电磁感应五年高考题

电磁感应五年高考题
电磁感应五年高考题

电磁感应五年高考题

4.(2015?江苏)做磁共振(MRI)检查时,对人体施加的磁场发生变化时会在肌肉组织中产生感应电流,某同学为了估算该感应电流对肌肉组织的影响,将包裹在骨骼上的一圈肌肉组织等效成单匝线圈,线圈的半径r=5.0cm,线圈导线的截面积A=0.80cm2,电阻率

ρ=1.5Ω?m,如图所示,匀强磁场方向与线圈平面垂直,若磁感应强度B在0.3s内从1.5T均匀地减为零,求:(计算结果保留一位有效数字)

(1)该圈肌肉组织的电阻R;

(2)该圈肌肉组织中的感应电动势E;

(3)0.3s内该圈肌肉组织中产生的热量Q.

5.(2015?海南)如图,两平行金属导轨位于同一水平面上,相距L,左端与一电阻R相连;整个系统置于匀强磁场中,磁感应强度大小为B,方向竖直向下.一质量为m的导体棒置于导轨上,在水平外力作用下沿导轨以速率ν匀速向右滑动,滑动过程中始终保持与导轨垂直并接触良好,已知导体棒与导轨间的动摩擦因数为μ,重力加速度大小为g,导轨和导体棒的电阻均可忽略.求

(1)电阻R消耗的功率;

(2)水平外力的大小.

6.(2015?浙江)小明同学设计了一个“电磁天平”,如图1所示,等臂天平的左臂为挂盘,右臂挂有矩形线圈,两臂平衡,线圈的水平边长L=0.1m,竖直边长H=0.3m,匝数为N1,线圈的下边处于匀强磁场内,磁感应强度B0=1.0T,方向垂直线圈平面向里,线圈中通有可在0~2.0A范围内调节的电流I,挂盘放上待测物体后,调节线圈中电流使天平平衡,测出电流即可测得物体的质量(重力加速度取g=10m/s2)

(1)为使电磁天平的量程达到0.5kg,线圈的匝数N1至少为多少?

(2)进一步探究电磁感应现象,另选N2=100匝、形状相同的线圈,总电阻R=10Ω,不接外电流,两臂平衡,如图2所示,保持B0不变,在线圈上部另加垂直纸面向外的匀强磁场,且磁感应强度B随时间均匀变大,磁场区域宽度d=0.1m,当挂盘中放质量为0.01kg的物体

时,天平平衡,求此时磁感应强度的变化率.

7.(2015?广东)如图(a)所示,平行长直金属导轨水平放置,间距L=0.4m,导轨右端接有阻值R=1Ω的电阻,导体棒垂直放置在导轨上,且接触良好.导体棒及导轨的电阻均不计.导轨间正方形区域abcd内有方向竖直向下的匀强磁场,bd连线与导轨垂直,长度也为L.从0时刻开始,磁感应强度B的大小随时间t变化,规律如图(b)所示;同一时刻,棒从导轨左端开始向右匀速运动,1s后刚好进入磁场,若使棒在导轨上始终以速度v=1m/s 做直线运动,求:

(1)棒进入磁场前,回路中的电动势E;

(2)棒在运动过程中受到的最大安培力F,以及棒通过三角形abd区域使电流i与时间t的关系式.

8.(2015?北京)如图所示,足够长的平行光滑金属导轨水平放置,宽度L=0.4m,一端连接R=1Ω的电阻.导轨所在空间存在竖直向下的匀强磁场,磁感应强度B=1T.导体棒MN放在导轨上,其长度恰好等于导轨间距,与导轨接解良好.导轨和导体棒的电阻均可忽略不计.在平行于导轨的拉力F作用下,导体棒沿导轨向右匀速运动,速度v=5m/s.求:(1)感应电动势E和感应电流I;

(2)在0.1s时间内,拉力的冲量I F的大小;

(3)若将MN换为电阻r=1Ω的导体棒,其它条件不变,求导体棒两端的电压U.

9.(2015?天津)如图所示,“凸”字形硬质金属线框质量为m,相邻各边相互垂直,且处于同一竖直平面内,ab边长为l,cd边长为2l,ab与cd平行,间距为2l.匀强磁场区域的上

下边界均水平,磁场方向垂直于线框所在平面.开始时,cd边到磁场上边界的距离为2l,线框由静止释放,从cd边进入磁场直到ef、pq边进入磁场前,线框做匀速运动.在ef、pq 边离开磁场后,ab边离开磁场之前,线框又做匀速运动.线框完全穿过磁场过程中产生的热量为Q.线框在下落过程中始终处于原竖直平面内,且ab、cd边保持水平,重力加速度为g.求:

(1)线框ab边将离开磁场时做匀速运动的速度大小是cd边刚进入磁场时的几倍;

(2)磁场上下边界间的距离H.

10.(2014?浙江)某同学设计一个发电测速装置,工作原理如图.一个半径为R=0.1m的圆形金属导轨固定在竖直平面上,一根长为R的金属棒0A,A端与导轨接触良好,O端固定

在圆心处的转轴上.转轴的左端有一个半径为r=的圆盘,圆盘和金属棒能随转轴一起转

动.圆盘上绕有不可伸长的细线,下端挂着一个质量为m=0.5kg的铝块.在金属导轨区域内存在垂直于导轨平面向右的匀强磁场,磁感应强度B=0.5T.a点与导轨相连,b点通过电刷与O端相连.测量a、b两点间的电势差U可算得铝块速度,铝块由静止释放,下落h=0.3m 时,测得U=0.15v.(细线与圆盘间没有滑动,金属棒、导轨、导线及电刷的电阻均不计,重力加速度g=10m/s2)

(1)测U时,与A点相接的电压表的“正极”还是“负极”?

(2)求此时铝块的速度大小;

(3)求此下落过程中铝块机械能的损失.

11.(2014?上海)如图,水平面内有一光滑金属导轨,其MN、PQ边的电阻不计,MP边的电阻阻值R=1.5Ω,MN与MP的夹角为135°,PQ与MP垂直,MP边长度小于1m.将质量m=2kg,电阻不计的足够长直导体棒搁在导线上,并与MP平行,棒与MN、PQ交点G、H 间的距离L=4m,空间存在垂直于导轨平面的匀强磁场,磁感应强度B=0.5T.在外力作用下,棒由GH处以一定的初速度向左做直线运动,运动时回路中的电流强度始终与初始时的电流强度相等.

(1)若初速度v1=3m/s,求棒在GH处所受的安培力大小F A.

(2)若初速度v2=1.5m/s,求棒向左移动距离2m到达EF所需的时间△t.

(3)在棒由GH处向左移动2m到达EF处的过程中,外力做功W=7J,求初速度v3.

12.(2013?江苏)如图所示,匀强磁场中有一矩形闭合线圈abcd,线圈平面与磁场垂直.已知线圈的匝数N=100,边长ab=1.0m、bc=0.5m,电阻r=2Ω.磁感应强度B在0~1s内从零均匀变化到0.2T.在1~5s内从0.2T均匀变化到﹣0.2T,取垂直纸面向里为磁场的正方向.求:

(1)0.5s时线圈内感应电动势的大小E和感应电流的方向;

(2)在1~5s内通过线圈的电荷量q;

(3)在0~5s内线圈产生的焦耳热Q.

13.(2013?上海)如图,两根相距l=0.4m、电阻不计的平行光滑金属导轨水平放置,一端与阻值R=0.15Ω的电阻相连.导轨x>0一侧存在沿x方向均匀增大的稳恒磁场,其方向与导轨平面垂直,变化率k=0.5T/m,x=0处磁场的磁感应强度B0=0.5T.一根质量m=0.1kg、电阻r=0.05Ω的金属棒置于导轨上,并与导轨垂直.棒在外力作用下从x=0处以初速度

v0=2m/s沿导轨向右运动,运动过程中电阻上消耗的功率不变.求:

(1)电路中的电流;

(2)金属棒在x=2m处的速度;

(3)金属棒从x=0运动到x=2m过程中安培力做功的大小;

(4)金属棒从x=0运动到x=2m过程中外力的平均功率.

14.(2013?广东)如图(a)所示,在垂直于匀强磁场B的平面内,半径为r的金属圆盘绕过圆心O的轴转动,圆心O和边缘K通过电刷与一个电路连接,电路中的P是加上一定正向电压才能导通的电子元件.流过电流表的电流I与圆盘角速度ω的关系如图(b)所示,其中ab段和bc段均为直线,且ab段过坐标原点.ω>0代表圆盘逆时针转动.已知:R=3.0Ω,B=1.0T,r=0.2m.忽略圆盘、电流表和导线的电阻.

(1)根据图(b)写出ab、bc段对应I与ω的关系式;

(2)求出图(b)中b、c两点对应的P两端的电压U b、U c;

(3)分别求出ab、bc段流过P的电流I p与其两端电压U p的关系式.

15.(2015?潍坊校级模拟)如图,两条平行导轨所在平面与水平地面的夹角为θ,间距为L.导轨上端接有一平行板电容器,电容为C.导轨处于匀强磁场中,磁感应强度大小为B,方向垂直于导轨平面.在导轨上放置一质量为m的金属棒,棒可沿导轨下滑,且在下滑过程中保持与导轨垂直并良好接触.已知金属棒与导轨之间的动摩擦因数为μ,重力加速度大小为g.忽略所有电阻.让金属棒从导轨上端由静止开始下滑,求:

(1)电容器极板上积累的电荷量与金属棒速度大小的关系;

(2)金属棒的速度大小随时间变化的关系.

16.(2014春?安溪县校级期末)如图,两条平行导轨所在平面与水平地面的夹角为θ,间距为L.导轨上端接有一平行板电容器,电容为C.导轨处于匀强磁场中,磁感应强度大小为B,方向垂直于导轨平面.在导轨上放置一质量为m的金属棒,棒可沿导轨下滑,且在下滑过程中保持与导轨垂直并良好接触.已知金属棒与导轨之间的动摩擦因数为μ,重力加速度大小为g.忽略所有电阻.让金属棒从导轨上端由静止开始下滑,求:

(1)电容器极板上积累的电荷量与金属棒速度大小的关系;

(2)若金属棒下滑过程中某时刻加速度大小为a,求此时金属棒受到的磁场的作用力大小;(3)金属棒的速度大小随时间变化的关系.

17.(2012?天津)如图所示,一对光滑的平行金属导轨固定在同一水平面内,导轨间距l=0.5m,左端接有阻值R=0.3Ω的电阻,一质量m=0.1kg,电阻r=0.1Ω的金属棒MN放置在导轨上,整个装置置于竖直向上的匀强磁场中,磁场的磁感应强度B=0.4T.棒在水平向右的外力作用下,由静止开始以a=2m/s2的加速度做匀加速运动,当棒的位移x=9m时撤去外力,棒继

续运动一段距离后停下来,已知撤去外力前后回路中产生的焦耳热之比Q1:Q2=2:1.导轨足够长且电阻不计,棒在运动过程中始终与导轨垂直且两端与导轨保持良好接触.求:(1)棒在匀加速运动过程中,通过电阻R的电荷量q;

(2)撤去外力后回路中产生的焦耳热Q2;

(3)外力做的功W F.

18.(2012?广东)如图所示,质量为M的导体棒ab,垂直放在相距为l 的平行光滑金属导轨上,导轨平面与水平面的夹角为θ,并处于磁感应强度大小为B方向垂直于导轨平面向上的匀强磁场中,左侧是水平放置间距为d的平行金属板,R和R x分别表示定值电阻和滑动变阻器的阻值,不计其他电阻.

(1)调节R x=R,释放导体棒,当棒沿导轨匀速下滑时,求通过棒的电流I及棒的速率v.(2)改变R x,待棒沿导轨再次匀速下滑后,将质量为m带电量为+q的微粒水平射入金属板间,若它能匀速通过,求此时的R x.

19.(2012?上海)如图,质量为M的足够长金属导轨abcd放在光滑的绝缘水平面上.一电阻不计,质量为m的导体棒PQ放置在导轨上,始终与导轨接触良好,PQbc构成矩形.棒与导轨间动摩擦因数为μ,棒左侧有两个固定于水平面的立柱.导轨bc段长为L,开始时PQ左侧导轨的总电阻为R,右侧导轨单位长度的电阻为R0.以ef为界,其左侧匀强磁场方向竖直向上,右侧匀强磁场水平向左,磁感应强度大小均为B.在t=0时,一水平向左的拉力F垂直作用于导轨的bc边上,使导轨由静止开始做匀加速直线运动,加速度为a.

(1)求回路中感应电动势及感应电流随时间变化的表达式;

(2)经过多少时间拉力F达到最大值,拉力F的最大值为多少?

(3)某一过程中回路产生的焦耳热为Q,导轨克服摩擦力做功为W,求导轨动能的增加量.

20.(2012?江苏)某兴趣小组设计了一种发电装置,如图所示.在磁极和圆柱状铁芯之间形成的两磁场区域的圆心角α均为π,磁场均沿半径方向.匝数为N的矩形线圈abcd的边长

ab=cd=l、bc=ad=2l.线圈以角速度ω绕中心轴匀速转动,bc和ad边同时进入磁场.在磁场中,两条边所经过处的磁感应强度大小均为B、方向始终与两边的运动方向垂直.线圈的总电阻为r,外接电阻为R.求:

(1)线圈切割磁感线时,感应电动势的大小E m;

(2)线圈切割磁感线时,bc边所受安培力的大小F;

(3)外接电阻上电流的有效值I.

21.(2012?福建)如图甲,在圆柱形区域内存在一方向竖直向下、磁感应强度大小为B的匀强磁场,在此区域内,沿水平面固定一半径为r的圆环形光滑细玻璃管,环心O在区域中心.一质量为m、带电荷量为q(q>0)的小球,在管内沿逆时针方向(从上向下看)做

圆周运动.已知磁感应强度大小B随时间t的变化关系如图乙所示,其中T0=.设小

球在运动过程中电荷量保持不变,对原磁场的影响可忽略.

(1)在t=0到t=T0这段时间内,小球不受细管侧壁的作用力,求小球的速度大小v0;(2)在竖直向下的磁感应强度增大过程中,将产生涡旋电场,其电场线是在水平面内一系列沿逆时针方向的同心圆,同一条电场线上各点的场强大小相等.试求t=T0到t=1.5T0这段时间内:

①细管内涡旋电场的场强大小E;

②电场力对小球做的功W.

22.(2011?海南)如图,ab和cd是两条竖直放置的长直光滑金属导轨,MN和M′N′是两根用细线连接的金属杆,其质量分别为m和2m.竖直向上的外力F作用在杆MN上,使两杆水平静止,并刚好与导轨接触;两杆的总电阻为R,导轨间距为l.整个装置处在磁感应强度为B的匀强磁场中,磁场方向与导轨所在平面垂直.导轨电阻可忽略,重力加速度为g.在t=0时刻将细线烧断,保持F不变,金属杆和导轨始终接触良好.求:

(1)细线烧断后,任意时刻两杆运动的速度之比;

(2)两杆分别达到的最大速度.

23.(2013?木里县校级模拟)如图,两根足够长的金属导轨ab、cd竖直放置,导轨间距离为L1电阻不计.在导轨上端并接两个额定功率均为P、电阻均为R的小灯泡.整个系统置于匀强磁场中,磁感应强度方向与导轨所在平面垂直.现将一质量为m、电阻可以忽略的金

属棒MN从图示位置由静止开始释放.金属棒下落过程中保持水平,且与导轨接触良好.已知某时刻后两灯泡保持正常发光.重力加速度为g.求:

(1)磁感应强度的大小:

(2)灯泡正常发光时导体棒的运动速率.

24.(2011?天津)如图所示,两根足够长的光滑金属导轨MN、PQ间距为l=0.5m,其电阻不计,两导轨及其构成的平面均与水平面成30°角.完全相同的两金属棒ab、cd分别垂直导轨放置,每棒两端都与导轨始终有良好接触,已知两棒的质量均为0.02kg,电阻均为R=0.1Ω,整个装置处在垂直于导轨平面向上的匀强磁场中,磁感应强度为B=0.2T,棒ab在平行于导轨向上的力F作用下,沿导轨向上匀速运动,而棒cd恰好能保持静止.取g=10m/s2,问:(1)通过cd棒的电流I是多少,方向如何?

(2)棒ab受到的力F多大?

(3)棒cd每产生Q=0.1J的热量,力F做的功W是多少?

25.(2011?浙江)如图甲所示,在水平面上固定有长为L=2m、宽为d=1m的金属“U”型导轨,在“U”型导轨右侧l=0.5m范围内存在垂直纸面向里的匀强磁场,且磁感应强度随时间变化规律如图乙所示.在t=0时刻,质量为m=0.1kg的导体棒以v0=1m/s的初速度从导轨的左端开始向右运动,导体棒与导轨之间的动摩擦因数为μ=0.1,导轨与导体棒单位长度的电阻均为λ=0.1Ω/m,不计导体棒与导轨之间的接触电阻及地球磁场的影响(取g=10m/s2).(1)通过计算分析4s内导体棒的运动情况;

(2)计算4s内回路中电流的大小,并判断电流方向;

(3)计算4s内回路产生的焦耳热.

26.(2011?上海)电阻可忽略的光滑平行金属导轨长S=1.15m,两导轨间距L=0.75m,导轨倾角为30°,导轨上端ab接一阻值R=1.5Ω的电阻,磁感应强度B=0.8T的匀强磁场垂直轨道平面向上.阻值r=0.5Ω,质量m=0.2kg的金属棒与轨道垂直且接触良好,从轨道上端ab 处由静止开始下滑至底端,在此过程中金属棒产生的焦耳热Q r=0.1J.(取g=10m/s2)求:(1)金属棒在此过程中克服安培力的功W安;

(2)金属棒下滑速度v=2m/s时的加速度a.

(3)为求金属棒下滑的最大速度v m,有同学解答如下:由动能定理W重﹣W安=mv m2,….由此所得结果是否正确?若正确,说明理由并完成本小题;若不正确,给出正确的解答.

27.(2015?四川)如图所示,金属导轨MNC和PQD,MN与PQ平行且间距为L,所在平面与水平面夹角为α,N、Q连线与MN垂直,M、P间接有阻值为R的电阻;光滑直导轨NC和QD在同一水平面内,与NQ的夹角都为锐角θ.均匀金属棒ab和ef质量均为m,长均为L,ab棒初始位置在水平导轨上与NQ重合;ef棒垂直放在倾斜导轨上,与导轨间的动摩擦因数为μ(μ较小).由导轨上的小立柱1和2阻挡而静止.空间有方向竖直的匀强磁场(图中未画出).两金属棒与导轨保持良好接触,不计所有导轨和ab棒的电阻,ef棒的阻值为R,最大静摩擦力与滑动摩擦力大小相等,忽略感应电流产生的磁场,重力加速度为g.

(1)若磁感应强度大小为B,给ab棒一个垂直于NQ、水平向右的速度v1,在水平导轨上沿运动方向滑行一段距离后停止,ef棒始终静止,求此过程ef棒上产生的热量;

(2)在(1)问过程中,ab棒滑行距离为d,求通过ab棒某横截面的电量;

(3)若ab棒以垂直于NQ的速度v2在水平导轨上向右匀速运动,并在NQ位置时取走小立柱1和2,且运动过程中ef棒始终静止.求此状态下最强磁场的磁感应强度及此磁场下ab棒运动的最大距离.

28.(2014?重庆)某电子天平原理如图所示,E形磁铁的两侧为N极,中心为S极,两极间的磁感应强度大小均为B,磁极宽度均为L,忽略边缘效应,一正方形线圈套于中心磁极,其骨架与秤盘连为一体,线圈两端C、D与外电路连接.当质量为m的重物放在秤盘上时,弹簧被压缩,秤盘和线圈一起向下运动(骨架与磁极不接触),随后外电路对线圈供电,秤盘和线圈恢复到未放重物时的位置并静止.此时对应的供电电流I可确定重物的质量.已知线圈匝数为n,线圈电阻为R,重力加速度为g,问:

(1)线圈向下运动过程中,线圈中感应电流是从C端还是从D端流出?

(2)供电电流I是从C端还是从D端流入?求重物质量与电流的关系.

(3)若线圈消耗的最大功率为P,该电子天平能称量的最大质量是多少?

29.(2012?浙江)为了提高自行车夜间行驶的安全性,小明同学设计了一种“闪烁”装置.如图所示,自行车后轮由半径r1=5.0×10﹣2m的金属内圈、半径r2=0.40m的金属外圈和绝缘幅条构成.后轮的内、外圈之间等间隔地接有4跟金属条,每根金属条的中间均串联有一电阻值为R的小灯泡.在支架上装有磁铁,形成了磁感应强度B=0.10T、方向垂直纸面向外的“扇

形”匀强磁场,其内半径为r1、外半径为r2、张角θ=.后轮以角速度ω=2π rad/s,相对转

轴转动.若不计其它电阻,忽略磁场的边缘效应.

(1)当金属条ab进入“扇形”磁场时,求感应电动势E,并指出ab上的电流方向;

(2)当金属条ab进入“扇形”磁场时,画出“闪烁”装置的电路图;

(3)从金属条ab进入“扇形”磁场时开始,经计算画出轮子一圈过程中,内圈与外圈之间电势差U ab随时间t变化的U ab﹣t图象;

(4)若选择的是“1.5V、0.3A”的小灯泡,该“闪烁”装置能否正常工作?有同学提出,通过改变磁感应强度B、后轮外圈半径r2、角速度ω和张角θ等物理量的大小,优化前同学的设计方案,请给出你的评价.

30.(2015?福州二模)如图甲所示,在磁感应强度为B的水平匀强磁场中,有两根竖直放置相距为L平行光滑的金属导轨,顶端用一阻直为尺的电阻相连,两导轨所在的竖直平面与磁场方向垂直.一根质量为m的金属棒从静止开始沿导轨竖直向下运动,当金属棒下落龙时,速度达到最大,整个过程中金属棒与导轨保持垂直且接触良好.重力加速度为g,导轨与金属棒的电阻可忽略不计,设导轨足够长.求:

(l)通过电阻R的最大电流;

(2)从开始到速度最大过程中,金属棒克服安培力做的功W A;

(3)若用电容为C的平行板电容器代替电阻R,如图乙所示,仍将金属棒从静止释放,经历时间t的瞬时速度v1.

电磁感应五年高考题参考答案与试题解析

一.选择题(共3小题)

1.(2014?安徽模拟)如图所示的发电机,在磁极与圆柱状铁芯之间形成的两磁场区域的圆心角α均为π,磁场均沿半径方向,匝数为N的矩形线圈abcd,边长ab=cd=l,bc=ad=2l,

线圈以角速度ω绕中心轴匀速转动,bc边与ad边同时进入磁场,在磁场中,两条边经过处的磁感应强度大小均为B,方向始终与两条边的运动方向垂直,线圈的总电阻为r,外电阻为R,则()

A.该发电机为直流发电机

B.该发电机为交流发电机

C.线圈产生的感应电动势的最大值为E m=NBl2ω

D.外电阻R中电流的有效值为I=

【分析】根据右手定则判断感应电流的方向;根据根据法拉第电磁感应定律求出感应电动势;根据热效应求解电流的有效值.

【解答】解:A、B、bc边向左切割时,感应电流方向为c→b;bc边向右切割时,感应电流方向为b→c;故是交流发电机;故A错误,B正确;

C、bc、ad 边的运动速度:v=ω

感应电动势:E m=4NBlv

解得:E m=2NBl2ω

故C错误;

D、一个周期内,通电时间:t=T

R上消耗的电能W=I m2Rt,且W=I2RT;

解得:I=;故D错误;

故选:B.

2.(2014春?河南期中)如图所示,两条光滑平行导轨所在平面与水平地面的夹角为θ,间距为L.导轨上端接有一平行板电容器,电容为C.导轨处于匀强磁场中,磁感应强度大小为B,方向垂直于导轨平面.在导轨上放置一质量为m的金属棒,棒可沿导轨下滑,且在下滑过程中保持与导轨垂直并良好接触.已知金属棒与导轨之间的动摩擦因数为μ,重力加速度大小为g.忽略所有电阻.让金属棒从导轨上端由静止开始下滑,金属棒的速度和加速度分别为v和a,平行板电容器电荷数以及板间电压分别为Q和U,下列图象正确的是()

A.B.C.D.

【分析】金属棒下滑时电路不闭合,电路中没有电流,由牛顿第二定律求出加速度,由速度公式求出速度,由E=BLv求出感应电动势,由Q=CU求出电荷量,然后分析图象答题.【解答】解:电路不闭合,金属棒切割磁感线产生感应电动势,但电路没有电流,金属棒不受安培力作用;

A、由牛顿第二定律得:mgsinθ﹣μmgcosθ=ma,解得加速度为:a=gsinθ﹣μgcosθ,加速度恒定不变,故A错误;

B、加速度不变,金属棒做初速度为零的匀加速运动,速度v=at,v与t成正比,故B正确;

C、感应电动势:E=BLv=BLat,电荷量Q=CU=CE=CBLat,Q与t成正比,故C正确;

D、两极板间的电压U=E=BLat,U与t成正比,故D错误;

故选:BC.

3.(2015?湖北校级一模)如图所示,两条光滑、水平长直导轨M、N竖直放置,导轨间距为L,导轨上端接有一电容为C的平行板电容器,导轨处于方向垂直纸面向里的磁感应强度大小为B的匀强磁场中,在导轨上放置一质量为m的金属棒ab,棒可沿导轨下滑,且在下滑过程中保持与导轨垂直并接触良好,已知重力加速度大小为g,忽略所有电阻,让金属棒从导轨上端由静止开始下滑,以下说法正确的是()

A.金属棒做匀加速直线运动

B.金属棒做加速度逐渐减小的加速运动,最后匀速直线运动

C.金属棒的机械能不断减小

D.金属棒消耗的电功率逐渐增大,最后保持不变

【分析】由法拉第电磁感应定律,求出感应电动势;再与相结合求出电荷量与速度的关系式,由左手定则来确定安培力的方向,并求出安培力的大小;借助于、及牛

顿第二定律来求出运动形式及能量和功率的变化.

【解答】解:A、B、设金属棒的速度大小为v时,经历的时间为t,通过金属棒的电流为i,金属棒受到的安培力方向沿导轨向上,大小为F=BLi

设在时间间隔(t,t+△t)内流经金属棒的电荷量为△Q,

按定义有:i=,△Q也是平行板电容器极板在时间间隔(t,t+△t)内增加的电荷量,△v为金属棒的速度变化量,得:

△Q=C△U=CBL△v

加速度的定义有:a=,

根据牛顿第二定律有:mg﹣F=ma,

联立上此式可得:a=,可知加速度a为定值,故A正确,B错误;

C、由△Q=C△U=CBL△v可知,电路中始终存在电流,电容器的电势能增加,根据能量守恒可知,此能量由金属棒的机械能转化而来,故C正确;

D、由△Q=C△U=CBL△v可知,i==BLCa,可知电流为定值,金属棒消耗的电功率不

变,故D错误;

故选:AC

二.解答题(共27小题)

4.(2015?江苏)做磁共振(MRI)检查时,对人体施加的磁场发生变化时会在肌肉组织中产生感应电流,某同学为了估算该感应电流对肌肉组织的影响,将包裹在骨骼上的一圈肌肉组织等效成单匝线圈,线圈的半径r=5.0cm,线圈导线的截面积A=0.80cm2,电阻率

ρ=1.5Ω?m,如图所示,匀强磁场方向与线圈平面垂直,若磁感应强度B在0.3s内从1.5T均匀地减为零,求:(计算结果保留一位有效数字)

(1)该圈肌肉组织的电阻R;

(2)该圈肌肉组织中的感应电动势E;

(3)0.3s内该圈肌肉组织中产生的热量Q.

【分析】(1)由电阻定律即可求出该圈肌肉组织的电阻R;

(2)根据法拉第电磁感应定律即可求出该圈肌肉组织中的感应电动势E;

(3)由焦耳定律:Q=I2Rt,即可求出0.3s内该圈肌肉组织中产生的热量Q.

【解答】解:(1)由电阻定律得:

Ω;

(2)根据法拉第电磁感应定律得:

代入数据得:E=4×10﹣2V

(3)由焦耳定律:Q=I2Rt=,得:J

答:(1)该圈肌肉组织的电阻是6×103Ω;

(2)该圈肌肉组织中的感应电动势是4×10﹣2V;

(3)0.3s内该圈肌肉组织中产生的热量是8×10﹣8J.

5.(2015?海南)如图,两平行金属导轨位于同一水平面上,相距L,左端与一电阻R相连;整个系统置于匀强磁场中,磁感应强度大小为B,方向竖直向下.一质量为m的导体棒置于导轨上,在水平外力作用下沿导轨以速率ν匀速向右滑动,滑动过程中始终保持与导轨垂直并接触良好,已知导体棒与导轨间的动摩擦因数为μ,重力加速度大小为g,导轨和导体棒的电阻均可忽略.求

(1)电阻R消耗的功率;

(2)水平外力的大小.

【分析】(1)根据法拉第电磁感应定律求出感应电动势,由欧姆定律求出电流的大小.由公式P=I2R求出电阻R的功率.

(2)导体棒匀速向右滑动时,水平外力与安培力和摩擦力的和是平衡力,根据平衡条件求解水平外力F的大小.

【解答】解:(1)根据法拉第电磁感应定律有:E=BvL…①

则导体棒中的电流大小为:…②

电阻R消耗的功率:P=I2R…③

联立②③可解得:P=…④

(2)由于导体棒ab匀速运动,故向右的水平外力F等于向左的安培力F安和摩擦力的和,则水平外力:

F=μmg+F安…⑤

安培力:

拉力:F=

答:(1)电阻R消耗的功率是;

(2)水平外力的大小是.

6.(2015?浙江)小明同学设计了一个“电磁天平”,如图1所示,等臂天平的左臂为挂盘,右臂挂有矩形线圈,两臂平衡,线圈的水平边长L=0.1m,竖直边长H=0.3m,匝数为N1,线圈的下边处于匀强磁场内,磁感应强度B0=1.0T,方向垂直线圈平面向里,线圈中通有可在0~2.0A范围内调节的电流I,挂盘放上待测物体后,调节线圈中电流使天平平衡,测出电流即可测得物体的质量(重力加速度取g=10m/s2)

(1)为使电磁天平的量程达到0.5kg,线圈的匝数N1至少为多少?

(2)进一步探究电磁感应现象,另选N2=100匝、形状相同的线圈,总电阻R=10Ω,不接外电流,两臂平衡,如图2所示,保持B0不变,在线圈上部另加垂直纸面向外的匀强磁场,且磁感应强度B随时间均匀变大,磁场区域宽度d=0.1m,当挂盘中放质量为0.01kg的物体

时,天平平衡,求此时磁感应强度的变化率.

【分析】(1)根据安培力的大小公式,结合安培力和重力平衡求出线圈的匝数.

(2)通过法拉第电磁感应定律、欧姆定律求出感应电流的大小,抓住安培力和重力相等求出磁感应强度的变化率.

【解答】解:(1)线圈受到安培力F=N1B0IL,

天平平衡有:mg=N1B0IL,

代入数据解得N1=25匝

(2)由电磁感应定律得,E=,

则E=,

由欧姆定律得,,

线圈受到安培力F′=N2B0I′L,

天平平衡有:,

代入数据解得.

答:(1)线圈的匝数N1至少为25匝;

(2)此时磁感应强度的变化率为0.1T/s.

7.(2015?广东)如图(a)所示,平行长直金属导轨水平放置,间距L=0.4m,导轨右端接有阻值R=1Ω的电阻,导体棒垂直放置在导轨上,且接触良好.导体棒及导轨的电阻均不

计.导轨间正方形区域abcd内有方向竖直向下的匀强磁场,bd连线与导轨垂直,长度也为L.从0时刻开始,磁感应强度B的大小随时间t变化,规律如图(b)所示;同一时刻,棒从导轨左端开始向右匀速运动,1s后刚好进入磁场,若使棒在导轨上始终以速度v=1m/s 做直线运动,求:

(1)棒进入磁场前,回路中的电动势E;

(2)棒在运动过程中受到的最大安培力F,以及棒通过三角形abd区域使电流i与时间t的关系式.

【分析】根据法拉第电磁感应定律E=N求出感应电动势的大小,

根据棒切割磁感线产生的感应电动势公式和欧姆定律求解感应电流,再根据安培力大小求解.

【解答】解:(1)根据法拉第电磁感应定律E=N得

棒进入磁场前,回路中感应电动势为:E==×0.08=0.04V,

同一时刻,棒从导轨左端开始向右匀速运动,1s后刚好进入磁场,若使棒在导轨上始终以速度v=1m/s做直线运动,

棒通过三角形abd区域时,

棒切割磁感线产生的感应电动势大小E′=BLv=2Bv(t﹣1)v,

根据欧姆定律得棒通过三角形abd区域使电流i与时间t的关系式i===t

﹣1 (1s≤t≤1.2s),

当t=1.2s时,电流最大,有效长度最大,最大安培力F m=BIL=0.04N,

根据左手定则得安培力方向水平向左.

答:(1)棒进入磁场前,回路中的电动势E是0.04V;

(2)棒在运动过程中受到的最大安培力大小是0.04N,方向水平向左,棒通过三角形abd 区域使电流i与时间t的关系式i=t﹣1 (1s≤t≤1.2s).

8.(2015?北京)如图所示,足够长的平行光滑金属导轨水平放置,宽度L=0.4m,一端连接R=1Ω的电阻.导轨所在空间存在竖直向下的匀强磁场,磁感应强度B=1T.导体棒MN放在导轨上,其长度恰好等于导轨间距,与导轨接解良好.导轨和导体棒的电阻均可忽略不计.在平行于导轨的拉力F作用下,导体棒沿导轨向右匀速运动,速度v=5m/s.求:(1)感应电动势E和感应电流I;

(2)在0.1s时间内,拉力的冲量I F的大小;

(3)若将MN换为电阻r=1Ω的导体棒,其它条件不变,求导体棒两端的电压U.

【分析】(1)由E=BLv求出导体棒切割磁感线产生的感应电动势,由欧姆定律求出感应电流,根据右手定则判断感应电流的方向;

(2)由F=BIL求出导体棒受到的安培力,由左手定则判断出安培力的方向,然后由平衡条件求出拉力,并确定拉力的方向,由I=Ft计算出拉力的冲量;

(3)将MN换为电阻r=1Ω的导体棒时,由闭合电路的欧姆定律求出电流,然后由U=IR即可求出导体棒两端的电压.

【解答】解:(1)由法拉第电磁感应定律可得,感应电动势为:

E=BLv=1×0.4×5V=2.0V

感应电流为:

I==A=2A

根据右手定则得导体棒MN中电流的流向为:N→M;

(2)由左手定则判断可知,MN棒所受的安培力方向向左.

导体棒匀速运动,安培力与拉力平衡,则有:

F=BIL=1×2×0.4N=0.8N,

拉力的冲量:I F=Ft=0.8×0.1=0.08N?s

(3)将MN换为电阻r=1Ω的导体棒,电路中的电流:I′==A=1A

由欧姆定律:U=I′?R=1×1=1V

答:(1)感应电动势是2.0V,感应电流是2A,方向导体棒MN中电流的流向为:N→M;(2)在0.1s时间内,拉力的冲量I F的大小是0.08N?s;

(3)若将MN换为电阻r=1Ω的导体棒,其它条件不变,导体棒两端的电压是1V.

9.(2015?天津)如图所示,“凸”字形硬质金属线框质量为m,相邻各边相互垂直,且处于同一竖直平面内,ab边长为l,cd边长为2l,ab与cd平行,间距为2l.匀强磁场区域的上下边界均水平,磁场方向垂直于线框所在平面.开始时,cd边到磁场上边界的距离为2l,线框由静止释放,从cd边进入磁场直到ef、pq边进入磁场前,线框做匀速运动.在ef、pq 边离开磁场后,ab边离开磁场之前,线框又做匀速运动.线框完全穿过磁场过程中产生的热量为Q.线框在下落过程中始终处于原竖直平面内,且ab、cd边保持水平,重力加速度为g.求:

(1)线框ab边将离开磁场时做匀速运动的速度大小是cd边刚进入磁场时的几倍;

(2)磁场上下边界间的距离H.

【分析】(1)线框匀速进入(离开)磁场,重力与安培力平衡,根据平衡条件、安培力公式、切割公式、欧姆定律列式求解即可分别求出两个速度;

(2)由动能定理和功的计算公式,写出重力做的功W,然后结合功能关系即可求出磁场的宽度.

【解答】解:(1)设线框dc边刚进入磁场时,线框的速度为v1,感应电动势E=B?2lv1①感应电流:I=②

dc边受安培力的大小:F=BI?2l ③

由于做匀速运动,则:F=mg ④

由①~④式解得速度:⑤

设线框ab边将离开磁场时,线框的速度为v2,同理可得:

所以:v2=4v1⑦

(2)在线框从开始下落到dc边刚进入磁场的过程中,重力做功W G=2mgl

根据动能定理得:2mgl=⑧

线框完全穿过磁场的过程中,由功能关系得:

联立⑦⑧⑨得:H=

答:(1)线框ab边将离开磁场时做匀速运动的速度大小是cd边刚进入磁场时的4倍;(2)磁场上下边界间的距离是.

10.(2014?浙江)某同学设计一个发电测速装置,工作原理如图.一个半径为R=0.1m的圆形金属导轨固定在竖直平面上,一根长为R的金属棒0A,A端与导轨接触良好,O端固定

在圆心处的转轴上.转轴的左端有一个半径为r=的圆盘,圆盘和金属棒能随转轴一起转动.圆盘上绕有不可伸长的细线,下端挂着一个质量为m=0.5kg的铝块.在金属导轨区域

内存在垂直于导轨平面向右的匀强磁场,磁感应强度B=0.5T.a点与导轨相连,b点通过电刷与O端相连.测量a、b两点间的电势差U可算得铝块速度,铝块由静止释放,下落h=0.3m 时,测得U=0.15v.(细线与圆盘间没有滑动,金属棒、导轨、导线及电刷的电阻均不计,重力加速度g=10m/s2)

(1)测U时,与A点相接的电压表的“正极”还是“负极”?

(2)求此时铝块的速度大小;

(3)求此下落过程中铝块机械能的损失.

【分析】(1)根据右手定则判断感应电动势的方向即可;

(2)根据法拉第电磁感应定律列式表示出电压表达式,求解出角速度;然后根据v=rω求解此时铝块的速度大小;

(3)铝块机械能的损失等于重力势能的减小量与动能增加量的差值.

【解答】解:(1)根据右手定则,电动势方向从O到A,故a连接着电压表的正极;

(2)由法拉第电磁感应定律,得到:

U=E=

其中:

△Φ=BR2△θ

故:U=

铝块的速度:

v=rω=

故:v==2m/s

(3)此下落过程中铝块机械能的损失:

=0.5×10×0.3﹣=0.5J

答:(1)测U时,与A点相接的电压表的“正极”;

(2)此时铝块的速度大小为2m/s;

(3)此下落过程中铝块机械能的损失为0.5J.

11.(2014?上海)如图,水平面内有一光滑金属导轨,其MN、PQ边的电阻不计,MP边的电阻阻值R=1.5Ω,MN与MP的夹角为135°,PQ与MP垂直,MP边长度小于1m.将质量m=2kg,电阻不计的足够长直导体棒搁在导线上,并与MP平行,棒与MN、PQ交点G、H 间的距离L=4m,空间存在垂直于导轨平面的匀强磁场,磁感应强度B=0.5T.在外力作用下,

相关主题
相关文档
最新文档