平面几何证明题的基本思路及方法

合集下载

平面几何证明题的解题方法

平面几何证明题的解题方法

平面几何证明题的解题方法平面几何证明题是数学中的重要内容之一,通过证明题的解答,我们可以深入理解几何学的概念和性质。

然而,解答平面几何证明题并非易事,需要灵活运用多种证明方法和技巧。

本文将介绍几种常用的解题方法,帮助读者更好地应对平面几何证明题。

一、直接证明法直接证明法是解答平面几何证明题的基础方法之一。

它通过逻辑推理和已知条件与结论之间的关系,一步步地证明结论的正确性。

在使用直接证明法时,首先要仔细分析所给条件和待证明结论。

根据已知条件,可以运用各种几何定理和性质,逐步推导出结论,直至得到所要证明的结论。

例如,对于“证明三角形ABC的三条中线交于一点”的证明题,我们可以先通过已知条件得出三角形ABC的三条中线等长,再利用中位线的性质得出这三条中线交于一点的结论。

二、反证法反证法是解答平面几何证明题的另一种常用方法。

它通过假设所要证明的结论不成立,推导出一个与已知条件矛盾的结论,从而证明所要证明的结论成立。

在运用反证法时,我们需要首先假设所要证明的结论不成立,然后通过推理,得出一个矛盾的结论,以此证明原命题的正确性。

例如,对于“证明等腰三角形的底角相等”的证明题,我们可以先假设等腰三角形的底角不相等,然后推导出一个与已知条件矛盾的结论,例如底边不等长或者顶角不等于90度,从而证明等腰三角形的底角相等的结论成立。

三、合同法合同法是一种常用于证明线段或角相等的证明方法。

通过构造相等的辅助线段或角,以达到证明所要求的结论。

在使用合同法时,我们需要根据已知条件和待证明的结论,合理构造辅助线段或角,并利用几何定理和性质证明这些辅助线段或角相等,从而得出所要证明的结论。

例如,对于“证明两个三角形全等”的证明题,我们可以通过构造辅助线段或角,使得两个三角形的对应边或对应角相等,然后运用全等三角形的性质,推导出两个三角形全等的结论。

四、相似法相似法是一种常用于证明平行线、比例关系和相似三角形等性质的证明方法。

通过证明对象与已知对象之间的相似关系,来推导出所要求的结论。

高中奥林匹克竞赛数学平面几何100题——珍藏版

高中奥林匹克竞赛数学平面几何100题——珍藏版

高中奥林匹克竞赛数学平面几何100题——珍藏版高中数学联赛的几何题目有100道,难度较高。

这些题目涉及到各种不同的几何概念和定理,需要考生具备扎实的数学基础和丰富的解题经验。

在这些题目中,有许多需要考生进行证明,需要考生熟练掌握各种证明方法和技巧。

同时,还有一些需要考生进行画图,需要考生具备良好的几何直观和手绘能力。

这些几何题目的难度不仅仅在于其题目本身,还在于考试的时间限制。

考生需要在有限的时间内解决尽可能多的问题,因此需要考生具备快速解题的能力和良好的时间管理能力。

为了更好地应对这些几何题目,考生需要在平时的研究中注重基础知识的掌握和解题技巧的训练。

同时,还需要多做一些类似的练题目,以提高自己的解题水平和应对能力。

总之,高中数学联赛的几何题目难度较高,需要考生具备扎实的数学基础、丰富的解题经验、良好的几何直观和手绘能力、快速解题的能力和良好的时间管理能力。

考生需要在平时的研究中注重基础知识的掌握和解题技巧的训练,并多做类似的练题目,以提高自己的解题水平和应对能力。

1.研究证明角平分在这一部分中,我们将研究如何证明一个角被平分。

这是一个非常基础的几何问题,但是它的应用非常广泛。

我们将介绍几种不同的证明方法,包括使用角平分线的定义、角度相等、相似三角形等。

2.研究证明四点共圆在这一部分中,我们将研究如何证明四个点共圆。

这个问题也是几何学中的基础问题之一。

我们将介绍几种不同的证明方法,包括使用圆的定义、圆心角、垂直等。

3.研究证明角的倍数关系在这一部分中,我们将研究如何证明角的倍数关系。

这是一个非常重要的几何问题,因为它在许多几何证明中都有应用。

我们将介绍几种不同的证明方法,包括使用角度相等、相似三角形等。

4.证明线与圆相切在这一部分中,我们将研究如何证明一条线与一个圆相切。

这是一个非常基础的几何问题,但是它的应用非常广泛。

我们将介绍几种不同的证明方法,包括使用切线的定义、圆心角等。

5.证明垂直在这一部分中,我们将研究如何证明两条线段垂直。

几何证明(4个概念2个性质3个判定2个定理2个应用2种思想方法1个轨迹)八年级数学上册沪教版

几何证明(4个概念2个性质3个判定2个定理2个应用2种思想方法1个轨迹)八年级数学上册沪教版
逆命题为“三条边对应相等的三角形全等”,成立.故答案为①④.
2 个性质3个判定
考点05 线段的垂直平分线
7.在锐角三角形ABC内一点P,,满足PA=PB=PC,则点P是△ABC
A.三条角平分线的交点
B.三条中线的交点
C.三条高的交点
D.三边垂直平分线的交点
(D )
8.已知: 如图,QA=QB.
求证: 点Q在线段AB的垂直平分线上.
(2)区别:定义、公理、定理都是真命题,都可以作为进一步判断其
他命题真假的依据,只不过公理是最原始的依据;而命题不一定是真
命题,因而不能作为进一步判断其他命题真假的依据.
考点04 互逆定理
6. [2022·江苏无锡宜兴市二模]下列命题的逆命题成立的是
①同旁内角互补,两直线平行
①④ .

②等边三角形是锐角三角形
证明:过点Q作MN⊥AB,垂足为点C,
故∠QCA=∠QCB=90°.
在Rt△QCA 和Rt△QCB中,
∵QA=QB,QC=QC,
∴Rt△QCA≌Rt△QCB(H.L.).
∴AC=BC.
∴点Q在线段AB的垂直平分线上.
你能根据分析
中后一种添加辅
助线的方法,写
出它的证明过程
吗?
考点06 角 平 分 线
AB=CB,
∴Rt△ABE≌Rt△CBF(HL).
15.如图,点B,E,F,C在同一条直线上,AE⊥BC,DF⊥BC,
AB=DC,BE=CF.试判断AB与CD的位置关系,并证明.
A
解:AB//CD,理由如下:
∵AE⊥BC,DF⊥BC,
∴∠AEB=∠DFC=90°
B
F
∵在Rt△ABE和Rt△DCF中, AB=DC,

第7章--平面几何问题与证明PPT课件

第7章--平面几何问题与证明PPT课件
排中律的公式是: AA1
目录 上页 下页 返回 结束
例如:要证明 2 不是有理数,只要证明 2 是有理数 不真就可以了。
充足理由律是指在论证过程中,任何结论的得出,必 须有充分的理由,即不能凭借“直观”、“想当然”等 主观上的“臆想” 得出结公论式。是:AB. 它的涵义是:在一个论证中,要断定论题 B 真,必须满 足:第一,论据 A 真;第二,从论据 A 能推出论题 B 。 二、证明中的三种典型错误 1. 偷换论题 把命题的条件或结论中的某些涵义加以 扩大、缩小或改变,违反“同一律”。
本科公理 前此定理 否定题设 否定题断
目录 上页 下页 返回 结束
已知:在△ABC中,BE、CF是∠B、 ∠C的平分线,且 BE=CF,求证: ∠B= ∠C。 改证它的逆否命题 已知:在△ABC中,BE、CF是∠B、 ∠C的平分线, 且∠B ∠C,求证: BE CF 。
目录 上页 下页 返回 结束
例2 设圆内接四边 ABCD 的两组对边分别交于E、F,
已知RE平分∠E,RF平分∠F, 求证:RE⊥RF。
B
E
A
2
2
G
R D
H
C
1
1
F
目录 上页 下页 返回 结束
由于逆求法利于思考,顺推法宜于表达,所以习惯 上对于一个命题,多半先用逆求法寻求解法,然后用顺 推法有条理的写出来。
3. 分析与综合法 有些命题,在证题过程中,单一地使用综合法或分
所以 B i A i( i 1 , 2 , , n ) .
目录 上页 下页 返回 结束
7.1.2 推理与证明 从已知的旧知识出发,通过实践、推想、验证,可
获得前所未有的新知识,这种推陈出新的思维过程, 叫做推理。

数学初中教材平面几何教学解析

数学初中教材平面几何教学解析

数学初中教材平面几何教学解析数学是一门抽象而理性的学科,而平面几何则是数学中的一个重要分支。

在初中阶段的数学教学中,平面几何的教学也显得尤为重要。

本文将对数学初中教材中平面几何的教学进行解析,并探讨如何在教学中引导学生建立几何概念、发展思维能力和解决实际问题。

一、平面几何基础知识的教学平面几何的基础知识包括点、线、面等基本概念,以及直线与平面、平行线、垂直线等几何关系。

教师在教学中应注重引导学生从实际生活经验中抽象出几何概念,帮助学生理解这些概念的本质及其相互关系。

例如,可以通过让学生观察身边的物体,引导他们发现物体表面上的直线、曲线、平行线等。

通过这种方式,学生可以更加直观地理解几何概念,有助于他们在后续的学习中建立准确的几何思维框架。

二、平面几何的证明方法教学平面几何的证明方法是培养学生逻辑思维和推理能力的重要手段。

在初中数学教学中,应注重培养学生运用数学知识解决实际问题的能力,而几何证明方法则是其中的重要一环。

教师可以通过引导学生进行观察和实践,并指导学生总结归纳几何定理和证明方法。

例如,教师可以提供一些几何问题或定理,并引导学生合作讨论和归纳总结证明方法。

通过这种方式,学生可以在实际操作中体验到几何证明的思维过程,提升他们的推理和论证能力。

三、平面几何与实际问题的联系平面几何不仅仅是一门抽象的学科,还与现实生活密切相关。

教师在教学中应注重将平面几何与实际问题相结合,帮助学生理解几何概念在实际应用中的意义。

例如,教师可以引导学生解决一些身边的实际问题,如计算图形的面积、测量物体的周长等。

通过解决实际问题,学生可以更加深入地理解几何概念,并将其运用到实际生活中。

总结:数学初中教材中的平面几何教学对学生的数学素养和思维能力的培养具有重要意义。

教师在教学中应注重引导学生建立几何概念、发展思维能力和解决实际问题的能力。

通过有效的教学方法和适当的实践,可以更好地激发学生的数学兴趣,提高他们的数学水平。

平面几何中的向量方法课件-2022-2023学年高一下学期数学人教A版(2019)必修第二册

平面几何中的向量方法课件-2022-2023学年高一下学期数学人教A版(2019)必修第二册

3
+
2
4
2.已知A,B,C,D四点的坐标分别是(1,0),(4,3),(2,4),(0,2),则
此四边形为( A )
A.梯形
B.菱形
C.矩形
D.正方形
由题意得 =(3,3), =(2,2),
∴ ∥,||≠||.
3.平面上有三个点A(-2,y),B

0,
2
,C(x,y)(x≠0),若
____________________________________________________________.
(2)证明线段垂直问题,如证明四边形是矩形、正方形,判断两直线(或
线段)是否垂直等,常用向量垂直的条件:
a⊥b⇔a·
b=0⇔x1x2+y1y2=0(a=(x1,y1),b=(x2,y2))
1
2
CD=DA= AB,求证:AC⊥BC.
证法二
如图,建立直角坐标系,
设CD=1,则A(0,0),B(2,0),C(1,1),D(0,1).
∴ =(-1,1), =(1,1).
∴ · =(-1,1)·(1,1)=-1+1=0.
∴AC⊥BC.
方法总结
用向量证明平面几何问题的两种基本思路
___________________________________________________.
(3)求角问题,利用公式:cos〈a,b〉=

1 2 +1 2


_____________________
12 +12 22 +22
(a=(x1,y1),b=(x2,y2)).
(1)向量的线性运算法的四个步骤

平面几何中证明角相等的方法

平面几何中证明角相等的方法

平面几何中证明角相等的方法嘿,咱今儿个就来唠唠平面几何里证明角相等的那些法儿!你想想啊,角相等就好比两个小伙伴长得一模一样。

那怎么才能知道它们是不是真的一样呢?这可得有点小窍门。

比如说,对顶角那可肯定相等呀!这就像双胞胎,一出生就注定了它们是一样的。

你瞧,两条直线相交,那对顶角不就乖乖地相等啦!还有啊,同位角、内错角相等,这就好比是一个大家族里的兄弟姐妹,有着特定的关系,一瞅就知道它们是一样的。

全等三角形里的对应角相等,这就像是一个模子里刻出来的,只要三角形全等了,那角肯定也跑不了是相等的呀。

再说说平行四边形,它的对角相等,这就好像是一个平衡的跷跷板,两边的角度就是一样的呢。

同角或等角的余角相等,这就像是一个大蛋糕,切下来的两块剩下的部分肯定也是一样的嘛。

还有一种,就是在圆里,同弧或等弧所对的圆周角相等,这就如同在一个大圆圈里,特定位置的角就是有着特殊的联系呀。

你说这平面几何是不是很神奇?就这么几个图形,几个条件,就能让我们找出角相等的秘密。

这就像是一场有趣的侦探游戏,我们要从各种线索里找到答案。

你可别小瞧这些方法,在解决问题的时候,那可都是宝贝呀!有时候一道题可能有多种方法都能证明角相等,这就看你能不能灵活运用啦。

就像你有好多把钥匙,得找到最合适的那一把才能打开锁。

而且啊,这些方法之间还可能相互联系,相互配合呢。

比如说在一个复杂的图形里,可能既有全等三角形,又有平行四边形,还有圆,那你就得综合运用这些方法,才能把角相等给证明出来。

咱学习平面几何,可不能死记硬背这些方法,得真正理解它们背后的道理。

就像你交朋友,得知道朋友的性格、爱好,才能更好地相处呀。

怎么样,是不是觉得平面几何里证明角相等的方法很有意思?下次再遇到这样的问题,可别犯愁啦,就按照咱说的这些方法,一个一个去试试,肯定能找到答案!。

平面几何基本定理

平面几何基本定理

定义:通过构造新的图形或对象来证明定理的方法 特点:直观、易于理解,能够将复杂问题转化为简单问题 应用:在平面几何中广泛应用于证明各种定理和性质 示例:通过构造辅助线来证明三角形的一些性质和定理
定义:通过代 数运算和逻辑 推理来证明平 面几何定理的
方法
特点:基于代 数方程和不等 式的推导,可 以证明一些较 为抽象和复杂
欧几里得几何定理 非欧几里得几何定理 解析几何定理 射影几何定理
计算机图形学:用于生成二 维图形和动画
物理学:用于描述物体运动 轨迹和力的作用
航空航天:用于设计和分析 飞行器的结构和性能
建筑学:用于设计和分析建 筑物的结构和稳定性
平行线性质: 平行线之间的
距离相等
角平分线性质: 角平分线将一 个角分为两个
计算机图形学中的应用:平面几何定理在计算机图形学中也有着重要的应用,例如在绘制二维图形、三维 模型等方面,需要利用平面几何定理进行计算和推导。
经济学中的应用:在经济学中,平面几何定理也被广泛应用,例如在分析市场供需关系、预测商品价格走 势等方面,需要利用平面几何定理进行数据分析和模型构建。
生物学中的应用:在生物学中,平面几何定理也被应用于一些领域,例如生态学中研究生物种群分 布、行为学中研究动物运动轨迹等方面,需要利用平面几何定理进行数据分析和模型构建。
的几何定理、三 角形的余弦定
理等
实例:通过代 数方法证明勾 股定理的过程
欧几里得几何定理:公元前300年左右,欧几里得在《几何原本》中提出了平面几何 的基本定理,奠定了平面几何的基础。
非欧几里得几何定理:19世纪,高斯、黎曼等数学家提出了非欧几里得几何,突破 了欧几里得几何的限制,进一步推广了平面几何定理。
定理在计算机图形学 中的应用:在制作动 画、游戏等计算机图 形学领域中,平面几 何定理被广泛应用。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平面几何证明题的基本思路及方法几何证明是平面几何中的一个重要问题,它对培养学生逻辑思维能力有着很大作用。

几何证明有两种基本类型:一是平面图形的数量关系;二是有关平面图形的位置关系。

这两类问题常常可以相互转化,如证明平行关系可转化为证明角等或角互补的问题。

惠特霍斯曾说过,“一般地,解题之所以成功,在很大程度上依赖于选择一种最适宜的方法。

”灵活、恰当地选择解题方法是求解平面几何问题的良好途径。

解决任何一道平面几何证明题,都要应用这样或那样的方法,而选择哪一种方法,就取决于我们用什么样的解题思路。

由此可见,掌握证明题的一般思路、探索证题过程中的数学思维、总结证题的基本规律是求解几何证明题的关键。

常见的证题思路有直接式思路和间接式思路。

一、直接式思路
首先应仔细审查题意,细心观察题目,分清条件和结论,并尽量挖掘题目中隐含的一些解题信息,以在缜密审题的基础上,根据定义、公式、定理进行一系列正面的逻辑推理,最后得出命题的证明,这种证题的思路被称为直接式思路。

掌握分析、证明几何问题的常用方法:
(一)顺藤摸瓜”法(由因导果)
该类问题特点:条件很充分且直观,一般属于A级难度的题目,需要我们从已知条件出发,通过有关定义、定理、公理的应用,逐步向前推进,直到问题的解决。

(二)逆向思维”法(执果索因)
该类问题特点:一般已知条件较少。

从正常思维难以入手,一般属于B或C级难度题目。

该类问题从求证结论开始逆向推导,一步一步追溯到已知条件,从而进行求解。

(三)天佑开凿铁路”法(从两头向中间)
该类问题特点:题目条件和结论之间关系比较隐秘,难于直接它们之的必然联系,该类问题属于C级难度的题目。

方法:
1、知条件入手,看能得到什么结果就写出什么结果,与结论相关的辅助线能作就作;
2、结论入手,运用逆向思维,看能推导出什么结果就写什么结果;
3、联想,探索推导两次推导结果之中直接或隐性的关系,然后整理从条件推导结论的
推导思路,再一步步写出推导过程。

注:该类问题在写出各种推导结果是需注意条理性,忌杂乱无章!
二、间接式思路
有些命题往往不易甚至不能直接证明,这时,不妨证明它的等效命题,以间接地达到目标,这种证题思路就称为间接式思路。

我们常运用的反证法、同一法证题就是两种典型的用间接式思路证题的方法。

(一)反证法。

具体地说,在证明一个命题时,如正面不易入手,就要从命题结论的反面入手,先假设结论的逆命题成立,如果由此假设进行严格推理,推导出的结果与已知条件、公式、定理、定义、假设等的其中一个相矛盾,或者推出两个相互矛盾的结果,就证明了结论的逆命题是错误,从而得出结论的正面成立,这种证题方法就叫做反证法。

反证法证题通常有如下三个步骤:
1、反设。

作出与结论相反的假设,通常称这种假设为反证假设。

2、归谬。

利用反证假设和已知条件,进行符合逻辑的推理,推出与某个已知条件、公理、定
义等相矛盾的结果。

根据矛盾律,在推理和论证的过程中,在同时间、同关系下,不能对同一对象作出两个相反的论断,可知反证假设不成立。

3、得出结论。

根据排除率,即在同一论证过程中,命题C与命题非C有且仅有一个是正确
的,可知原结论成立。

(二)同一法。

欲证某图形具有某种性质而又比较繁杂或不易直接证明时,有时可以作出具有所示性质的图形,然后证明所作的图形与所给的某图形就是同一个,由此把它们等同起来,这种证法叫做同一法。

例如,同一法证平面几何问题的步骤如下:
1、出符合命题结论的图形;证明所作图形符合已知条件;
2、根据唯一性,确定所作的图形与已知图形吻合;
3、断定命题的真实性。

同一法和反证法都是间接式思路的方法。

其中,同一法的局限性较大,通常只适合于符合同一原理的命题;反证法的适用范围则广泛一些,能够用反证法证明的命题,不一定能用同一法论证,但对于能够用同一法证明的命题,一般都能用反证法加以证明。

在证题过程中,不论是直接思路还是间接思路,都要进行一系列正确的推理,需要解题者对扑朔迷离的表象进行由表及里、去伪存真地分析、加工和改造,并从不同方向探索,以在广阔的范围内选择思路,从而及时纠正尝试中的错误,最后获得命题的证明。

相关文档
最新文档