:购买3台A 型污水处理设备,7台B 型污水处理设备更省钱.【点睛】此题考查方案类不等式组的实际应用,有理数的混合运算,正确理解题意,根据题意列得不等式组是解题的关键.23.(1)180,(2)租36座车1辆,48座3辆最省钱.【分析】(1)设租36座的车x 辆,则租48座的客车(x ﹣1)辆.根据不等关系:租48座客车,则能少租一辆,且有一辆车没有坐满,但超过30人,列不等式组即可.(2)根据(1)中求得的人数,进一步计算不同方案的费用:①只租36座客车;②只租42座客车;③合租两种车.再进一步比较得到结论即可.【详解】解:(1)设租36座的车x 辆. 据题意得:3648(2)303648(2)48x x x x --⎧⎨--⎩><, 解得:1124x x ⎧⎪⎨⎪⎩<>.∴不等式组的解集为4112x <<. ∵x 是整数,∴x =5.36×5=180(人),答:该校初三年级共有师生180人参观黄石矿博园.(2)设租36座车m 辆,租48座车n 辆,根据题意得,36m+48n≥180,∵m 、n 为非负整数,方案①:租36座车5辆,费用为:5×400=2000元;方案②:租36座车4辆,48座至少1辆,最低费用为:4×400+480=2080元; 方案③:租36座车3辆,48座至少2辆,最低费用为:3×400+2×480=2160元; 方案④:租36座车2辆,48座至少3辆,最低费用为:2×400+3×480=2240元; 方案⑤:租36座车1辆,48座至少3辆,最低费用为:1×400+3×480=1840元; 方案⑥:租48座车4辆,费用为:4×480=1920元;∴选择方案⑤:租36座车1辆,48座3辆最省钱.【点睛】本题考查了不等式组的应用和方案选择问题,正确设未知数,准确把握不等关系,列出不等式或不等式组,是解决问题的关键.24.(1)32x ≤-,数轴见解析;(2)y >5,数轴见解析 【分析】先对不等式进行求解,求出解集,然后在数轴上表示出解集即可.【详解】解:(1)∵()4521x x +≤+,即4225x x -≤-, 即32x ≤-, ∴不等式的解集为:32x ≤-;(2)()1113125y y y +<-- 即133522y y y +-<-, 即33102y -<-, 故5y >, 故不等式的解集为:5y >.【点睛】本题考查的是一元一次不等式的解法,解此类题目经常用到数轴,注意x 或y 是否取得到,若取得到则为实心否则为空心.25.(1)-3;(2)x 6=.【分析】(1)根据新定义列式计算即可;(2)根据新定义分两种情况列方程求解即可.【详解】解:()121-<,∴()21213-⊗=--=-故答案为:3-()2①当3x 732x -≥-时,即x≥2()()3x 732x 2-⊗-=即3x 732x 2-+-=x 6=.②当3x 732x -<-时,即x<2()()3x 732x 2-⊗-=即()3x 732x 2---=125x =(不合题意,舍去) x 6.∴=【点睛】本题主要考察了新定义的计算,解一元一次方程以及有理数的混合运算,解题的关键是熟练掌握解一元一次方程的一般步骤和有理数的混合运算法则.26.(1)3月20日当天口罩的价格为每盒36元.(2)a 的最大值为25.【分析】(1)可设年初口罩的价格为每盒x 元,则3月20日当天口罩的价格为每盒1.5x 元,根据3月20日当天,王老师购买4盒口罩比年初多花了48元列出方程即可求解; (2)根据两种口罩销售的总金额比3月20日至少提高了1%10a ,列出不等式即可求解. 【详解】解:(1)设年初口罩的价格为每盒x 元,则3月20日当天口罩的价格为每盒1.5x 元,依题意有4 1.5448x x ⨯-=,解得24x = ,1.5 1.52436x =⨯=.∴3月20日当天口罩的价格为每盒36元.(2)1000×(1+20%)=1200(盒),5120010006⨯==1000(盒), 1200-1000=200(盒),依题意有()13620010003610.7%1000361%10a a ⎛⎫⨯+⨯-≥⨯+ ⎪⎝⎭, 解得a≤25.故a 的最大值为25.【点睛】本题考查了一元一次方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出一元一次方程;(2)根据各数量之间的关系,正确列出一元一次不等式.。

人教版七年级下册数学:不等式及不等式组复习课 (共15张PPT)

人教版七年级下册数学:不等式及不等式组复习课 (共15张PPT)

2x 1 5
(2)求不等式组


1 2
(
x

2)

3
的整数解.
生活与数学
4、不等式(组)在实际生活中的应用
当应用题中出现以下的关键词,如大,小, 多,少,不小于,不大于,至少,至多等,应属列不 等式(组)来解决的问题,而不能列方程(组)来 解.
为了奖励运动会中的优秀班级和优秀
运动员,学校要到体育用品商场购买篮球 和排球共100只.已知篮球、排球的单价 分别为130元、100元。购买100只球所 花费用超过11800元,但不超过11900 元。你认为有哪些购买方案?
不等式及不等式组复习课
一、不等式:
二、不等式的性质:
(1)不等式的两边都加上(或减去)同一个数或式 子,不等号方向不变.
(2)不等式的两边都乘上(或除以)同一个正数,不 等号方向不变.
(3)不等式的两边都乘上(或除以)同一个负数,不 等号方向改变.
三、解一元一次不等式的基本步骤:
四、解一元一次不等式组的基本步骤:
求几个不等式的解的公共部分的方法和规律:
(1)数轴法
(2)口诀法
同大取大
同小取小
大小小大中间找
大大小小解不了(无解)
1.解不等式 2x 1 5 x 5, 34
并把它的解集在数轴上表示出来.
2.解不等式组:
2x 1 5 x 5
3
4
2(x 4) 3x 3
3、求不等式(组)的特殊解: (1)求不等式 3x+1≥4x-5的正整数解.
a-c__<___b-c 5a__<___5b -5a__>___-5b c-5a__>__ c-5b ac2__≤___bc2

第九章不等式与不等式组(二)单元测试卷2021-2022学年人教版数学七年级下册

第九章不等式与不等式组(二)单元测试卷2021-2022学年人教版数学七年级下册

2021-2022学年度初中数学七年级下册不等式与不等式组模拟试题(二)一、单选题1.﹣(﹣a )和﹣b 在数轴上表示的点如图所示,则下列判断正确的是( )A .﹣a <1B .b ﹣a >0C .a +1>0D .﹣a ﹣b <0 2.某市最高气温是33℃,最低气温是24℃,则该市气温t (℃)的变化范围是( )A .t >33B .t ≤24C .24<t <33D .24≤t ≤33 3.若关于x 的分式方程2x x -+1=22ax x --有整数解,且关于y 的不等式组2(1)15210y a y y -+-≤⎧⎨+<⎩恰有2个整数解,则所有满足条件的整数a 的值之积是( ) A .0 B .24 C .﹣72 D .12 4.为了节省空间,家里的饭碗一般是摞起来存放的.如果6只饭碗(注:饭碗的大小形状都一样,下同)摞起来的高度为15cm ,9只饭碗摞起来的高度为20cm ,李老师家的碗橱每格的高度为31cm ,则里面一摞碗最多只能放( )A .16只B .15只C .14只D .13只 5.设[x )表示大于x 的最小整数,如[3)=4,[-1.2)=-1,下列结论:℃[0)=0;℃[x )-x 的最小值是0;℃[x )-x 的最大值是1;℃存在实数x ,使[x )-x =0.5成立,其中正确的是( )A .℃℃B .℃℃C .℃℃℃D .℃℃℃6.已知关于x 的不等式组420102x x a -≥⎧⎪⎨->⎪⎩恰有4个整数解,则a 的取值范围是( ) A .﹣1<a <﹣12 B .﹣1≤a ≤﹣12 C .﹣1<a ≤﹣12 D .﹣1≤a <﹣12 7.下列说法正确的个数是( )(1)一个数绝对值越大,表示它的点在数轴上离原点越远;(2)当0a ≠时,a 总是大于0;(3)若mn =0,则m 、n 中必有一个数为0;(4)如果0a ≥那么5a -一定有最小值-5.A .1个B .2个C .3个D .4个8.已知关于x 、y 的二元一次方程组32121399x y a x y a +=--⎧⎪⎨-=+⎪⎩的解满足x y ≥,且关于s 的不等式组731a s s -⎧>⎪⎨⎪≤⎩恰好有4个整数解,那么所有符合条件的整数a 的个数为( )A .4个B .3个C .2个D .1个 9.若10a -<<,则有( )A .1a a >B .33a a <C .2a a ->D .32a a <- 10.一群女生住若干间宿舍,若每间住4人,剩下16人无处住;若每间住6人,有一间宿舍住人但不足4人,那么这群女生的人数是( )A .52B .56C .60或56D .60二、填空题11.若0622x k x -≥⎧⎨->-⎩的整数解共有5个,则k 的取值范围是________. 12.已知关于x 的不等式组223x x x m ⎧->+⎨≥⎩只有两个整数解,则实数m 的取值范围是 __________.13.若点P 为数轴上一个定点,点M 为数轴上一点将M ,P 两点的距离记为MP .给出如下定义:若MP 小于或等于k ,则称点M 为点P 的k 可达点.例如:点O 为原点,点A 表示的数是1,则O ,A 两点的距离为1,1<2,即点A 可称为点O 的2可达点.(1)如图,点B 1,B 2,B 3中,___是点A 的2可达点;(2)若点C 为数轴上一个动点,℃若点C 表示的数为﹣1,点C 为点A 的k 可达点,请写出一个符合条件的k 值 ___; ℃若点C 表示的数为m ,点C 为点A 的2可达点,m 的取值范围为 ___;(3)若m ≠0,动点C 表示的数是m ,动点D 表示的数是2m ,点C ,D 及它们之间的每一个点都是点A 的3可达点,写出m 的取值范围 ___.14.有一根长22cm 的金属棒,将其截成x 根3cm 长的小段和y 根5cm 长的小段,剩余部分作废料处理,若使废料最少,则x +y =__.15.某学校举办“创文知识”竞赛,共有20道题,每一题答对得10分,答错或不答都扣5分,小聪要想得分不低于140分,他至少要答对多少道题?如果设小聪答对a 题,则他答错或不答的题数为()20a -题,根据题意列不等式:___________. 16.为了迎接“母亲节”的到来,枣庄市购物中心超市准备开展打折促销活动,现在有某件商品进价200元,标价320元出售,商场规定打折销售后利润率不能少于20%,那么这种商品最多打______折.17.不超过数x 的最大整数称为x 的整数部分,记作[x ]例如,[3.4]=3,[-2.1]=-3则满足关系式[37]6x +=5的x 的整数值有________ 18.如果不等式组320x x m ->⎧⎨≥⎩有解,则m 的取值范围是______. 三、解答题19.西大附中为打造“书香校园”,计划在校内组建中、小型两类图书角共30个,已知组建一个中型图书角需科技类书籍80本,人文类书籍50本,组建一个小型图书角需科技类书籍30本,人文类书籍60本.目前学校用于组建图书角的科技类书籍不超过1900本,人文类书籍不超过1620本.(1)符合题意的组建方案有几种?请你帮学校设计出来.(2)若组建一个中型图书角的费用是860元,小型图书角的费用是570元,试说明(1)中哪种方案费用最低,最低费用是多少元?20.利用不等式的性质解下列不等式,并在数轴上表示解集:(1)x -7>26(2)3x <2x +121.解下列不等式组32122x x x +>⎧⎪⎨≤⎪⎩. 22.某工厂用如图甲所示的长方形和正方形纸板,做成如图乙所示的竖式与横式两种长方体形状的无盖的纸盒.(1)现有正方形纸板162张,长方形纸板340张,若要做两种纸盒共100个,设竖式纸盒x 个,需要长方形纸板________________张,正方形纸板_____________张(请用含有x的式子)(2)在(1)的条件下,有哪几种生产方案?(3)若有正方形纸板162张,长方形纸板a张,做成上述两种纸盒,纸板恰好用完.已知290<a<300,求a的值.23.“学党史,办实事”,为解决停车难问题,某区政府治堵办对老旧小区新增停车位给予补贴,对于通过划线方式新增的和建设改造新增的给予不同的补贴.划线4个和建设改造3个,共补贴8000元;划线1个和建设改造1个,共补贴2500元.(1)政府对划线新增一个停车位和建设改造新增一个停车位分别补贴多少元?(2)在(1)的条件下,政府计划对老旧小区一共新增车位100个,建设改造新增的停车位不得少于划线新增停车位的1.5倍,且政府补贴不超过143000元,则老旧小区新增停车位共有几种方案?24.解下列不等式:(1)2x﹣1<﹣6;(2)145 23--<x x;(3)解不等式组:3(2)41213x xxx--≥⎧⎪+⎨>-⎪⎩,并在数轴上表示它的解集.参考答案:1.B【详解】解:﹣(﹣a )=a ,由数轴可得a <﹣1<﹣b <0,℃a <﹣1,℃﹣a >1,故A 选项判断错误,不合题意;℃﹣b <0,℃b >0,b ﹣a >0,故B 正确,符合题意;℃a <﹣1,℃a +1<0,故C 判断错误,不合题意;℃a <﹣b ,℃a +b <0,℃﹣a ﹣b >0,故D 判断错误,不合题意.故选:B .2.D【详解】由题意,某市最高气温是33℃,最低气温是24℃,说明其它时间的气温介于两者之间, ℃该市气温t (℃)的变化范围是:24≤t ≤33;故选:D .3.D【详解】先解分式方程,再解一元一次不等式组,进而确定a 的取值.解:℃2x x -+1=22ax x --, ℃x +x ﹣2=2﹣ax .℃2x +ax =2+2.℃(2+a )x =4.℃x =42a+ . ℃关于x 的分式方程2x x -+1=22ax x --有整数解, ℃2+a =±1或±2或±4且42a +≠2. ℃a =﹣1或﹣3或﹣4或2或﹣6.℃2(y ﹣1)+a ﹣1≤5y ,℃2y ﹣2+a ﹣1≤5y .℃2y ﹣5y ≤1﹣a +2.℃﹣3y ≤3﹣a .℃y ≥﹣1+3a . ℃2y +1<0,℃2y <﹣1.℃y <12-. ℃﹣1+3a ≤y <12-. ℃关于y 的不等式组2(1)15210y a y y -+-≤⎧⎨+<⎩恰有2个整数解, ℃﹣3<﹣1+3a ≤﹣2. ℃﹣6<a ≤﹣3.又℃a =﹣1或﹣3或﹣4或2或﹣6,℃a =﹣3或﹣4.℃所有满足条件的整数a 的值之积是﹣3×(﹣4)=12.故选:D .4.B【详解】解:设碗底的高度为xcm ,碗身的高度为ycm ,由题意得:615920x y x y +=⎧⎨+=⎩, 解得:535x y ⎧=⎪⎨⎪=⎩, 设李老师一摞碗能放a 只碗,由题意得:5+53a ≤31, 解得:a ≤7815.65=, 则一摞碗最多只能放15只,故选:B .5.B【详解】解:由题意可知:℃[x )表示大于x 的最小整数,℃设[x )=n ,则n -1≤x <n ,℃[x )-1≤x <[x ),℃0<[x )-x ≤1,℃℃[0)1=,故℃错误;℃[)x x -可无限接近0,但取不到0,无最小值,故℃错误;℃[)x x -的最大值是1,当x 为整数时,故℃正确;℃存在实数x ,使[)0.5x x -=成立,比如x =1.5,故℃正确,故选:B .6.D【详解】解:解不等式组得:22x x a ≤⎧⎨>⎩, ℃该不等式组恰有4个整数解,℃-2≤2a <-1,解得:﹣1≤a <﹣12,故选:D .7.D【详解】℃一个数绝对值越大,表示它的点在数轴上离原点越远,℃(1)正确; ℃a ≥0,℃当0a ≠时,a 总是大于0,℃(2)正确;℃mn =0,℃m =0或n =0,℃(3)正确;℃5055a -≥-≥-,℃5a -一定有最小值-5℃(4)正确;故选D .8.C【详解】 解:解方程组32121399x y a x y a +=--⎧⎪⎨-=+⎪⎩得:213322x a y a ⎧=+⎪⎪⎨⎪=--⎪⎩,℃关于x 、y 的二元一次方程组32121399x y a x y a +=--⎧⎪⎨-=+⎪⎩的解满足x y ≥, ℃213a +≥322a --, 解得:a ≥-1813, ℃关于s 的不等式组731a s s -⎧>⎪⎨⎪≤⎩恰好有4个整数解,即4个整数解为1,0,-1,-2, ℃7323a --≤<-, 解得-2≤a <1, ℃1813-≤a <1, ℃符合条件的整数a 的值有:-1,0,共2个,故选:C .9.C【详解】 解:采用特殊取值法,取12a =-, 则12a=-,由122-<-,A 选项错误; 33111111,,282888⎛⎫⎛⎫-=-=->- ⎪ ⎪⎝⎭⎝⎭,B 选项错误; 2111111,,222424⎛⎫⎛⎫--=-=> ⎪ ⎪⎝⎭⎝⎭,C 选项正确; 由1184->-知321122⎛⎫⎛⎫->-- ⎪ ⎪⎝⎭⎝⎭,D 选项错误; 故选:C .10.B【详解】解:设有x 间宿舍,则有6(x -1)<4x +16<6(x -1)+4,整理得()()61416416614x x x x ⎧-+⎪⎨+-+⎪⎩<①<②, 解不等式℃得11x <,解不等式℃得9x >,℃不等式组的解集为911x <<,℃x =10,当x =10时4×10+16=56人,故选择B .11.21k -<≤-【详解】解:0622x k x -≥⎧⎨->-⎩①②由℃得:,x k ≥由℃得:x <4,k x ∴≤<4,622x k x -≥⎧⎨->-⎩的整数解共有5个,∴ 不等式组的整数解为:3,2,1,0,1,-∴ 21k -<≤-故答案为:21k -<≤-12.32m -<-【详解】解:当2x 时,223x x ->+,13x ∴<-,13x ∴<-;当2x >时,223x x ->+,5x ∴->,∴不等式的解为13m x ≤<-,不等式组|2|23x x x m ->+⎧⎨⎩只有两个整数解,∴两个整数解为1-和2-,32m ∴-<-,故答案为:32m -<-.13. 2B 、3B ##B 3、B 2 3 13m -≤≤ 12m -≤≤【详解】解:(1)由题意知:1>2B A 2,2<2B A 2,3<2B A 2,℃2B 、3B 是点A 的2可达点,故填:2B 、3B ;(2)℃当点C 表示的数为﹣1时,=2CA ≤k ,故k =3,故填:3;℃当点C 表示的数为m 时,=1CA m -≤2,解得:13m -≤≤,故填:13m -≤≤;(3)由题意知:=1CA m -,21DA m =-, 即:13m -≤,213m -≤,解得:12m -≤≤,故填:12m -≤≤.14.6【详解】℃一根长22cm 的金属棒,将其截成x 根3cm 长的小段和y 根5cm 长的小段, ℃3x +5y ≤22, ℃2253y x -≤, ℃2250y -≥,且y 为正整数,℃y 的值可以为1、2、3、4,当y =1时,x≤173,则x =5,此时,所剩的废料是:22﹣5﹣3×5=2cm , 当y =2时,x≤4,则x =4,此时,所剩的废料是:22﹣2×5﹣4×3=0cm ,当y =3时,x≤73,则x =2,此时,所剩的废料是:22﹣3×5﹣2×3=1cm , 当y =4时,x≤23,则x =0(舍去), ℃废料最少的是:x =4,y =2,℃x +y =6,故答案为:615.()10520140a a --≥【详解】解:根据题意,得10a −5(20−a )≥140.故答案是:10a −5(20−a )≥140.16.七五【详解】解:设这种商品可以按x 折销售,则售价为320×0.1x ,那么利润为320×0.1x -200,所以相应的关系式为320×0.1x -200≥200×20%,解得:x ≥7.5.℃这种商品最多可以按7.5折销售.故答案为:七五.17.8,9.【详解】解:因为原方程即为[37]6x +=5, 所以5≤376x +<6, 所以37563766x x +⎧≥⎪⎪⎨+⎪<⎪⎩, 解得:232933x ≤<, 因为x 是整数,所以x =8, 9,故答案为:8,9.18.32m <【详解】 解:320x x m ->⎧⎨≥⎩, 解不等式320x ->,解得32x <, 因为不等式组320x x m->⎧⎨≥⎩有解, 所以32m x ≤<, 所以32m <. 故答案为:32m <.19.(1)共有3种组建方案,方案1:组建中型图书角18个,小型图书角12个;方案2:组建中型图书角19个,小型图书角11个;方案3:组建中型图书角20个,小型图书角10个.(2)方案1费用最低,最低费用是22320元(1)解:设组建中型图书角x 个,则组建小型图书角(30)x -个,依题意得:()()80303019005060301620x x x x ⎧+-≤⎪⎨+-≤⎪⎩, 解得:1820x ≤≤,又∵x 为整数,∴x 可以取18,19,20,∴共有3种组建方案,方案1:组建中型图书角18个,小型图书角12个;方案2:组建中型图书角19个,小型图书角11个;方案3:组建中型图书角20个,小型图书角10个;(2)选择方案1的费用为:860185701222320⨯+⨯=(元);选择方案2的费用为:860195701122610⨯+⨯=(元);选择方案3的费用为:860205701022900⨯+⨯=(元).223202*********<<,∴方案1费用最低,最低费用是22320元.20.(1)x >33,见解析(2)x <1,见解析【详解】(1)根据不等式的性质1,不等式两边加7,不等号的方向不变,所以:x -7+7>26+7,x >33.这个不等式的解集在数轴上的表示如图:(2)3x <2x +1;解:(2)根据不等式的性质1,不等式两边减2x ,不等号的方向不变,所以:3x -2x <2x +1-2x ,x <1.这个不等式的解集在数轴上的表示如图:21.14x -<≤【详解】解:解不等式3x +2>x 得:x >-1, 解不等式122x ≤,得:4x ≤, 则不等式组的解集为:14x -<≤.22.(1)长方形纸板用了(x +300)张,正方形纸板用了(200﹣x )张;(2)共有3种生产方案,方案1:生产竖式纸盒38个,横式纸盒62个;方案2:生产竖式纸盒39个,横式纸盒61个;方案3:生产竖式纸盒40个,横式纸盒60个;(3)293或298 【详解】解:(1)设生产竖式纸盒x 个,则生产横式纸盒(100﹣x )个,则长方形纸板用了43(100)300x x x +-=+张,正方形纸板用了2(100)200x x x +-=-张 ℃长方形纸板用了(x +300)张,正方形纸板用了(200﹣x )张.(2)依题意,得:300340200162x x +≤⎧⎨-≤⎩, 解得:3840x ≤≤. ℃x 为整数,℃x =38,39,40,℃共有3种生产方案,方案1:生产竖式纸盒38个,横式纸盒62个;方案2:生产竖式纸盒39个,横式纸盒61个;方案3:生产竖式纸盒40个,横式纸盒60个.(3)设可以生产竖式纸盒m 个,横式纸盒1622m -个,由此可得,m 为偶数,依题意,得:43(81)2m a m =+-∵290300a << ∴43(8129030)02m m +-<< ∴18.822.8x ≤≤∴20m =或22m =∴293a =或298a =答:a 的值为293或298.23.(1)政府对划线新增一个停车位补贴500元,对建设改造新增一个停车位补贴2000元(2)共有3种方案(1)设政府对划线新增一个停车位补贴x 元,对建设改造新增一个停车位补贴y 元,依题意得:4380002500x y x y +=⎧⎨+=⎩, 解得:{x =500y =2000. 答:政府对划线新增一个停车位补贴500元,对建设改造新增一个停车位补贴2000元.(2)设老旧小区划线新增m 个停车位,则建设改造新增(100)m -个停车位,依题意得:()100 1.55002000100143000m mm m -⎧⎨+-⎩,解得:3840m .又m 为整数,m ∴可以为38,39,40,∴老旧小区新增停车位共有3种方案.24.(1)x <﹣2.5(2)x >1.4(3)x ≤1,在数轴上表示它的解集见解析(1)解:移项得:2x <﹣6+1,合并得:2x <﹣5,解得:x <﹣2.5;(2)解:去分母得:3(x ﹣1)<2(4x ﹣5),去括号得:3x ﹣3<8x ﹣10,移项得:3x ﹣8x <﹣10+3,合并得:﹣5x <﹣7,解得:x >1.4;(3) 解:3(2)41213x x xx --≥⎧⎪⎨+>-⎪⎩①②由℃得:x ≤1,由℃得:x <4,解得:x ≤1.。

不等式与不等式组复习教案人教版

不等式与不等式组复习教案人教版
4. 课后作业:通过批改课后作业,了解学生对不等式与不等式组知识点的理解和应用情况,以及他们的解题技巧和逻辑思维能力。
5. 学生自我评价:鼓励学生进行自我评价,了解他们对不等式与不等式组知识点的掌握情况和学习效果,以及他们对学习的满意度和改进建议。
教师评价与反馈:
- 根据学生的课堂表现、小组讨论成果展示、随堂测试和课后作业,对学生的学习情况进行全面的评价和反馈。
学生活动:
- 自主阅读预习资料:按照预习要求,自主阅读预习资料,理解不等式与不等式组知识点。
- 思考预习问题:针对预习问题,进行独立思考,记录自己的理解和疑问。
- 提交预习成果:将预习成果(如笔记、思维导图、问题等)提交至平台或老师处。
教学方法/手段/资源:
- 自主学习法:引导学生自主思考,培养自主学习能力。
- 信息技术手段:利用在线平台、微信群等,实现预习资源的共享和监控。
作用与目的:
- 帮助学生提前了解不等式与不等式组课题,为课堂学习做好准备。
- 培养学生的自主学习能力和独立思考能力。
2. 课中强化技能
教师活动:
- 导入新课:通过故事、案例或视频等方式,引出不等式与不等式组课题,激发学生的学习兴趣。
- 反思总结法:引导学生对自己的学习过程和成果进行反思和总结。
作用与目的:
- 巩固学生在课堂上学到的不等式与不等式组知识点和解题技能。
- 通过拓展学习,拓宽学生的知识视野和思维方式。
- 通过反思总结,帮助学生发现自己的不足并提出改进建议,促进自我提升。
教学资源拓展
1. 拓展资源
- 数学故事:介绍数学家与不等式的故事,如刘徽、欧拉等,让学生了解数学史,培养学生对数学的兴趣。
不等式与不等式组复习教案 人教版

第9章不等式与不等式组复习课件(共19张PPT) 2023-2024学年人教版七年级数学下册

第9章不等式与不等式组复习课件(共19张PPT) 2023-2024学年人教版七年级数学下册

初中数学 中考命题点2不等式(组)的解集及数轴表示
1. 解不等式3(x-1)≤ x 4 ,并把它的解集在数轴上表示出来. 2
讲授新课
解析 去分母,得6(x-1)≤x+4, 去括号,得6x-6≤x+4, 移项、合并同类项,得5x≤10, 系数化为1,得x≤2. 将解集表示在数轴上如图.
初中数学 中考命题点2不等式(组)的解集及数轴表示
解:(1)设A奖品的单价为x元,B奖品的单价为y元,
根据题意,得
3x 5x
2y 4y
120, 210.
解得
x 30,
y
15.
所以A奖品的单价为30元,B奖品的单价为15元.
初中数学
中考命题点4不等式的应用
(2)设购买A奖品a个,则购买B奖品(30-a)个,共需w元, 根据题意,得w=30a+15(30-a)=15a+450. ∵15>0,∴当a取最小值时,w有最小值.
(1)求该车间的日废水处理量m; (2)为实现可持续发展,走绿色发展之路,工厂合理控制了生产规模,使得每天废水处理的平均费用不超过 10元/吨,试计算该厂一天产生的工业废水量的范围.
初中数学
中考命题点4不等式的应用
(1) ∵工厂产生工业废水35吨,共花费废水处理费370元,
又∵
370 30 68 = >8,
一元一次不等式
一元一次方程的解法
一元一次不等式组 不等式(组)的应用 一元一次方程的应用
初中数学












解方程与不等式 函数及其性质
统计与概率 几何图形中的数量关系

人教版初中数学中考复习课件 第2章 第4讲 不等式与

人教版初中数学中考复习课件 第2章 第4讲   不等式与
①在不等式的两边都加上(或减去)同一个整 式,不等号的方向不变;
②在不等式的两边都乘以同一个数(或整式), 乘的数(或整式)为正时不等号的方向不变, 乘的数(或 整 式)为负时不等式的方向改 变.
请解决以下两个问题:
(1)利用性质①比较2a与a的大(a≠0); (2)利用性质②比较2a与a的大(a≠0).
B. a > b cc
D. c+a > c + b
考点2:一元一次不等式的解法及在数轴上 表示不等式的解集.
例2.(2013·广东)不等式5x-1 >2x+5的解集在数
轴上表示正确的是( A )
A
B
C
D
【举一反三】2.解不等式x +1≥ x+2并把解集在
数轴上表示出来.
2
解:去分母,得2(x+1)≥x+4. 去括号,得2x+2≥x+4.
无解 大大小小解不了
四、不等式(组)的特殊解 由于不等式(组)的解有无数多个,若加上一
定的条件来限制就可以求出它的特殊解.
解法:首先 求出不等式(组)的解集,然后利 用 不等式(组)的解集 来确定在一定点1:不等式的概念及基本性质
例1:(2015·佛山)现有不等式的性质:
解:(l)a >0 时,a + a>a+0, 即 2a >a,
a <0 时,a+a <a +0, 即 2a<a;
(2)a >0 时,2>a, 即 2a>a;
a <0 时,2 > 1, 即 2a < a.
【举一反三】
1.已知a >b,c≠0,则下列关系一定成立的是( D )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

不等式与不等式组章节复习(二)(人教版)
不等式与不等式组章节复习(二)(人教版)一、单选题(共10道,每道10分)
1.不等式的解集为( )
A. B.
C. D.
2.不等式组的解集为( )
A. B.
C. D.无解
3.如果关于x,y的方程组的解是负数,则a的取值范围值( )
A. B.
C. D.无解
4.若关于x的一元一次不等式组有解,则m的取值范围是( )
A. B.
C. D.
5.若关于x的不等式组有且只有1个整数解,则a的取值范围是( )
A. B.
C. D.
6.已知关于x的不等式组恰有4个整数解,则a的取值范围是( )
A. B.
C. D.
7.已知a,b为实数,则解集可以为的
不等式组是( )
A. B.
C. D.
8.若x,y满足,且x,y均为正整数,
,则x=( )
A.50
B.52
C.45
D.42
9.某工厂现有甲种原料310kg,乙种原料240kg,计划利用这两种原料生产A,B两种产品共50件.已知生产一件A种产品需甲种原料8kg、乙种原料2kg;生产一件B种产品需甲种原料3kg、乙种原料9kg.设生产x件A种产品,则x应满足的不等式组是( )
A. B.
C. D.
10.用锤子以相同的力将铁钉垂直钉入木块,随着铁钉的深入,铁钉所受的阻力也越来
越大.当铁钉未进入木块部分长度足够时,每次钉入木块的铁钉长度是前一次的,已知这个铁钉被敲击3次后全部进入木块(木块足够厚),且第一次敲击后,铁钉进入木块的长度是acm,若铁钉总长度为
6cm,则a的取值范围是( )
A. B.
C. D.。

相关文档
最新文档