铁电陶瓷材料及应用

合集下载

铁电陶瓷材料的应用以及生产工艺之四

铁电陶瓷材料的应用以及生产工艺之四

铁电陶瓷材料的应用以及生产工艺之四铁电陶瓷材料,是指具有铁电效应的一类功能性陶瓷材料,它是热释电材料的一个分支。

可用于大容量的电容器、高频用微型电容器、高压电容器、叠层电容器和半导体陶瓷电容器等,可以制作介质放大器和相移器等。

利用其热释电性,可制作红外探测器等。

也用于制造光阀、光调制器、激光防护镜和热电探测器等。

广泛应用于航天、军工、新能源产品。

这里介绍,主要是参考它的加工工艺,比如为固体电解质的加工提供一定的参考。

另一方面是顺便了解一下这特种陶瓷的用途。

室温研磨法固相反应制备铁电陶瓷粉末铁电陶瓷(Ferroelectric ceramics)是主晶相为铁电体的陶瓷材料,具有高的直流电阻率、相对低的电介质损耗角正切(0.1%~7%)、中等介电击穿强度(100~120kV/cm)以及非线性的电、机电、电光学特性,与普通绝缘材料(5~100)相比具有高的介电常数(200—10000)。

铁电陶瓷的优良性能使其广泛应用于工业和商业中,如高介电常数电容器、压电声纳和超声传感器、无线电和信息过滤器、热释电装置、医疗诊断传感器、正温度系数(PTC)传感器、超声马达和电光光阀等。

铁电陶瓷中存在孔隙时会使损耗角正切增大,且一些特殊应用如压电传感器和致动器的机械强度直接与材料的密度有关,因此很多应用中都需要全致密的铁电陶瓷(理论密度>95%)以获得最佳的性能。

铁电陶瓷的密度通常随烧结温度的升高而增大。

然而,含铅、铋铁电材料的烧结温度不宜过高,因为铅、铋易挥发,而且高温也会导致晶粒反常长大,损害铁电陶瓷的性能。

而目前主要使用细或超细粉末及辅助烧结来降低铁电陶瓷的烧结温度。

因此,制备致密且晶粒大小适当的铁电陶瓷尤其重要,探讨新的铁电陶瓷粉末的制备方法具有重要意义。

铁电陶瓷粉末的制备方法A:常规制备方法材料的性能与其加工方法密切相关,故铁电陶瓷粉末的合成方法对铁电陶瓷的显微结构、电学和光学性能有很大影响。

对氧化物原料进行固态反应可合成铁电陶瓷粉末,但由于晶粒相对粗大,因而需要较高的烧结温度来获得目标成分和预期性能的铁电陶瓷。

铁电材料的特性及应用综述

铁电材料的特性及应用综述

铁电材料的特性及应用综述孙敬芝(河北联合大学材料科学与工程学院河北唐山 063009)摘要:铁电材料具有良好的铁电性、压电性、热释电以及性光学等特性以及原理,铁电材料是具有驱动和传感2 种功能的机敏材料, 可以块材、膜材(薄膜和厚膜) 和复合材料等多种形式应用, 在微电子机械和智能材料与结构系统中具有广阔的潜在应用市场。

关键词:铁电材料;铁电性;应用前景C haracteristics and Application of FerroelectricmaterialSun Jingzhi( Materials Science and Engineering college, Hebei United University Tangshan 063009,China )Abstract:Ferroelectric material has good iron electrical, piezoelectric , pyroelectric and nonlinear optical properties, such as a driver and sensing two function piezoelectric materials, can block material, membrane materials (film and thick film) and the compound Material of a variety of forms such as application, in microelectromechanical and intelligent materials and structures in the system with vast potential application market.Keywords: ferroelect ric materials Iron electrical development trend0前言晶体按几何外形的有限对称图象, 可以分为32 种点群, 其中有10 种点群: 1, 2, m , mm 2, 4,4mm , 3, 3m , 6, 6mm , 它们都有自发极化。

2024年钛酸钡铁电陶瓷市场发展现状

2024年钛酸钡铁电陶瓷市场发展现状

钛酸钡铁电陶瓷市场发展现状引言钛酸钡铁电陶瓷是一种重要的电子陶瓷材料,具有优异的电学性能和优越的热稳定性,广泛应用于电子器件和无线通信领域。

本文将对钛酸钡铁电陶瓷市场的发展现状进行综述,并分析其市场前景。

钛酸钡铁电陶瓷的特点钛酸钡铁电陶瓷具有以下几个重要的特点: - 高介电常数和低介电损耗,使其在高频率电子器件中具有应用潜力; - 温度稳定性好,能够适应复杂的工作环境; - 高压驱动性能,适用于电荷存储器和压电传感器等领域; - 高饱和极化电压,使其在无线通信设备中具备优势。

钛酸钡铁电陶瓷市场规模及发展趋势根据市场研究报告,钛酸钡铁电陶瓷市场规模逐年扩大,并呈现出以下几个发展趋势:1. 电子器件领域的应用增加随着电子器件市场的不断扩大,对高性能电子陶瓷材料的需求逐渐增加。

钛酸钡铁电陶瓷以其出色的电学性能和稳定性,被广泛应用于电容器、滤波器、谐振器等电子器件中。

2. 无线通信设备市场的快速发展无线通信设备市场的快速发展带动了对钛酸钡铁电陶瓷的需求增长。

钛酸钡铁电陶瓷在射频滤波器、天线、谐振器等无线通信设备中具有重要的应用,如5G技术的普及将进一步推动钛酸钡铁电陶瓷市场的增长。

3. 新兴应用领域的开拓随着科技的进步和新兴应用的不断涌现,钛酸钡铁电陶瓷在医疗设备、汽车电子、航空航天等领域也开始得到关注和应用。

这些新兴应用领域的开拓将进一步推动钛酸钡铁电陶瓷市场的发展。

钛酸钡铁电陶瓷市场面临的挑战虽然钛酸钡铁电陶瓷市场发展势头良好,但仍面临一些挑战:1. 生产成本高钛酸钡铁电陶瓷的生产工艺复杂,所需原材料价格昂贵,导致生产成本较高。

这给陶瓷生产企业带来一定的压力,并限制了市场的进一步扩大。

2. 技术创新与研发投入不足目前,一些先进的钛酸钡铁电陶瓷材料制备技术尚未得到广泛采用,存在一定的技术创新和研发投入不足的问题。

这限制了钛酸钡铁电陶瓷市场的进一步发展。

3. 市场竞争激烈随着钛酸钡铁电陶瓷市场的规模不断扩大,竞争也越来越激烈。

电容器陶瓷-低频(铁电)

电容器陶瓷-低频(铁电)

长,a,b轴略有缩短,c/a ≈1.01。该温度
范围沿c轴出现自发极化呈现铁电性。
钛酸钡晶胞与自发极化图
四方相BaTiO3
四方相十分重要,因为它存在的温度区 间(0~120℃)正是材料的使用温度。
铁 电 陶 瓷
立方相转变为四方相 时,a、b轴收缩,c轴 伸长,使c轴的O2-和 Ti4+发生位移,产生 极化,形成偶极子。
基本概念1. 铁电体
介电晶体在某温度范围内可以自发极化(介电常数很
高),而且极化强度可以随外电场反向而反向。同铁磁体具有
磁滞回线一样,把具有电滞回线的晶体称为铁电体。 虽然叫铁电体,但这些晶体并不含有铁。 铁电性(ferroelectricity)是指在一定温度范围内具有
自发极化,在外电场作用下,自发极化能重新取向,而且电位移
铁电陶瓷的特性决定了它的用途:
• 利用其高介电常数,可以制作大容量的电容器、高 频用微型电容器、高压电容器、叠层电容器和半导 体陶瓷电容器等,电容量可高达0.45µF/cm2。 • 利用其介电常数随外电场呈非线性变化的特性,可 以制作介质放大器和相移器等。 • 利用其热释电性,可以制作红外探测器等。 • 利用其压电性可制作各种压电器件。 • 此外,还有一种透明铁电陶瓷,其光学效应可用于 制造光阀、光调制器、激光防护镜和热电探测器等。
钛离子处于氧八面体中,
两个氧离子间的空隙为:4.01-2× 1.32= 1.37
钛离子的直径:2× 0.64= 1.28
结果分析:
氧八面体空腔体积大于钛离子体积,给钛离子位 移的余地。
较高温度时,热振动能比较大,钛离子难于在偏 离中心的某一个位臵上固定下来,接近六个氧离子的 几率相等,晶体保持高的对称性,自发极化为零。

铁电陶瓷的应用

铁电陶瓷的应用

铁电陶瓷的应用铁电陶瓷是一种特殊的陶瓷材料,具有铁电性质,能够在电场的作用下产生电极化,因此在许多领域都有广泛的应用。

下面将就铁电陶瓷在电子产品、医疗领域、能源行业和航空航天领域的应用进行详细介绍。

一、电子产品领域铁电陶瓷可用于电子产品中的压电元件、传感器和微机电系统等方面。

在压电元件中,铁电陶瓷能够在电场的作用下产生变形,因此可用于制造压电换能器,如压电陶瓷谐振器、压电陶瓷声波传感器等,广泛应用于手机、电脑、无线通信设备等电子产品中。

铁电陶瓷的压电性质也使其成为一种优秀的传感器材料,可用于制造加速度传感器、压力传感器等,应用于汽车、航空航天等领域。

在微机电系统中,铁电陶瓷可以作为微型压电马达、微型压电致动器等微型机电设备的材料,有望在微机电系统领域发挥重要作用。

二、医疗领域铁电陶瓷在医疗领域的应用主要体现在超声诊断设备和超声治疗设备中。

铁电陶瓷通过其压电效应可以将电能转化为机械能,被应用于超声探头中,用于超声成像、超声检查等医学诊断手段。

在超声治疗设备中,铁电陶瓷也可用于制造超声振荡器、超声换能器等设备,用于进行超声治疗、超声碎石等医学治疗手段。

三、能源行业在能源行业中,铁电陶瓷可以用于制造压电发电装置、压电储能装置等设备。

通过铁电陶瓷的压电效应,可以将机械能转化为电能,因此可以应用于压电发电装置中,例如压电陶瓷发电装置、压电陶瓷振动发电装置等,用于收集环境中的振动能量、压力能量、声波能量等,实现能源的收集和转化。

铁电陶瓷也可以作为储能装置的材料,用于制造高效的压电式储能装置,可以在电能较少的地方储存能量,为一些特殊场合提供电能支持。

四、航空航天领域在航空航天领域,铁电陶瓷的应用主要体现在航空航天制导系统、主动噪音控制系统等方面。

通过铁电陶瓷的压电效应,可以实现超高精度的航空制导系统,例如利用压电陶瓷制造的压电陶瓷马达、压电陶瓷致动器等机电装置,可以实现航空器舵面的微小调整和控制。

铁电陶瓷也可以用于制造主动噪音控制系统中的压电换能器、压电陶瓷传感器等,通过其压电特性调整和控制飞机、航天器的噪音和振动,提高航空航天器的舒适性和性能稳定性。

铁电陶瓷材料的应用

铁电陶瓷材料的应用
3 梁立梅 谭咏梅,浅谈现代功能陶瓷的发展,Vol.27,2001,142-143 摘 要 现代功能陶瓷的特点是品种多、价格低、应用广、功能全、技术高、 更新快。功能陶瓷在现代陶瓷中占据主导地位。功能陶瓷今后在性能方面会 向着高效能、高可靠性、低损耗、多功能、超高功能以及智能化方向发展。
4 欧阳伟 黄尚宇 ,电磁成形技术及其在功能陶瓷行业,Vol,NO.27,2006,237242
2铁电陶瓷及薄膜的制备
3 铁电陶瓷平板显示技术的特点
2 铁电陶瓷及铁电发射
用于铁电发射的铁电陶瓷材料主要是一些锆 钛酸铅透明陶瓷(PZT)和掺镧的锆钛酸铅透明陶瓷 (PLZT)等,这类陶瓷内部的电畴(即极性分子)经极 化后趋向一致,表现出铁电性能。
铁电发射平板显示器由铁电陶瓷板(膜)、背 电极、栅电极、荧光粉层和电路控制系统等组成 (图1)。铁电陶瓷(膜)可以是经预先极化的铁电陶 瓷,也可以是未经极化的PZT、PLZT陶瓷[2]。
电磁成形技术作为高能、高效率技术用在粉末近终成形方面有着传统成形方法 不能比拟的优越性,在功能陶瓷行业有巨大的
应用价值。本文阐述了电磁成形的基本原理和电磁粉末压制,介绍了电磁成形 技术在功能陶瓷行业的应用及前景。
近年来, 欧美及日本等国科学界都在日益关注和 研究一种新型的平板显示技术——铁电陶瓷平板显示 器。它较好地解决了(FED)技术中的阴极制作工艺复 杂的问题, 同时, 在许多性能上也有所改善。
摘要
1 铁电陶瓷平板显示技术就是利用一些铁电陶 瓷材料所拥有的铁电发射性能制成电子发射 阴极, 代替场致发射平板显示器中的微尖端 场发射阵列, 较好地解决了(FED)技术中的阴 极制作工艺复杂的问题.
摘 要 本文评述了各类显示器件的现的发展作了预测。

压电效应原理及在陶瓷方面的应用

压电效应原理及在陶瓷方面的应用

压电效应原理及在陶瓷方面的应用粉体一班郭开旋1103011026内容摘要:某些电介质在沿一定方向上受到外力的作用而变形时,其内部会产生极化现象,同时在它的两个相对表面上出现正负相反的电荷。

当外力去掉后,它又会恢复到不带电的状态,这种现象称为正压电效应。

当作用力的方向改变时,电荷的极性也随之改变。

相反,当在电介质的极化方向上施加电场,这些电介质也会发生变形,电场去掉后,电介质的变形随之消失,这种现象称为逆压电效应,或称为电致伸缩现象。

压电陶瓷实际上是一种经过极化处理的、具有压电效应的铁电陶瓷,是信息时代的新型材料压电陶瓷是功能陶瓷中的一种。

关键词:压电效应、正压电效应、逆压电效应、原理、应用、陶瓷材料、压电陶瓷、铁电陶瓷、功能陶瓷、新型材料、电极化一、压电效应的原理:压电效应的原理是,如果对压电材料施加压力,它便会产生电位差(称之为正压电效应),反之施加电压,则产生机械应力(称为逆压电效应)。

如果压力是一种高频震动,则产生的就是高频电流。

而高频电信号加在压电陶瓷上时,则产生高频声信号(机械震动),这就是我们平常所说的超声波信号。

也就是说,压电陶瓷具有机械能与电能之间的转换和逆转换的功能,这种相互对应的关系确实非常有意思。

压电材料可以因机械变形产生电场,也可以因电场作用产生机械变形,这种固有的机-电耦合效应使得压电材料在工程中得到了广泛的应用。

例如,压电材料已被用来制作智能结构,此类结构除具有自承载能力外,还具有自诊断性、自适应性和自修复性等功能,在未来的飞行器设计中占有重要的地位。

1.压电效应的发现1880年皮埃尔·居里和雅克·居里兄弟发现电气石具有压电效应。

1881年,他们通过实验验证了逆压电效应,并得出了正逆压电常数。

1984年,德国物理学家沃德马·沃伊特(德语:Woldemar V oigt),推论出只有无对称中心的20中点群的晶体才可能具有压电效应。

2.压电材料压电材料会有压电效应是因晶格内原子间特殊排列方式,使得材料有应力场与电场耦合的效应。

铁电陶瓷材料的应用以及生产工艺之一

铁电陶瓷材料的应用以及生产工艺之一

铁电陶瓷材料的应用以及生产工艺之一铁电陶瓷材料,是指具有铁电效应的一类功能性陶瓷材料,它是热释电材料的一个分支。

可以制作大容量的电容器、高频用微型电容器、高压电容器、叠层电容器和半导体陶瓷电容器等,可以制作介质放大器和相移器等。

利用其热释电性,可以制作红外探测器等。

也可用于制造光阀、光调制器、激光防护镜和热电探测器等。

广泛应用于航天、军工、新能源产品。

这里介绍的目的,主要是参考它的加工工艺,比如为固体电解质的加工提供参考。

另一方面是顺便了解一下这特种陶瓷的用途。

一般性描述:铁电陶瓷(ferroelectric ceramics)材料,是指具有铁电效应的一类材料,它是热释电材料的一个分支。

铁电陶瓷的主要特性为:(1)在一定温度范围内存在自发极化,当高于某一居里温度时,自发极化消失,铁电相变为顺电相;(2)存在电畴;(3)发生极化状态改变时,其介电常数-温度特性发生显著变化,出现峰值,并服从Curie-Weiss定律;(4)极化强度随外加电场强度而变化,形成电滞回线;(5)介电常数随外加电场呈非线性变化;(6)在电场作用下产生电致伸缩或电致应变。

其电性能:高的抗电压强度和介电常数。

在一定温度范围内(-55~+85℃)介电常数变化率较小。

介电常数或介质的电容量随交流电场或直流电场的变化率小。

铁电陶瓷拥有优良的电学性能,在一定温度范围内存在自发极化,当高于某一居里温度时,自发极化消失,铁电相变为顺电相;介电常数随外加电场呈非线性变化。

利用铁电陶瓷的高介电常数可制作大容量的陶瓷电容器;利用其压电性可制作各种压电器件;利用其热释电性可制作红外探测器;通过适当工艺制成的透明铁电陶瓷具有电控光特性,利用它可制作存贮,显示或开关用的电控光特性,其具有很高的应用前景。

铁电陶瓷的特性决定了它的用途。

利用其高介电常数,可以制作大容量的电容器、高频用微型电容器、高压电容器、叠层电容器和半导体陶瓷电容器等,电容量可高达0.45μF/cm2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
体 • 热释电效应: dPi = pi dT
(i = 1,2,3)
• pi ----热释电系数, 单位: C/m2.K
• 大多数晶体的Ps随温度
的增加而下降,热释点 系数为负
• 在热释电体中, 高度极化状态, Ps 很高, 外场难以改变Ps方向 • 少数, 在 E 作用下 Ps 可重新定向----铁电体
• 3 铁电体的电畴结构
• Ps 退极化场 体系能量 (静电能+应变能) • 体系能量 电畴/畴壁 (静电能+应变能) 畴壁能
• 自由能极小值 电畴结构
• 畴结构受晶体结构的制约, 如:四方BaTiO3铁电相中存在两
类铁电畴:180o电畴和90o电畴
• 形成180o畴可以降低退极化能,形成非180o畴可以降低应变能
3, 3m, 6, 6mm
• Ps 可用电滞回线仪,或通过热释 电流测得
• 一般, 铁电体, Ps = 0.1-100C/cm2
• BaTiO3 Ps ~ 25 C/cm2
ro+rTi = 1.96Å
O-Ti = 2.005Å
• 热释电体 (Pyroelectrics): 具有自
发极化的晶体--极性晶
• 离子位移极化,
1210-13s,
10-
微波频段,
I = a3
• 偶极子取向极化,
= 02/3KT • 空间电荷极化
• 自发极化:在某些极性晶体中, E = 0 P, • 如: 在钙钛矿结构中,自发极化 起因于[BO6]中中心离子的位移 • 极性点群: 1, 2, m, 2mm, 4, 4mm,
场有关,即
n/t ∞ e-/E
新畴向前生长的速度v近似 为: v = (E-E0)
电畴运动 电场/应力--极化反转 极化(poling)过程:电场 诱导自发极化定向排
列--压电陶瓷的应用基
础 电场诱导极化反转--铁 电存储/电光应用
P o la riz a tio n re ve rs ib le
2 铁电体的分类
• 按结晶学分类
(a) 氢键晶体,如 KDP, RS 结构特征:[PO4],软铁电体 (b) 双氧化物晶体,如 BT, PT, 结构特点:[TiO6], 硬铁电体
• 按极性轴数目分类
(a) 单轴铁电体, 如 RS, KDP, LN, 自发极化强度平行或反平行于极化轴 (b) 多轴铁电体, 如 BT, Cd2Nb2O7
电畴结构
外电场作用下,180o畴的反 转不产生应变,而非180o畴 的反转则由于受到相邻畴的 约束而产生应变。
复杂的电畴结构
BaTiO3中的电畴结构
电畴壁结构
电畴壁两侧极化矢 量不连续
磁畴壁(Blபைடு நூலகம்ch壁)中磁
化矢量连续变化
电畴运动 成核与生长过程
BaTiO3 晶体的新畴 成核速率与外加电
第一章
铁电陶瓷材料及应用
Developmental History of Ferroelectrics
1940s 1950s Birth of ferroelectric ceramics (BaTiO3) PZT piezoelectric ceramics developed PTC effect in BaTiO3 ceramics 1960s Transparent electro-optic PLZT ceramics 1970s The engineered ferroelectric cpmposites 1980s PMN relaxor ceramics Ferroelectric films prepared by sol-gel techniques 1990s Strain-amplified actuators (Moonie devices, RAINBOW actuators) The integrated ferroelectric ilms on silicon Relaxor single-crystal materials Giant electrostrictive relaxor ferroelectric copolymers
Interrelationship of piezoelectric and subgroups on the basis of symmetry
32 S y m m e try Point Groups
21 Noncentrosymmetric
11 Centrosymmetric (non-piezoelectric)
• 铁电体 (Ferroelectrics) : Ps
E Ps 重行定向-----铁电体的最重要判 据------铁电体具有许多独特性质的主要原因 • 铁电体是热释电体的一个亚族 • 压电体 (Piezoelectrics) : 非对称中心
• 极性晶体一定不具对称中心
• Ferroelectrics < Pyroelectrics < Piezoelectrics < Dielectrics
Physical effect Applications
• High permittivity Capacitors (MLCs) • Polarization reversal Ferroelectric film memory • Pyroelectricity Pyroelectric sensors/detectors • Electrooptic effect Electrooptic devices • Piezoelectricity Piezoelectric/electrostrictive
§1.1 铁电体的基本物理特性
1 自发极化与铁电体
• 诱导极化:E≠0 P
基本介电关系
各向同性的线性电介质, P
= 0E, ---电介质的极化 率 D = 0E+P, 适用于各类电 介质 D = E, 适用于各向同性线 性电介质
电极化的微观机制
• 电子位移极化, 响应 时间10-1410-16s 见光频段, e a3 可
• 按铁电相变时原子的运动特点分类:
(a) 有序-无序型 (b) 位移型
• 按Curie-Weiss常数C的大小分类:
第一类铁电体,C ~105 K ,大多属位移型 第二类铁电体,C ~ 103 K, 多属有序-无序型 第三类铁电体,C ~ 10K, 或称非本征铁电体,其铁电相起因于压电性与弹性不 稳定性的耦合
20 P ie z o e le c tric P o la riz e d u n d e r s tre s s
10 P y ro e le c tric
S p o n ta n e o u s ly p o la riz e d
S u b g ro u p F e rro e le c tric S p o n ta n e o u s ly p o la riz e d
transducers
• PTC effect PTC thermistors
Typical ferroelectric ceramics
• • • • • • • • • BT Barium titanate PZT Lead zirconate titanate PLZT Lead lanthanum zirconate titanate PMN Lead magnesium niobate PT Lead titanate PZN Lead zinc niobate PZST Lead stannate zirconate titanate PZ Lead zirconate BST Barium strontium titanate
相关文档
最新文档