钻孔的有效影响半径与布孔

合集下载

XXX工作面瓦斯抽采达标评判报告

XXX工作面瓦斯抽采达标评判报告

xx公司xxx工作面瓦斯抽采达标评判报告第一部分工作面概况及防突措施一、工作面概况本工作面井下西邻xxxx工作面(未采),南邻西胶带运输大巷、西辅助运输大巷、西回风大巷(北),东邻xxx工作面(未采),北抵XX矿矿界(相邻开元矿)。

本工作面位于一水平,地面标高1082.0-1140.5m,工作面标高605.1-697.4m,埋藏深度398.5~488.5m。

该面地表位于位于XX、XX村以北;XX村以东;XX村以的黄土塬、XX及沟谷地带。

该面南部有新陈高压线25-26铁塔穿过,回采期间需加强地面观测。

工作面走向长1641.5m,倾斜长240m,面积393960m2。

煤层平均厚度为 2.4m,可采储量为1257520.3吨。

工作面布置及通风系统图见附图一:xxx综采工作面通风系统图。

2010年5月我公司委托煤炭科学研究总院沈阳研究院完成的《3#煤层煤与瓦斯突出危险性鉴定报告》中指出,我公司3#煤原始瓦斯含量在11.77-14.89 m3/t 之间,原始瓦斯压力在1.24-2.44MP之间,具有煤与瓦斯突出危险性。

二、防突设计根据工作面设计采长,在回采工作面进、回风顺槽掘进过程中,均匀布置5个孔深为120米的预测预报钻孔,进行预测预报;无论预测预报值是否≥8m³/t,均施工深度为130米、孔间距3米的本煤层钻孔,在理论计算抽采达标后,对工作面进行区域效果检验。

区域效果检验工作面抽采达标后,用局部预测预报的方法进行区域验证。

在回采过程中采用测定钻屑量和K1值的方法进行局部预测预报;工作面每间隔1.5米布置一个卸压孔,孔深18米,孔径75mm,卸压孔超前预留7-10米。

待卸压孔全部施工完毕后,用局部预测预报的方法进行局部防突措施效果检验,合格后进行生产,否则不得生产。

第二部分抽采基础条件评判我公司已于2010年9月委托太原煤科院完成了《xx公司矿井瓦斯抽采初步设计》,其中规划了矿井瓦斯抽采方案以及采掘工作面的瓦斯抽采施工设计。

瓦斯抽采钻孔有效影响半径的理论模型及数值分析

瓦斯抽采钻孔有效影响半径的理论模型及数值分析

参数 是不合 理 的 。 近年 来 ,国 内外 学者 在煤 层瓦 斯 别 为 :
流动 理论研 究方 面进 行 了深入 的研 究 , 逐步 建立 和
完善 了综合 考虑 含 瓦斯煤 的吸 附应 力 、 孔 隙压力 以
n ( 1 +pI P L )
( 1 )

及应 力作用 下 的瓦斯 渗流 理论 模型[ 7 - 1 0 】 ;同时 ,随 着计 算机解 算 算法 的优化 和提 高 , 理论 计算 得到 的 瓦斯 抽采 有效 影响 半径 的可信 度大 大提 高 。 本文 基
2 . 1变形 场控 制方 程 煤 体对 瓦斯表 现 出较 强 的吸 附作用 , 并产 生吸
附膨 胀应 力 ,导致煤 体 的受力 分布 发生 变化 。含吸
附瓦斯 煤 体 的吸 附 膨胀 应变 和 应 力计 算 公 式【 l l J 分
V L ps RT l
Es w —

径, 并 以此 设计 抽采钻 孔数 目、间距和 抽采 负压 等
斯 抽采 设计 中显得 尤 为重要 。目前 , 有 效影 响半径
斯流场 的变化 , 同时确 定 了不 同预 抽 期 内瓦斯抽 采
的测 定方法 主要 分为 现场测 定和 理论 计算 两类 。 前 钻孔 的有 效影 响半径 , 为钻 孔参 数 的合 理设 计和 布 者 虽然 准确 度高 ,但 具有测 定 周期长 ,工 程量 大 , 置提供 了理论参 考 依据 。
D 0 I :1 0 . 3 9 6 9 / j . i s s n . 1 6 7 1 - 6 3 9 6 . 2 0 1 5 . 0 9 . 0 1 0
1 前言
煤矿 瓦斯 抽采 能够 有效 降低 瓦斯压 力 、 防止 瓦

浅孔注水有效影响半径的测定及效果研究

浅孔注水有效影响半径的测定及效果研究
技术应用
TECHNOLOGY AND MARKET Vol.28,No.7,2021
浅孔注水有效影响半径的 测定及效果研究
戴 扬
(河南能源化工集团鹤煤公司,河南 鹤壁 458000)
摘 要:煤与瓦斯突出是煤矿井下采掘生产过程中的一种非常复杂的动力地质现象。在矿井生产中,这一现象不仅严 重制约了巷道掘进速度,而且也严重威胁煤矿生产安全。近几年来,煤层注水成为煤矿的主要防突技术,但由于有效影 响半径的不确定,导致煤矿资源的浪费和防突效果不佳。根据不同水压下(8MPa、10MPa)钻孔注水,确定了钻孔注水消 突的布置方案,研究测定了注水前后钻孔瓦斯涌出量以及钻孔内煤层含水量的变化情况,并在鹤煤八矿 3006工作面进行 了现场试验,确定了煤层中高压注水防突有效影响半径。 关键词:钻孔注水;影响半径;防突;残层瓦斯含量 doi:10.3969/j.issn.1006-8554.2021.07.034
102
量及残存瓦斯含量,以水分增加 1%以上为界限确定其注水影 响半径。 13 考察地区的选择
本次主要在八矿 3006工作面切眼按照 79mm注水孔孔径 分别进行 8MPa和 10MPa压力的注水试验。
3006工 作 面 地 面 位 于 市 第 二 造 纸 厂 北 部,地 面 标 高 +136~+131m,表土层厚度 177m,基岩厚度 447m,井下埋 深 643~718m。工作面地面南部有季节性排水渠流过,该水渠 受季节性降雨影响,在雨季水源主要是大气降水,旱季水源主 要为矿井排水及城市生产、生活废水(基本干涸),河流距工作 面垂深 648~717m。工作面位于井田的中部,走向长 505m (平均),倾向长 150m(平均),斜面积 75146m2,工作面西部 为 3004采空区,东部为未开采的 34采区工作面,北部为未开 采的 3205工作面,南部为新副井工业广场保护煤柱。3006工 作面上顺槽上部为 3004采空区,剩余煤厚 0~7.2m,原始煤厚 1.0~9.6m;3006工作面上顺槽三横川(小上山口)向南 6.7m 至三横川(小上山口)向北 72m区段为二1 煤层变薄带,剩余煤 厚 0~1.6m,原始煤厚 1~4.6m;3006工作面上顺槽测点 SD21 向北 0~65m区段为二1 煤层变薄带,剩余煤厚 0.7~1.3m,原 始煤厚 4~4.6m;3006工作面下顺槽测点 SD69向南 3.2m至 SD69向北 69m区段为二1 煤层变薄带,剩余煤厚 0.2~4.2m; 其他区段煤厚 4.0~8.6m,平均煤厚 7.3m;3006工作面总平 均煤厚为 6.5m,3006工作面煤层厚度不稳定,煤层结构简单, 无夹石层。 14 注水孔及测试孔施工方案

《四川省煤矿瓦斯抽采达标评判细则(试行)》

《四川省煤矿瓦斯抽采达标评判细则(试行)》

附件1四川省煤矿瓦斯抽采达标评判细则(试行)第一章总则第一条为加强矿井的瓦斯抽采管理,规范瓦斯抽采,有效预防瓦斯事故,根据《煤矿瓦斯抽采达标暂行规定》(安监总煤装〔2011〕163号)、《煤矿安全规程》、《防治煤与瓦斯突出规定》、《煤矿瓦斯抽放规范》(AQ1027-2006)等有关规定,特制定《四川省煤矿瓦斯抽采达标评判细则(试行)》(以下简称《细则》),本《细则》适用于四川省境内煤矿井下所有的瓦斯抽采地点。

第二条凡符合下列情况之一的矿井,必须进行瓦斯抽采,并实现瓦斯抽采达标。

(一)开采具有煤与瓦斯突出危险煤层的。

(二)一个采煤工作面绝对瓦斯涌出量大于5m3/min或一个掘进工作面绝对瓦斯出量大于3m3/min的。

(三)矿井绝对瓦斯涌出量达到以下条件的:1. 矿井绝对瓦斯涌出量大于或等于40m3/min;2.生产能力100-150万t/a年的矿井,大于30m3/min;3.生产能力60-100万t/a年的矿井,大于25m3/min;4.生产能力40-60万t/a年的矿井,大于20m3/min;5.生产能力30-40万t/a年的矿井,大于15m3/min;6.生产能力21-30万t/a的矿井,大于10m3/min ;7.生产能力9万t/a 以上21万t/a以下的矿井,大于8m3/min;8.生产能力9万t/a及其以下的矿井,大于6m3/min;9.虽不符合以上条件,但使用通风方法解决瓦斯问题不合理的。

第三条抽采瓦斯矿井应当建立健全专业的瓦斯抽采机构,配备足够的瓦斯抽采工和至少1名煤矿主体专业的专职工程技术人员负责瓦斯抽采工作。

瓦斯抽采工应当参加专门培训并取得特种作业人员资质。

第四条抽采瓦斯矿井在编制生产发展规划和年度生产计划时,必须同时组织编制相应的瓦斯抽采达标规划和年度实施计划,确保“抽掘采平衡”。

矿井生产规划和计划的编制应当以预期的矿井瓦斯抽采达标煤量为限制条件。

第五条抽采瓦斯矿井必须建立瓦斯抽采达标自评价工作体系,制定矿井瓦斯抽采达标评价细则,建立瓦斯抽采管理和考核奖惩制度、抽采工程检查验收制度、技术档案管理制度等。

完整版煤矿瓦斯抽采达标规定

完整版煤矿瓦斯抽采达标规定

煤矿瓦斯抽采达标规定第一章总则第一条为贯彻落实“先抽后采、监测监控、以风定产”的瓦斯治理方针,建立“通风可靠、抽采达标、监控有效、管理到位”的瓦斯治理工作体系,遏制煤矿瓦斯事故,实现煤矿瓦斯抽采达标,根据《煤矿安全监察条例》、《国务院关于预防煤矿生产安全事故的特别规定》等法规,制定本规定。

第二条井工开采煤矿企业的矿井瓦斯抽采工作及其对瓦斯抽采达标工作的监督检查,适用本规定。

第三条煤矿瓦斯防治必须坚持“应抽尽抽、多措并举、抽采平衡”的原则。

煤矿瓦斯抽采应当紧密结合煤矿实际,加大技术攻关和科技创新力度,强化现场管理,采取多种可能的抽采技术和工程措施充分抽采瓦斯,实现先抽后采、抽采达标。

瓦斯抽采工作要超前规划、超前设计、超前施工,确保煤层预抽时间和瓦斯预抽效果,保持抽采达标煤量与生产预备及回采的煤量相平衡。

第四条煤矿瓦斯抽采应做到抽采系统水平足够、设施完善,抽采工程超前、“抽、掘、采”平衡,抽采计量和参数测定准确,抽采管理制度完善,抽采后的效果达到《煤矿瓦斯抽采基本指标》(以下简称《抽采指标》)和《防治煤与瓦斯突出规定》(以下简称《防突规定》)等法规和标准的要求。

第五条煤矿采掘工程和生产组织应安排在瓦斯抽采达标的煤层;对应当进行瓦斯抽采的煤层,必须先抽采瓦斯,只有在效果达到标准要求后方可安排采掘作业。

第六条应当进行瓦斯抽采的煤矿企业(以下简称煤矿企业)应设置瓦斯抽采机构,建立责任明确、制度完善、执行有力、监督严格的瓦斯抽采管理制度和各级岗位责任制。

煤矿安全监管部门和驻地煤矿安全监察机构(以下简称煤矿安全监管监察部门)应当对上述各环节工作以及矿井通风、瓦斯超限等情况进行监督监察,检查矿井瓦斯抽采相关资料是否齐全、资料与实际情况是否一致,抽采效果是否达标。

第七条煤矿企业应仔细研究、积极落实关于煤矿瓦斯抽采和利用的各项优惠政策,提升瓦斯抽采和利用工作水平。

煤矿企业要根据自身实际情况编制和落实煤矿瓦斯利用规划,加强瓦斯利用基础设施建设,完善瓦斯利用机制,加大瓦斯利用工作力度,以利用促抽采,增强瓦斯抽采利用保障水平,减少向大气中排放的瓦斯量。

水力冲孔有效影响半径的测定

水力冲孔有效影响半径的测定

钻孔布置示意 钻孔布置参数
倾角 / ( °) 30 30 30 30 30 30 方位角 / ( °) 0 0 0 0 0 0 岩孔 长度 / m 12 12 12 12 12 12 封孔 深度 / m - 12 12 - 12 12
图2
冲孔过程中瓦斯压力变化曲线
· 17·
2012 年第 8 期
中州煤炭
3
水力冲孔有效影响半径测试原理
国内外学者普遍认为, 地应力、 瓦斯和煤的物理 [7 ] 力学性质是导致煤与瓦斯突出的主要因素 。 煤 体的变形潜能和瓦斯膨胀内能是煤与瓦斯突出的主 [89 ] 是以岩柱或者煤柱作为 要动力。水力冲孔技术 安全屏障, 冲孔时, 随着钻孔的前进, 煤、 水、 瓦斯经 过孔道向孔外排出, 钻孔周围的煤体向钻孔方向移
[26 ]
2
2. 1
水力冲孔工艺及系统
水力冲孔工艺
水力冲孔利用高压水通过钻杆从钻头上的冲孔 喷头喷射而出, 冲击钻头周围煤体, 随着钻机向前钻 进破碎煤体, 诱导小型煤与瓦斯突出 ( 喷孔 ) , 水和 突出的煤、 瓦斯顺着钻杆和钻孔间的间隙流入煤水 输送系统, 混合有水气的瓦斯进入水气分离装置 , 分 接入瓦斯抽采管路, 煤和水流入沉淀池。 离之后, 2. 2 水力冲孔系统 水力冲孔系统由乳化液泵、 水箱、 压力表、 防喷 装置 和 喷 头 等 组 成。 根 据 现 场 试 验 情 况, 选择 BRW200 /315 型乳化液泵 ( 额定流量 200 L / min, 额 定压力 31. 5 MPa) , 辅助乳化液箱型号为 FRX1000 , 其公称压力为 31. 5 MPa, 液箱容量为 1 000 L, 质量 700 kg ; PZCKC ; 水力冲孔喷头为 系列 选择 SGS 为 1900 ; 高压胶管 型双功能高压水表; 钻机型号为 5S内径为 25 mm、 耐压 32 MPa, 连接处采用快速接头 和 U 形卡加固。

龙腾煤矿KI煤层超前排放钻孔有效影响半径研究

龙腾煤矿KI煤层超前排放钻孔有效影响半径研究

文献标志码 : B
文章编号 : 1 0 0 8— 0 1 5 5 ( 2 0 1 3 ) 1 0—0 1 3 2— 0 2
1 .》 第六 条要 求 突 出矿 井 在 进行 防 突时 , 应遵循 区域 防 突措 施 先行 , 局部 防突 措 施 补 充 的原 则 。第 八 十 一 条 指 出 , 石 门 揭 煤 工 作 面 的 防突 措施 包 括 预 抽 瓦斯 、 排 放 钻 孔 等 措 施 。第 八 十 七 条规 定 : 在 有 突 出危 险 的煤 巷 掘进 工 作 面掘 进 时 , 应 当 优先 选用 超前 钻孔 ( 包括 超前 预 抽 瓦斯 钻 孔 、 超 前排 放 钻孔 ) 防突措施。可 以看 出, 在各种局部防突措施 中, 应用最为广泛是超前排放钻孔措施 。在煤巷掘进工作 面 采用 超前 钻 孔 作 为 工作 面局 部 防 突 措 施 时 , 应 满 足 下列要求 _ o①超前排放 钻孔最小控制 范围为 : 近 水平缓倾斜煤层应控制巷道两侧轮廓线外 5 m, 倾斜及 急倾斜煤层应 控制上 帮轮廓线 外 7 m、 下帮 轮廓 线外 3 m 。若煤层厚度远大 于巷道高度时 , 则要求控制范 围 在垂直煤层方向上( 巷道上部) 不小于 7 m, 巷道下部不 小于 3 m。②超前排放钻孔应当均匀布置 , 若煤层 中存 在软 分层 中 , 则钻孔 应 布置 在 软煤 层 中 , 且 应 适 当 增加 钻孔 数 。③超 前排 放钻 孔 的个 数 及 间 距应 当根 据 钻孔 的有 效 排放半 径 确定 。 在 防突工 作 中 , 如果 超前 排 放 钻 孔 间距 布 置 不 合 理, 极有 可 能会 产 生 防突 空 白带 , 此时 , 超 前 排 放 钻 孔 不 但不 能 消 除工 作 面 局 部 煤 体 突 出危 险 性 , 还 会 给 后 面 的采 掘作 业 埋 下 了安 全 隐 患 。 因此 , 准确 测 定 煤 层 有效排 放半 径就 显得 尤 为重要 。 2矿 井概 况 龙腾 煤 矿 位 于 重 庆 市南 川 区 , 开采 K 1煤 层 , 生 产 能力 为 0 . 0 9 M t / a , 2 0 1 0年 矿 井 升级 为 煤 与 瓦 斯 突 出矿 井 。K 1煤层 赋存 于 二 叠 系 上 统 龙 潭 组 ( P 2 1 ) 底部 , 全 区可采 , 煤层 厚度 1 . 6 5 m 一1 . 9 0 m, 平均厚度 1 . 8 0 m; 原 煤 水分 ( Ma d ) 为0 . 3 1~0 . 3 3 %, 灰分 ( A d ) 为3 1 . 5 5— 3 5 . 6 l %, 挥 发分 ( V d ) 1 0 . 5 3—1 1 . 5 8 %, 属 中灰 、 中 高 硫、 中高热值 贫瘦 煤 。 井 田位于龙骨背斜 中段北西翼 , 岩层呈单斜产出 , 走 向近南 北 , 矿 井 地 质 构 造 属 中等 类 型 。矿 井 采 用 斜 井 开拓 , K 1 煤 层划 分 为三个 水平 , 即: +5 6 0 m~ + 4 0 0 m

抽采达标评判

抽采达标评判

煤矿瓦斯抽采达标规定(征求意见稿)第一章总则第一条为贯彻落实“先抽后采、监测监控、以风定产”的瓦斯治理方针,建立“通风可靠、抽采达标、监控有效、管理到位”的瓦斯治理工作体系,遏制煤矿瓦斯事故,实现煤矿瓦斯抽采达标,根据《煤矿安全监察条例》、《国务院关于预防煤矿生产安全事故的特别规定》等法规,制定本规定。

第二条井工开采煤矿企业的矿井瓦斯抽采工作及其对瓦斯抽采达标工作的监督检查,适用本规定。

第三条煤矿瓦斯防治必须坚持“应抽尽抽、多措并举、抽采平衡”的原则。

煤矿瓦斯抽采应当紧密结合煤矿实际,加大技术攻关和科技创新力度,强化现场管理,采取多种可能的抽采技术和工程措施充分抽采瓦斯,实现先抽后采、抽采达标。

瓦斯抽采工作要超前规划、超前设计、超前施工,确保煤层预抽时间和瓦斯预抽效果,保持抽采达标煤量与生产准备及回采的煤量相平衡。

第四条煤矿瓦斯抽采应做到抽采系统能力足够、设施完善,抽采工程超前、“抽、掘、采”平衡,抽采计量和参数测定准确,抽采管理制度完善,抽采后的效果达到《煤矿瓦斯抽采基本指标》(以下简称《抽采指标》)和《防治煤与瓦斯突出规定》(以下简称《防突规定》)等法规和标准的要求。

第五条煤矿采掘工程和生产组织应安排在瓦斯抽采达标的煤层;对应当进行瓦斯抽采的煤层,必须先抽采瓦斯,只有在效果达到标准要求后方可安排采掘作业。

第六条应当进行瓦斯抽采的煤矿企业(以下简称煤矿企业)应设置瓦斯抽采机构,建立责任明确、制度完善、执行有力、监督严格的瓦斯抽采管理制度和各级岗位责任制。

煤矿安全监管部门和驻地煤矿安全监察机构(以下简称煤矿安全监管监察部门)应当对上述各环节工作以及矿井通风、瓦斯超限等情况进行监督监察,检查矿井瓦斯抽采相关资料是否齐全、资料与实际情况是否一致,抽采效果是否达标。

第七条煤矿企业应认真研究、积极落实关于煤矿瓦斯抽采和利用的各项优惠政策,提高瓦斯抽采和利用工作水平。

煤矿企业要根据自身实际情况编制和落实煤矿瓦斯利用规划,加强瓦斯利用基础设施建设,完善瓦斯利用机制,加大瓦斯利用工作力度,以利用促抽采,增强瓦斯抽采利用保障能力,减少向大气中排放的瓦斯量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

钻孔的有效影响半径与布孔使用超前排放(卸压)钻孔一般孔径不大于0.3m,所以其卸压影响半径一般都不很大,且小于排放瓦斯有效影响半径。

在钻孔形成的卸压范围内,由于应力降低,煤体发生膨胀变形,透气性也会增加,必然比较容易排除一部分煤体中的瓦斯。

但在没有卸压的煤体中虽然煤体透气性较小,但同样也能排除一部分煤体的瓦斯,所以钻孔瓦斯有效排放半径一般要大于卸压有效影响半径。

钻孔应力卸压有效影响半径到目前还没有可供现场实际应用的测定方法,仅从2001年淮南矿业(集团)有限责任公司和煤炭科学研究院重庆分院共同提出的“淮南矿区突出煤层消除突出危险综合治理技术研究报告”中,对卸压钻孔的卸压范围进行了理论探讨与计算,得出淮南C13煤层其塑性破坏区(卸压区)的直径为钻孔直径的3.26倍。

报告指出在钻孔周围的塑性变形区内可以消除突出,可以作为钻孔卸压的有效影响半径超前钻孔的有效影响半径都是指在钻孔排放瓦斯的作用下,再规定地时间内,能够消除钻孔周围煤与瓦斯突出的范围。

钻孔的排放有效影响半径可用打排放钻孔前、后测量出的煤层中的瓦斯压力、钻孔瓦斯涌出初速度(q)及K1等指标的变化趋势,或借助于突出时的临界指标值进行判断得出。

突出矿井一般都要进行各种直径钻孔的排放有效影响半径测定,得出符合本矿的适用数据。

而影响半径则指在排放钻孔周围能够受到的影响的范围,其数值要远远大于钻孔排放有效影响半径。

煤巷掘进防治突出措施-超前排放钻孔一、概述目前使用的超前排放钻孔孔直径多为ф42~120mm,超过ф120mm的因打钻时容易诱发突出,而较少使用,只用在特殊的扩孔方法例如水力冲孔、水力扩孔时才使用.从理论与实践过程中,人们认识到大直径的钻孔其排放瓦斯与卸压范围都要比小孔径钻孔好得多,但问题是突出的机率也要高得多,从目前所掌握的资料, ф42(包括ф42)以上的各种钻孔都发生过突出,因此在没有任何安全措施的保护下,进行打钻是有危险的.另外还要提醒一下,措施执行完以后,必须进行措施效果检验,只有措施检验有效后方能用安全措施施工.超前排放钻孔是突出矿井使用最多的防治突出措施,它不仅应用于各类煤巷、也用于石门揭穿煤层和采煤工作面.其良好的防治突出效果为人们所公认。

但在大直径超前钻孔周围布置钻孔或扩孔时也会出现突出现象,这使人们感到十分困解,因而对超前排放钻孔的防治突出的效果提出质疑,是不是超前排放钻孔在有些突出煤层并不适用。

要想弄清楚此问题,首先要知道钻孔影响半径与有效影响半径的的关系。

超前钻孔防治煤与瓦斯突出一般认为有两种作用;一是钻孔在煤层中成孔后,靠近孔壁周围的煤体,在地应力的作用下会发生弹性恢复变形(膨胀变形),使靠近孔壁周围煤体中形成一定范围的卸压区,这就是人们通称的钻孔卸压作用。

该区的范围较小,一旦孔壁附近应力状态达到平衡稳定后,该卸压范围就不会再继续扩大,因此可以认为,应力形成的超前钻孔影响半径(卸压区范围)与时间并没有明显的关系。

二是由排放瓦斯作用所形成影响半径和有效影响半径。

钻孔的排放有效影响半径和影响半径.一般认为都随钻孔孔径的增大、随排放时间的加长而增大,看起来似乎合乎规律。

但从理论与实践都证明上述观点需要加以修正,即它们之间并不是直线关系,而是二次曲线关系。

换句话说,在某一区段内,钻孔影响半径(钻孔有效影响半径)是随钻孔直径加大或排放时间的增长呈直线关系,超出此区段则呈非直线关系,随钻孔直径增加或排放时间加长呈二次曲线关系,有效影响半径与影响半径趋向于稳定且出现的极大值。

例如:红卫煤矿对煤道周边的瓦斯压力分布进行考查(巷道可以视为一大直径排放钻孔).其测定结果如图所示.红卫煤矿巷道周围煤层瓦斯压力分布图靠近煤壁的煤层中的瓦斯压力与排放时间有关,暴露的时间越短,近煤壁的瓦斯压力就越高,随着排放(或暴露)的时间加长,其排放影响半径也逐渐加大,但不成直线关系,到一定时间就会处于平衡状态.例如图4-12-2-2中,排放了50个月后距煤壁4m处的瓦斯压力为0.4Mpa,而距煤壁的距离2m仅排放了4天,煤层瓦斯压力同样也为0.4 Mpa。

也就是说经过将近四年左右的排放,排放半径仅扩大了2m。

随着排放时间的延长,排放影响半径的扩展速度发展是非常缓慢的。

钻孔的排放半径与煤层的透气性有关。

突出煤层的透气性系数一般都很低,排放瓦困难,容易形成高的瓦斯压力梯度,引起煤与瓦斯突出。

这种观点,经现场实践也证明了这点. 红卫煤矿煤层的透气性系数约为0.004735m2/Mpa2*d.是个煤与瓦斯突出严重的矿井。

但抚顺龙凤矿煤层的透气性系数极好,透气性系数为140~151m2/Mpa2*d,要比红卫矿的透气性几乎大3万倍,其钻孔排放影响范围也要比红卫大的多,突出也鲜有发生。

但煤层的透气性与影响半径的关系也不是呈正比关系.龙凤矿煤层瓦斯压力随排放时间变化见图龙凤矿煤层瓦斯压力随排放时间变化图从图中我们不难看出钻孔的排放影响范围也是有极大值的,龙凤矿最大排放影响半径为230m,要比红卫最大排放影响半径(4m)大57.5倍.从有效影响半径来看,红卫突出时的临界压力值为0.4Mpa,其最大排放有效影响半径为4m,如龙凤矿用0.74 Mpa作为突出时的临界压力值,经过8个月的抽放,其最大抽放有效影响半径为130m,考虑到抽放的影响,估计其排放时的最大排放有效影响半径至少为65m。

龙凤矿钻孔最大瓦斯排放有效影响半径要比红卫大15倍。

由此看来,龙凤矿在工作面前方不会造成高瓦斯压力梯度,因而煤与瓦斯突出现象在该矿应该是极少或没有的。

事实上也是如此。

从上述分析,钻孔或巷道其排放半径或有效影响半径的大小与煤层的透气性有关。

一般突出煤层的透气性小于10m2/Mpa2*d,属于难以抽放的煤层.其钻孔的排放有效影响范围不是很大的。

钻孔的排放有效影响半径一般都要经过实测得出,但各突出矿井实测结果相差值并不很大, 在孔径不大于0.3m时.约为钻孔直径的4~5倍,以松藻矿务局为例,其各种直径的排放有效影响半径实测结果见表松藻煤电有限责任公司部分矿井钻孔排放有效影响半径考察结果表说明:松藻矿煤层的透气性为0.013m2/Mpa2*d. 红卫煤矿测试煤层的透气性系数为.004735m2/Mpa2*d.应该说松藻大于红卫,但差值不算太大,从上表看出,随着钻孔直径的增加,而钻孔排放有效影响半径并不呈直线比例增加.因而盲目的加大钻孔直径以增强防止突出地效果将将事与愿违,不但不能增强防治突出效果,且增加了打钻时的不安全因素.我门将上述数据进行数学处理,可以发现钻孔直径与有效影响半径不呈直线比例得关系。

假设排放有效影响范围从钻孔壁算起,并且排放影响范围有一个极限值时,可将表制成图并得出经验公式如下:松藻矿务局钻孔排放有效影响半径与钻孔直径关系采用的经验公式类型为brabr R +=1 a=2.9,b=1.66式中:r -钻孔直径,m; R -有效影响半径(从钻孔壁算起), m;a,b 为常数,钻孔排放有效影响半径各矿的实测值相差很大,追究其原因,除煤层的透气性因素影响外,测定与操作方法不同也是主要影响因素之一。

因此各矿的钻孔排放有效影响半径应以实测为主。

现将全国部分矿井实测数据制成图全国部分矿井钻孔排放有效影响图突出事例在生产实践中有些事例也间接地表明钻孔有效影响半径不是随钻孔直径加大而增大,也不随排放时间的延长而无限扩展。

下面用松藻的两次大直径钻孔突出说明此问题。

事例一情况介绍1998年8月21日在松藻矿务局打通二矿N2702E回风立眼8#煤层打直径42mm 超前排放钻孔时,发生煤与瓦斯突出事故。

突出煤炭346t,瓦斯33530m3。

此处埋深295~525m,煤层倾角5~10度,煤层厚度0~1.4m,平均0.8m。

瓦斯压力3.25Mpa,瓦斯含量34m3/t。

该回风立眼1996年7月用天井钻机施工,直径1m,长54m。

根据生产需要,于1998年(钻孔打完两年后)决定将立眼直径刷大到2m。

8月4日开始由下向上刷大。

8月11日刷到距8#煤层底板1.5m处停止。

由于由下向上过8#突出煤层在吊盘内施工各种防突钻孔难以施工,故改为由上向下刷大。

8月20日刷到进入8#煤层时并未发生突出,但煤炭松碎,垮落严重。

8月21日夜班,在立眼周边8#煤层内打直径42mm,深4m预测孔8个,见图。

其中1#、7#、8#三个孔2m后喷孔(喷出距离为0.3-1m,此时距大直径钻孔壁2m,距钻孔中心2.5m),测得K1值为0.74-0.76,S值5.4-6.8Kg/m。

据此判断本工作面为突出危险工作面。

8月21日早班在预测超标部位布置17个直径42mm的排放钻孔,其中13个孔为2m,4个孔为4m,中班,施工人员将深2m的钻孔加深到4m,在加深42mm钻孔过程中发生煤与瓦斯突出。

详见预测、排放孔竣工图、事故现场示意图、突出空洞见图。

预测、排放孔竣工图事故现场示意图突出孔洞图突出事故技术分析2. 技术分析从预测指标可以看出,孔深4m处(距钻孔中心位置5m)的测得K1值为0.74-0.76,( 将K1值0.74-0.76的均用灰分、水分加以校正后K1=0.9375),煤层的坚固性系数为f =0.2,利用经验公式计算K1=AP min B式中:P min-煤层突出时所需的最小瓦斯压力,Mpa;A、B-系数,一般经实验室试验获得,亦可按下列公式确定:A=3.352e-2.953fB=1.1736e-0.864fF-煤的最小坚固性系数将f=0.2代入A=1.857, B=0.987将K1值0.9375的均值代入上式, ,则P为0.5226Mpa,煤层中的瓦斯压力超过了按f=0.2计算出的最小突出压力0.44 Mpa.从实测的K1指标判断,证实了在距钻孔中心2.5m处,已是煤与瓦斯突出危险的地段.即1m大直径钻孔的有效影响半径经2年的排放后不足2.5m(由钻孔中心算起)。

另外用钻孔直径与有效排放半径的经验公式计算从公式计算得出为有效影响范围R=1.785m.距钻孔中心2.2325 m.大于此值时,就进入突出危险区。

从上述两种计算方法得出的结论是一致的,即1m的大直径排放钻孔,经长时间的排放,其有效排放半径是不大的约1.7m左右(从钻孔壁算起),这红卫矿巷道煤层瓦斯压力分布的规律有相似之处.即排放半径在短时间内是随时间的延长而增大,时间稍长,则发展缓慢. 由以上分析,不难看出,在靠近大直径钻孔附近的高瓦斯地带,在打小直径钻孔时由于没有足够的安全屏障(不小于5m),以及打排放钻孔未能一次到位,在加深钻孔时,对高瓦斯地区进行了人为的扰动,在没有安全屏障的保护下,而诱发出煤与瓦斯突出.事例二情况介绍2004年4月14日在石壕煤矿E1625机巷溜煤立眼采用天井钻机扩孔至43.5米,进入8#煤层2.5米时,发生煤与瓦斯突出事故。

相关文档
最新文档