职高高一数学第四章测试
高一职教数学第四章、第五章练习1

高一数学练习题(一)一、选择题1.-34αα已知角的终边过点(,),则cos 等于( )3.5A -4.5B - 3.5C 4.5D122.cos ,sin 13ααα==为第四象限角,则( )5.12A 5.13B - 5.12C - 5.13D 3.cos y x =是( ).A 周期函数 .B 奇函数 .C 增函数 .D 减函数4.+2k (02,)k z απαπ︒≤≤∈把-1485化成的形式是( )7.(5)24A ππ+-⨯ 7.(5)24B ππ-+-⨯ .(4)24C ππ+-⨯ 7.(4)24D ππ+-⨯5.下列各角是第四象限的角的是( ) 7.3A π 7.4B π 7.5C π 7.6D π6.=3αα已知角,则的终边在( ).A 第一象限 .B 第二象限 .C 第三象限 .D 第四象限7. 数列0,1,0,1,0,1,…的一个通项公式是( )1111(1)1(1)..221(1)1(1)..22n nn n n n n n A a B a C a D a -------==+----==8. 已知数列{a n }的通项公式是a n =n 2+2n,则15是数列的第( )项.A.3B.4C.5D.6 9. b 2=ac 是a,b,c 成等比数列的( )A.必要不充分条件B.充分不必要条件C.既不充分也不必要条件D.充要条件10. 在等差数列{a n }中,a 3=5,a 88=63,则a 5+a 86=( ) A.68 B.58 C.70 D.8011. 在等差数列{a n }中,S 4=1,S 8=4,则S 12的值为( ) A.5 B.7 C.8 D.912. 如果-1,a,b,c,-9成等比数列,那么( )A.b=3,ac=9B.b=-3,ac=9C.b=3,ac=-9D.b=-3,ac=-9 二、填空题13.2_________________180π=︒弧度=度;弧度1=________________≈弧度度度14.cos sin cos ________αααα+=⋅=已知sin 则15.︒计算:cos(-225)=________16.等差数列的通项公式a n =5+(n-1)⨯(-3),则a 1=______,d=_____.17. 在等差数列3,6,9,12,…中,a n =__________,90是第_____项18.55x x 若与的等比中项,则与的等差中项为________.三、解答题534719.78ππ比较cos与cos 的大小2220.(sin cos )αααα+-化简:(sin +cos )221.sin 30cos 45tan 60tan 30sin 45cos 45︒+︒+︒-︒+︒︒求()的值22一个等差数列的第3项是-4,第6项是2,求第10项.23. 一个等比数列第3项和第5项分别是12与27,求它的第6项.24. 等比数列{a n }中,已知公比q=-2, S 5=33, 求a 1 和 a 5.。
北师大版高一数学必修1第四章函数应用测试题及答案

高一年级数学学科必修1第四章质量检测试题参赛试卷第Ⅰ卷一、选择题(本大题共10小题,每小题5分,共50分)1. ()f x 函数在[a,b]上为单调函数,则 ( )A 、()f x 在[a,b]上不可能有零点B 、()f x 在[a,b]上若有零点,则必有()()0f a f b ⨯>C 、()f x 在[a,b]上若有零点,则必有()()0f a f b ⨯≤D 、以上都不对2.某商场对顾客实行购物优惠活动,规定一次购物付款总额: ( )(1)如果不超过200元,则不给予优惠;(2)如果超过200元但不超过500元,则按标价给予9折优惠;(3)如果超过500元,其500元内的按第(2)条给予优惠,超过500元的部分给予7折优惠.某人两次去购物,分别付款168元和423元,假设他一次性购买上述两次同样的商品,则应付款是A.413.7元B.513.7元C.546.6元D.548.7元3.已知函数f (n )=⎩⎨⎧<+≥-),10)](5([),10(3n n f f n n 其中n ∈N ,则f (8)等于 ( )A.2B.4C.6D.74.设()33-8x f x x =+, 用二分法求方程3380(1,2)x x x +-=∈在内近似解的过程中, 计算得到(1)0,(1.5)0,(1.25)0,f f f <>< 则方程的根落在区间 ( ).A .(1,1.25)B .(1.25,1.5)C .(1.5,2)D .不能5.函数21()322⎛⎫=+- ⎪⎝⎭xf x x 的零点有( )个。
( )A .0B .1C .2D .36.方程3log 280x x +-=的解所在区间是 ( ) A .(5,6) B.(3,4) C .(2,3) D.(1,2)7.不论m 为何值,函数2()1f x x mx =+-,x R ∈的零点有 ( ) A. 2个 B.1个 C.0个 D.都有可能8.对于函数2()f x x mx n =++,若()0,()0f a f b >>,则函数()f x 在区间(a,b)内( ) A.一定有零点 B.一定没有零点 C.至多有一个零点 D.可能有两个零点 9.若关于x 的方程2210x ax --=在区间[0,2]上有解,则实数a 的取值范围是 ( ) A.34a >-B.34a <C.34a ≥- D 34a ≤. 10.将1个单位长度厚的纸对折x 次后,厚度y 与x 的函数关系是 ( )A.2x y =B.2y x =C.2y x =D.12x y +=二、填空题(本大题共5小题,每小题5分,共25分)把答案填第Ⅱ卷题中横线上11.函数2()2f x x x m =--的零点有两个,则实数m 的取值范围是_________________ 12.某电脑公司计划在2010年10月1日将500台电脑投放市场,经市场调研范县,该批电脑每隔10天平均日销售量减少2台,现准备用38天销售完该批电脑,则预计该公司在10月1日至10月10日的平均销售量是_______________台 13.已知函数()y f x =的图像是连续不断的,x,y 有如下对应值表:14.已知函数()1kf x x x=++在其定义域内有两个零点,则k ∈______________ 15.已知函数2()log 26f x x =+-在区间(n, n+1)()n N +∈内有唯一零点,则n=_______金台区高一年级数学学科必修1第四章质量检测试题参赛试卷第Ⅱ卷二、填空题(本大题共5小题,每小题5分,共25分.把答案填在题中横线上)11.________________________ 12._______________________13._________________________ 14.______________________15._________________________三、解答题(本大题共5小题,共75分,解答应写出文字说明,证明过程或演算步骤)16.(15分)已知函数2()(3)4,()f x ax a x f x =-++若的两个零点为,αβ,且满足024αβ<<<<,求实数a 的取值范围17. (15分)一种放射性元素,其最初的质量为500g,按每年10%的速度衰减,(1)求t 年后,这种放射性元素的质量m 的表达式;(2)求这种放射性元素的半衰期(精确到0.1年,0.9log 0.5 6.5788≈)18.(15分)某商店如果将进货为8元的商品按每件10元售出,每天可销售200件,现在采用提高售价,减少进货量的方法增加利润,已知这种商品每涨价0.5元,其销售量就减少10件,问应该将售价定为多少时,才能使所赚利润最大,并求出最大利润.19.(15分)某公司生产一种电子仪器的固定成本为20000元,每生产一台仪器需增加投入100元,已知总收益满足函数()21 4002 80000 {R xx x=-(0400)(400)xx≤≤>.其中x表示仪器的月产量(单位:台).试问该公司的利润与月产量x有什么样的函数关系?写出其函数关系式. 20.(15分)某市电力公司在电力供大于求时期为了鼓励居民用电,采用分段计费方法计算电费,每月用电不超过100度时,按每度0.57元计费;每月用电超过100度时,其中的100度仍按原标准收费,超过部分按每度0.5元计费.(1)设每月用电x度,应交电费y元,写出y关于x的函数关系.(2)小王家第一季度共用了多少度电?问:小王家第一季度共用了多少度电?金台区高一年级数学学科必修1第四章质量检测试题参赛试卷试卷说明学校:卧龙寺中学命题人吴亮李丰明一、命题意图函数与方程是新课标中函数部分的新增内容,其中既有一些基本概念,也蕴含了丰富的数学思想方法,新课程标准要求重视数学的应用,培养和发展数学应用意识,所以应用题型必将成为高考的核心考点。
职高数学高一试题及答案

职高数学高一试题及答案一、选择题(每题5分,共30分)1. 下列哪个选项是不等式2x-3>5的解集?A. x>4B. x<4C. x>1D. x<1答案:A2. 函数f(x)=3x^2-2x+1的图像开口方向是:A. 向上B. 向下C. 不能确定D. 没有开口答案:A3. 计算下列表达式的结果:(2x+3)(3x-2) = ?A. 6x^2-x-6B. 6x^2-x+6C. 6x^2+x-6D. 6x^2+x+6答案:A4. 圆的方程为(x-2)^2+(y+3)^2=9,圆心坐标是:A. (2, -3)B. (-2, 3)C. (-2, -3)D. (2, 3)答案:A5. 已知数列{an}的前n项和为Sn,且满足a1=1,an=2an-1+1,求S5的值。
A. 31B. 63C. 15D. 11答案:A6. 函数y=sin(x)在区间[0, π]上的最大值是:A. 0B. 1C. -1D. π答案:B二、填空题(每题5分,共20分)1. 如果一个等差数列的前三项依次为2,5,8,则该数列的第10项是______。
答案:232. 一个圆的半径为5,那么它的面积是______。
答案:25π3. 函数f(x)=x^3-3x+2在x=1处的导数值是______。
答案:04. 已知等比数列{bn}的前三项依次为2,4,8,则该数列的第5项是______。
答案:16三、解答题(每题10分,共50分)1. 解不等式:3x-2>5x+4。
答案:由3x-2>5x+4,得-2x>6,所以x<-3。
2. 求函数f(x)=x^2-4x+3在区间[1,3]上的最大值和最小值。
答案:函数f(x)=x^2-4x+3的导数为f'(x)=2x-4,令f'(x)=0,得x=2为极值点。
计算f(1)=0,f(2)=-1,f(3)=0,所以最大值为0,最小值为-1。
中职数学第四章练习复习课程

中职数学第四章练习选择题:第四单元测试题姓名: 班别:1.若a>0,则下列计算正确的是(3 4 3 4A. (a4)3 aB. a4 a3C.3a44a3D.3a% 02.已知a>0,下列式子中正确的是A. ( 1) 2 2B.3a2 a2 C.1_3 5aD. a1_5 3.a3.已知y 4 a x(a 0且a 1)的图像经过点P, 则点P的坐标是(A. (0, 1)B.(1,0)C. (0, 5) D.(5,0)4.函数y a x(a 0且 a 1)在(- )内是减函数,a的取值范围是A. a>1B.0 <a<1C. a> 1 或0<a<1D.5.”肉为底的x的对数等于y”记做(A. y log a xB. x log a yC. x log y aD. y log x a6.已知x>0,y>0,下列式子正确的是(A. ln(x y) In x In yB. lnxy ln x ln yC. In xy In x In y D.In-ylnxlny7.下列函数中是偶函数的是(收集于网络,如有侵权请联系管理员删除2 2A. y log2xB. y log 1 xC. y log2xD. y log2 x28.下列对数中是正数的是();A. 10g o.2 0.3B. 10g2 0.3 C 10g o.2 3. D. log129.函数y 3、与丫(1)x的图像关于();3A.原点对称B .x轴对称 C. 直线y=1对称D. y轴对称10.函数 f (x)10x10、是();A.偶函数B. 奇函数C. 非奇非偶函数D. 既是奇函数又是偶函数11.如果x>y>0且0<a<1,那么下列结论中正确的是();Ax y x x x y12 a B. a 1 C. a 1 D. a a1 、. ................12.设3<(-)x 27 ,则下列结论正确的是( )。
高一数学必修1第四章测试题及答案

必修1第四章石油中学 席静一、选择题1 已知)(x f 唯一的零点在区间(1,3)、(1,4)、(1,5)内,那么下面命题错误的( )A 函数)(x f 在(1,2)或[)2,3内有零点B 函数)(x f 在(3,5)内无零点C 函数)(x f 在(2,5)内有零点D 函数)(x f 在(2,4)内不一定有零点2 求函数132)(3+-=x x x f 零点的个数为 ( )A 1B 2C 3D 43 已知函数)(x f y =有反函数,则方程0)(=x f ( )A 有且仅有一个根B 至多有一个根C 至少有一个根D 以上结论都不对4 如果二次函数)3(2+++=m mx x y 有两个不同的零点,则m 的取值范围是( )A ()6,2-B []6,2-C {}6,2-D ()(),26,-∞-+∞5若函数)(x f y =在区间[],a b 上的图象为连续不断的一条曲线,则下列说法正确的是( )A 若0)()(>b f a f ,不存在实数),(b a c ∈使得0)(=c f ;B 若0)()(<b f a f ,存在且只存在一个实数),(b a c ∈使得0)(=c f ;C 若0)()(>b f a f ,有可能存在实数),(b a c ∈使得0)(=c f ;D 若0)()(<b f a f ,有可能不存在实数),(b a c ∈使得0)(=c f ;6 方程0lg =-x x 根的个数为( )A 无穷多B 3C 1D 07若1x 是方程lg 3x x +=的解,2x 是310=+x x 的解,则21x x +的值为( )A23 B 32 C 3 D 31 8 设()833-+=x x f x ,用二分法求方程()2,10833∈=-+x x x 在内近似解的过程中得()()(),025.1,05.1,01<><f f f 则方程的根落在区间( ) A (1,1.25) B (1.25,1.5)C (1.5,2)D 不能确定9下列函数均有零点,其中不能用二分法求近似解的是( ).10函数2-=x y 在区间]2,21[上的最大值是( )A 41B 1-C 4D 4-11 直线3y =与函数26y x x =-的图象的交点个数为( )A 4个B 3个C 2个D 1个12 若方程0x a x a --=有两个实数解,则a 的取值范围是( )A (1,)+∞B (0,1)C (0,2)D (0,)+∞二、填空题:13 用“二分法”求方程0523=--x x 在区间[2,3]内的实根,取区间中点为5.20=x ,那么下一个有根的区间是14 设函数)(x f y =的图象在[],a b 上连续,若满足 ,方程0)(=x f在[],a b 上有实根 .15 已知函数2()1f x x =-,则函数(1)f x -的零点是__________16 函数()f x 对一切实数x 都满足11()()22f x f x +=-,并且方程()0f x =有三个实根,则这三个实根的和为17已知函数()f x 的图象是连续不断的,有如下,()x f x 对应值表:则函数()f x 在区间 有零点。
(北师大版)高中数学必修第一册 第四章综合测试试卷03及答案

第四章综合测试一、选择题(本大题共10小题,共50分)1.若3log 14a ,则实数a 的取值范围是( )A .304æöç÷èø,B .34æö+¥ç÷èøC .314æöç÷èø,D .()3014æö+¥ç÷èøU ,,2.已知2log 0.2a =,0.22b =,0.30.2c =,则( )A .a b c<<B .a c b<<C .c a b<<D .b c a<<3.设227a =,则3log 2等于( )A .3aB .3a C .13aD .3a4.已知a ,b ,c 均大于1,且1log log 4c c a b =g ,则下列不等式一定成立的是( )A .ac b≥B .bc a≥C .ab c≥D .ab c≤5.已知5log 2x =,2log y =123z -=,则下列关系正确的是( )A .x z y<<B .x y z<<C .z x y<<D .z y x<<6.“{}12m Î,”是“ln 1m <”成立的( )A .充分非必要条件B .必要非充分条件C .充要条件D .既非充分也非必要条件7.已知函数()()log 2a f x x =+,若图象过点()63,,则()2f 的值为( )A .2-B .2C .12D .12-8.已知2510a b ==,则11a b+=( )A .1B .2C .12D .159.已知函数()ln xf x x=,若()2a f =,()3b f =,()5c f =,则a ,b ,c 的大小关系是( )A .b c a<<B .b a c<<C .a c b<<D .c a b<<10.如果函数()f x 的图象与函数()x g x e =的图象关于直线y x =对称,则()24f x x -的单调递增区间为( )A .()0+¥,B .()2+¥,C .()02,D .()24,二、填空题(本大题共6小题,共30分)11.已知函数()()()log 401a f x ax a a =-¹>,且在[]01,上是减函数,则a 取值范围是________.12.不等式()2log 1020x -≥的解集为________.13.已知函数()()2log 13f x x =++,若()25f a +=,则a =________.14.已知()12log 11x +≥,则实数x 的取值范围是________.15.若()lg lg 2lg 2x y x y +=-,则xy=________.16.已知函数()()()log 201a f x x a a =-¹>,恒过定点M 的坐标为________;若2a =则()34f =________.三、解答题(本大题共5小题,共70分)17.(1)()()3122log 22641log ln 349e p -+æö+-+++ç÷èø;(2)若lg 2a =,lg3b =,求5log 12的值(结果用a ,b 表示)18.(1()1132081274e p -æöæö--++ç÷ç÷èøèø;(2(3)已知a ,b ,c 为正实数,x y z a b c ==,1110x y z++=,求abc 的值.19.函数()()2log 21x f x =-.(1)解不等式()1f x <;(2)若方程()()4log 4x f x m =-有实数解,求实数m 的取值范围.20.已知函数()()()()log 2log 201a a f x x x a a =+--¹>,且.(1)求函数()f x 的定义域;(2)判断函数()f x 的奇偶性;(3)解关于x 的不等式()()log 3a f x x ≥.21.设函数()13lg 1x xf x x-=++.(1)试判断函数()()()2f x f xg x +-=和函数()()()2f x f x h x --=在定义域内的奇偶性;(2)令()()3x x f x j =-,求不等式()()2x x j j --<的解集.第四章综合测试答案解析一、1.【答案】C【解析】解:3log 14a 等价于:3log log 4a a a >,可得134a a ìïíïî>>(无解)或034a a ìïíïî<<1>,解得314a æöÎç÷èø.故选:C.2.【答案】B【解析】解:22log 0.2log 10a ==<,0.20221b ==>,0.3000.20.21=∵<<,()0.30.201c =Î∴,,a c b ∴<<,故选B.3.【答案】D【解析】因为227a =,所以2233log 273log 3log 2a ===,则33log 2a=.4.【答案】C【解析】a ∵,b ,c 均大于1,且1log log 4c c a b =g ,log c a ∴、log c b 大于零,则2log log log log 2c c c c a b a b +æöç÷èøg ≤,即2log log 142c c a b +æöç÷èø≤,()log 1c ab ∴≥或()log 1c ab -≤,当且仅当log log c c a b =,即a b =时取等号,a ∵,b ,c 均大于1,则log 1c ab ≥,解得ab c ≥,故答案选C.5.【答案】A【解析】解:551log 2log 2x ==<,2log 1y =,121312z -æö==ç÷èø,.x z y ∴<<.故选:A.6.【答案】A【解析】解:对数函数的性质知ln10=,ln 2ln 1e =<,从而知{}12m Î,是ln 1m <的充分条件,反过来由ln 0m <得到0m e <<,m ∴并不是只能为1,2,“{}12m Î,”是“ln 1m <”成立的充分不必要条件,故选A.7.【答案】B【解析】解:将点()63,代入()()log 2a f x x =+中,得()3log 62log 8a a =+=,即38a =,2a =,所以()()2log 2f x x =+,所以()()22log 222f =+=.故选B.8.【答案】A【解析】解:2510a b ==∵,2log 10a =∴,5log 10b =,101010251111log 2log 5log 101log 10log 10a b +=+=+==∴,故选A.9.【答案】D【解析】解:由已知ln 2ln 33ln 22ln 3ln8ln 902366a b ---=-==<,所以a b <,ln 2ln 55ln 22ln 5ln 32ln 250251010a c ---=-==>,所以a c >,c a b ∴<<.故选D.10.【答案】C【解析】解:由题意可得函数()f x 与()x g x e =的互为反函数,故()ln f x x =,()()224ln 4f x x x x -=-,令240t x x =->,解得04x <<.故()24f x x -的定义域为()04,,本题即求函数()24f x x -在()04,上的增区间.再利用二次函数的性质可得函数()24f x x -在()04,上的增区间为()02,,故选:C.二、11.【答案】()14,【解析】解:因为0a >,所以4t ax =-是减函数,又因为函数()()()log 401a f x ax a a =-¹>,且在[]01,上是减函数,所以log a y t =是增函数,所以得1410a a ìí-´î>>,解得14a <<,a 取值范围是()14,.故答案为()14,.12.【答案】92æù-¥çúèû,【解析】解:不等式()2log 1020x -≥可化为()22log 102log 1x -≥,即1021x -≥,解得92x ≤;所以函数()f x 的解集为92æù-¥çúèû,.故答案为:92æù-¥çúèû,.13.【答案】1【解析】解:由题意可得()()22log 335f a a +=++=,故()2log 32a +=,解得1a =.故答案为1.14.【答案】[)1112æù--+¥çúèûU ,,【解析】解:()12log 11x +≥,()12log 11x +∴≥或()12log 11x +-≤,解得1012x +<≤或12x +≥,即112x --<≤或1x ≥;∴实数x 的取值范围是[)1112æù--+¥çúèûU ,,.故答案为:[)1112æù--+¥çúèûU ,,.15.【答案】4【解析】因为()lg lg 2lg 2x y x y +=-,所以()22xy x y =-,即22540x xy y -+=,解得x y =或4x y =.由已知得0x >,0y >,20x y ->,所以x y =不符合题意,当4x y =时,得4xy=.故答案为4.16.【答案】()30,5【解析】解:令()()log 20a f x x =-=,解得3x =,所以点()30M ,,当2a =时,()52234log 32log 25f ===.故答案为()30,;5.三、17.【答案】(1)解:()()3122log 22641log ln 349e p -+æö+-+++ç÷èø12281109278æö´-ç÷èøæö=++++´ç÷èø711182088=+++=;(2)lg 2a =∵,lg3b =,5lg122lg 2lg32log 12lg51lg 21a ba++===--∴.18.【答案】(1)解:原式1312325252121223333´æö-´-ç÷èøæö=--+=--+=ç÷èø;(2)原式()28125lg lg1025411lg10lg1022´´===-´--;(3)a ∵,b ,c 为正实数,0x y z a b c k ===>,1k ¹.lg lg k x a =∴,lgk lg y b =,lg lg k z c=,1110x y z ++=∵,()lg lg lg lg 0lg lg abc a b c k k ++==∴,1abc =∴.19.【答案】(1)解:()1f x <即()2log 211x -<,0212x -∴<<,123x ∴<<,20log 3x ∴<<,故不等式()1f x <的解集为{}20log 3x x <<;(2)()()24log 21log 4x x m -=-∵有实数解, 210x -∵>,0x ∴>,且40x m ->,()2214x x m -=-∴,在0x >上有解,即22241x x m =-++g g 在0x >上有解,设()21x t t =>即2221m t t =-+在1t >上有解,当1t >时,22112212122m t t t æö=-+=-+ç÷èø,故实数m 的取值范围:1m >.20.【答案】(1)解:要是函数有意义,则2020x x +ìí-î>>,解得22x -<<,故函数()f x 的定义域为()22-,;(2)()()()()()()log 2log 2log 2log 2a a a a f x x x x x f x -=--+=-é+--ù=-ëû,所以函数()f x 为奇函数;(3)()()()2log 2log 2log 2a a axf x x x x+=+--=-∵,()()log 3a f x x ≥.()2log log 32aa xx x+-∴≥,02x <<.当01a <<时,232x x x +-0<,解得213x ≤;当1a >时,2302x x x +->,解得12x ≤<或203x <≤.21.【答案】(1)解:()g x 和()h x 的定义域都是()11-,,且()()()3322x xf x f xg x -+-+==,()()()331lg 221x x f x f x xh x x-----==++,所以对任意()11x Î-,有,()()332x xg x g x -+-==,()()331331lg lg 2121x x x x x xh x h x x x---+---=+=--=--+,故函数()g x 在()11-,内是偶函数,函数()h x 在()11-,内是奇函数;(2)因为()()13lg1x xx f x x j -=-=+,所以()()2x x j j --<就是11lg lg 211x xx x-+-+-<,即1lg 11x x -+<,10101x x -+<<,解得9111x -<<.故此不等式的解集是9111æö-ç÷èø.。
高一上学期数学(必修一)《第四章 幂函数、指数函数和对数函数》练习题及答案-湘教版

高一上学期数学(必修一)《第四章幂函数、指数函数和对数函数》练习题及答案-湘教版第I卷(选择题)一、单选题1. 已知幂函数f(x)的图象过点(16,18),则f(4)=( )A. √ 24B. √ 22C. 14D. 122. 设a=log37,b=21.1,c=0.83.1,则.( )A. b<a<cB. c<a<bC. c<b<aD. a<c<b3. 设a=log54,则b=log1513,c=0.5−0.2则a,b,c的大小关系是( )A. a<b<cB. b<a<cC. c<b<aD. c<a<b4. 方程√ x−lnx−2=0的根的个数为( )A. 0B. 1C. 2D. 35. 已知a>1,则下列命题中正确的是( )A. ∃x0,∀x>x0有a x>x a>log a x成立B. ∃x0,∀x>x0有a x>log a x>x a成立C. ∃x0,∀x>x0有x a>a x>log a x成立D. ∃x0,∀x>x0有x a>log a x>a x成立6. 果农采摘水果,采摘下来的水果会慢慢失去新鲜度.已知某种水果失去新鲜度ℎ与其采摘后时间t(天)满足的函数关系式为ℎ=m⋅a t.若采摘后10天,这种水果失去的新鲜度为10%,采摘后20天,这种水果失去的新鲜度为20%.那么采摘下来的这种水果在多长时间后失去50%新鲜度(已知lg2≈0.3,结果取整数)( )A. 23天B. 33天C. 43天D. 50天7. 已知函数f(x)={a x−2,x≤−2,x+9,x>−2,(a>0,a≠1)的值域是(7,+∞),则实数a的取值范围是( )A. 13<a<1 B. 0<a≤13C. a>1D. 0<a<138. 已知函数y=log a(x+3)−1(其中a>0且a≠1)的图象恒过定点A,若点A也在函数f(x)=3x+b 的图象上,则f(log94)的值为( )A. 89B. 79C. 59D. 299. 利用二分法求方程log3x+x−3=0的近似解,可以取的一个区间是( )A. (0,1)B. (1,2)C. (2,3)D. (3,4)10. 深度学习是人工智能的一种具有代表性的实现方法,它是以神经网络为出发点的.在神经网络优化中,指数衰减的学习率模型为L=L0DGG0,其中L表示每一轮优化时使用的学习率,L0表示初始学习率,D表示衰减系数,G表示训练迭代轮数,G0表示衰减速度.已知某个指数衰减的学习率模型的初始学习率为0.5,衰减速度为18,且当训练迭代轮数为18时,学习率衰减为0.4,则学习率衰减到0.1以下(不含0.1)所需的训练迭代轮数至少为(参考数据:lg2≈0.3010)( )A. 128B. 130C. 132D. 134二、多选题11. 已知幂函数f(x)=(m 2−2m −2)x m 的图象过点(2,12),则( ) A. f(x)=x 3B. f(x)=x −1C. 函数f(x)在(−∞,0)上为减函数D. 函数f(x)在(0,+∞)上为增函数12. 下列说法正确的有( )A. 命题“∀x ∈R ,x 2+x +1>0”的否定为“∃x ∈R 。
高一数学第四章单元测试题

高一数学第四章单元测试题一、选择题1.点(sin,cos)与圆x2+y2=12的位置关系是()a.在圆上b.在圆内c.在圆外d.不能确定2.已知以点a(2,-3)为圆心,半径长等于5的圆o,则点m(5,-7)与圆o的位置关系是()a.在圆内b.在圆上c.在圆外d.无法判断3.若直线y=ax+b通过第一、二、四象限,则圆(x+a)2+(y+b)2=1的圆心位于()a.第一象限b.第二象限c.第三象限d.第四象限4.圆(x-3)2+(y+4)2=1关于直线y=x对称的圆的方程是()a.(x+3)2+(y+4)2=1b.(x+4)2+(y-3)2=1c.(x-4)2+(y-3)2=1d.(x-3)2+(y-4)2=15.方程y=9-x2表示的曲线是()a.一条*线b.一个圆c.两条*线d.半个圆6.已知一圆的圆心为点(2,-3),一条直径的两个端点分别在x轴和y轴上.则此圆的方程是()a.(x-2)2+(y+3)2=13b.(x+2)2+(y-3)2=13c.(x-2)2+(y+3)2=52d.(x+2)2+(y-3)2=52二、填空题7.已知圆的内接正方形相对的两个顶点的坐标分别是(5,6),(3,-4),则这个圆的方程是____________________________________________________________________ ____.8.圆o的方程为(x-3)2+(y-4)2=25,点(2,3)到圆上的最大距离为________.9.如果直线l将圆(x-1)2+(y-2)2=5平分且不通过第四象限,那么l的斜率的取值范围是________.三、解答题10.已知圆心为c的圆经过点a(1,1)和b(2,-2),且圆心c在直线l:x-y+1=0上,求圆心为c的圆的标准方程.11.已知一个圆与y轴相切,圆心在直线x-3y=0上,且该圆经过点a(6,1),求这个圆的方程.12.已知圆c:(x-3)2+(y-1)2=4和直线l:x-y=5,求c上的点到直线l的距离的最大值与最小值.13.已知点a(-2,-2),b(-2,6),c(4,-2),点p在圆x2+y2=4上运动,求|pa|2+|pb|2+|pc|2的最值.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四章:指数函数测试题
一、填空题(每空2分)
1、将5
2a 写成根式的形式,可以表示为 。
2、将56a 写成分数指数幂的形式,可以表示为 。
3、将
4
3
1
a
写成分数指数幂的形式,可以表示为 。
4、(1)=3
1125.0 ,(2)1
21-⎪⎭⎫
⎝⎛=
5、4321a a a a ⋅⋅⋅的化简结果为 .
6、(1)幂函数1-=x y 的定义域为 . (2)幂函数2
1x y =的定义域为 . 7、将指数932=化成对数式可得 . 将对数38log 2=化成指数式可得 . 8.用不等号连接:
(1)5log 2 6log 2 ,(2)若n m 33>,则m n ; (3)35.0 36.0 ,(4)6log 5 5log 6
9.求值:(1)3
2
27= ,(2)=16log 2
1 ;
10.设函数)142(log )(24+=x x f ,则)1(f =__________ ____; 11.log 39= ____________ log 416=____________ log 5125=____________
二、选择题(每题2分)
1、将5
4
a 写成根式的形式可以表示为( )。
A .4a B.5a C. 5
4a D.45a
2、将
7
4
1
a
写成分数指数幂的形式为( )。
A .7
4a B.4
7
a C.7
4-a
D.4
7-a
3、2
19化简的结果为( )。
A .3± B.3 C.-3 D.2
9 4、4
3
2
813⨯-的计算结果为( )。
A .3 B.9 C.3
1
D.1
5、下列函数中,在()+∞∞-,内是减函数的是( )。
A .x y 2= B. x y 3= C.x
y ⎪⎭⎫
⎝⎛=21 D. x y 10=
6、下列函数中,在()+∞∞-,内是增函数的是( )。
A .x y 2= B. x y ⎪⎭⎫
⎝⎛=101 C.x
y ⎪⎭⎫ ⎝⎛=21 D. 2x y =
7、下列函数中,是指数函数的是( )。
A .52+=x y B. x y 2= C.3x y = D.3
21
-=
x y 8.指数函数的图象经过点)27,2
3
(,则其解析式是( )
A 、x y 3=
B 、x y )31(=
C 、x y 9=
D 、x y )9
1
(=
9.求值1.0lg 2log ln 2
12
1
-+e 等于( )
A 、12
-
B 、12
C 、0
D 、1
10、1
020102010
2010201010
+++
A 、0
B 、2
C 、2010
D 、2012 三、解答题:(每题5分) 1.求下列各式的值
(1) lg1+lg10+lg100; (2)2lg 5lg +
(3)15log 5log 33- (4)432793⨯⨯
2.求下列函数的定义域:
(1)2log x y a =; (2))4(log x y a -=
(3)y=lg (x+1) (4)y=
x
2log 1
附加题(1、2每题5分3题10分)
1、已知某对数函数的图像过点(4,2),求该函数的解析式
2、函数y=3log (x+1) (a >0,且a ≠1)的图像经过定点 。
3、某钢铁公司的年产量为a 万吨,计划每年比上一年增产10%,问经过多少年产量翻一番 ?(结果用代数式表示即可)。