牛顿运动定律的简单应用典型例题

牛顿运动定律的简单应用典型例题
牛顿运动定律的简单应用典型例题

牛顿运动定律的简单应用典型例题

【例1】一物体放在光滑水平面上,初速为零,先对物体施加一向东的恒力F,

历时1s;随即把此力改为向西,大小不变,历时1s;接着又把此力改为向东,大小不变.历时1s;如此反复,只改变力的方向,共历时1min,在此1min内[ ]

A.物体时而向东运动,时而向西运动,在1min末静止于初始位置之东

B.物体时而向东运动,时而向西运动,在1min末静止于初始位置

C.物体时而向东运动,时而向西运动,在1min末继续向东运动

D.物体一直向东运动,从不向西运动,在1min末静止于初始位置之东

【分析】物体在第1s内受恒力作用向东作匀加速运动.在第2s内,受力向西,加速度方向向西,但速度方向仍向东,物体作向东的匀减速运动.由于力的大小不变,前、后两秒内物体的加速度大小不变,仅方向相反,所以至第2s末,物体向东运动的速度恰减为零,且第2s内的位移与第1s内的位移相同.

以后,力的方向又改为向东、继而向西……如此往复,物体则相应地向东作匀加速运动、继而向东作匀减速运动,……在1min内物体一直向东运动,至1min

末恰静止.

【答】D.

【说明】物体运动的加速度方向必与受力方向相同,但不一定与速度方向相同.若以向东方向为速度的正方向,物体运动的v-t图如图所示,物体依次作着加速度大小相等、加速度方向相反的匀加速运动、匀减速运动,……直到停止.整个1min内v>0,表示物体一直向东运动.

【例2】汽车空载时的质量是4×103kg,它能运载的最大质量是3×103kg.要使汽车在空载时加速前进需要牵引力是2.5×104N,那么满载时以同样加速度前进,需要的牵引力是多少?

【分析】由空载时车的质量和牵引力算出加速度,然后根据加速度和满载时的总质量,再由牛顿第二定律算出牵引力.

空载时,m1=4×103kg,F1=2.5×104N,由牛顿第二定律得加速度:

满载时,总质量为m1+m2=7×103kg,同理由牛顿第二定律得牵引力:

F2=(m1+m2)a=7×103×6.25N=4.375×104N

【说明】根据牛顿第二定律F = ma可知,当加速度a相同时,物体所受的合外力与其质量成正比.因此可以不必先算出加速度的大小,直接由比例关系求解.即由

直接得

【例3】如图1所示,一根质量为m,长为L的均匀长木料受水平拉力F作用后在粗糙水平面上加速向右运动.在离拉力作用点x处作一断面,在这一断面处,左右两部分木料之间的相互作用力为多少?

【分析】取整个木料和断面左端(或右端)为研究对象,由于它们的加速度相同,可根据它们所受合外力与质量成正比的关系得解.

【解】设整个木料所受的摩擦力为f,断面两侧的相互作用力为T,作用在断面

左端部分的摩擦力为整个木料和断面左侧水平方向的受力情况如图2所示.根据加速度相同时力与质量的比例关系可知

【说明】本题由于利用了F∝m的关系,可以不必计算加速度,十分简捷.由解得结果可知,截面位置取得离拉力处越远,截面两侧的相互作用力越小,当x = L 时,T=0,这是显然的结果.

如果木料受到水平推力作用,情况怎样?有兴趣的同学可自行研究.

【例4】物体从某一高度自由落下,落在直立于地面的轻弹簧上,如图1所示.在A点物体开始与弹簧接触.到B点时,物体速度为零,然后被弹回,则以下说法正确的是[ ]

A.物体从A下降和到B的过程中,速率不断变小

B.物体从B上升到A的过程中,速率不断变大

C.物体从A下降到B,以及从B上升到A的速程中,速率都是先增大,后减小

D.物体在B点时,所受合力为零

【分析】本题考察a与F合的对应关系,弹簧这种特殊模型的变化特点,以及由物体的受力情况判断物体的运动性质.对物体运动过程及状态分析清楚,同时对物体正确的受力分析,是解决本题思路所在.

【解】找出AB之间的C位置,此时F合=0

则(1)从A→C.由mg>kx1,

(2)在C位量mg = kx c,a=0,物体速度达最大(如图2乙)

(3)从C→B,由于mg<kx2,

同理,当物体从B→A时,可以分析B→C做加速度越来越小的变加速直线运动;从C→A做加速度越来越大的减速直线运动.

【说明】由物体的受力情况判断物体的运动性质,是牛顿第二定律应用的重要部分,也是解综合问题的基础.

弹簧这种能使物体受力连续变化的模型,在物理问题(特别是定性判断)中经常应用.其应用特点是:找好初末两态,明确变化过程.

【例5】图中A为电磁铁,C为胶木秤盘,A和C(包括支架)的总质量为M,B为铁片,质量为m,整个装置用轻绳悬挂于O点.当电磁铁通电,铁片被吸引上升的过程中,轻绳上拉力F的大小为[ ]

A.F = Mg

B.Mg<F<(M+m)g

C.F=(M + m)g

D.F>(M + m)g

【分析】以铁片为研究对象,它被吸引上升过程中受到电磁铁对它的吸引力Q (变力)、重力mg.在每一时刻

Q- mg = ma,即Q>mg.

根据牛顿第三定律,铁片也对电磁铁A(包括支架C)施加向下的吸引力,其大小Q′=Q.

以A和C为研究对象,它受到细线向上拉力F、A′和C的重力Mg、铁片吸引力Q′.由力平衡条件知

F = Mg + Q′ = Mg + Q,

∴F>(M + m)g.

【答】D.

【说明】必须注意,铁片能吸引上升是一个加速过程,因此,Q>mg.同时,不要疏忽铁片对磁铁的吸引力.

【例6】如图1所示,一只质量为m的猫抓住用绳吊在天花板上的一根质量

为M的垂直杆子.当悬绳突然断裂时,小猫急速沿杆竖直向上爬,以保持它离地面的高度不变.则杆下降的加速度为[ ]

【分析】设猫急速上爬时对杆的作用力为f,方向向下,则杆对猫的作用力的大小也为f,方向向上,绳断裂后,猫和杆的受力情况如图2所示

由于猫急速上爬,保持对地面的高度不变,意味着在这个过程中,猫对地无加速度,处于力平衡状态,所以f = mg

杆仅受两个竖直向下的力作用,根据牛顿第二定律,得杆的加速度大小为

其方向竖直向下.

答C.

说明本题反映了牛顿第二定律的相对性,即加速度a必须是地面而言的.如果不理解这一点,本题就难以求解.

【例7】如图1所示,一木块从h=3.0m、长L=5.0m的固定斜面的顶端,由静止开始沿着斜面滑至底端.如果木块与斜面之间的动摩擦因数μ=0.30,求

(1)木块运动的加速度;

(2)木块从斜面顶端滑至底端所需的时间.

【分析】以木块为研究对象,它在下滑过程中受到三个力作用:重力mg、斜面支持力N、斜面的滑动摩擦力f(图2)由于这三个力不在同一直线上,可采用正交分解法,然后根据牛顿运动定律求出加速度,结合运动学公式可求出运动时间.

【解】(1)设斜面倾角为θ,由受力图2可知:沿斜面方向由牛顿第二定律得

mgsinθ- f = ma.

垂直斜面方向由力平衡条件得

N- mgcosθ=0.

又由摩擦力与正压力的关系得

f=μN.

联立上述三式可解得木块下滑的加速度为

a = g(sinθ-μcosθ).

式中

∴a = g(sinθ-μcosθ)

=9.8(0.60-0.30×0.80)m/s2=3.60m/s2.

【说明】这是属于已知力求运动的问题,通过加速度建立了力和运动的联系.题解中基本上遵循了牛顿第二定律应用的步骤。

【例8】两重叠在一起的滑块,置于固定的、倾角为θ的斜面上,如图1所示,滑块A、B的质量分别为M、m,A与斜面间的滑动摩擦因数为μ1,B与A之间的滑动摩擦因数为μ2,已知两滑块都从静止开始以相同的加速度从斜面滑下,滑块B受到的摩擦力[ ]

A.等于零

B.方向沿斜面向上

C.大小等于μ1mgcosθ

D.大小等于μ2mgcosθ

【分析】把A、B两滑块作为一个整体,设其下滑加速度为a.由牛顿第二定律

(M + m)gsinθ-μ1(M + m)gcosθ=(M + m)a,

a = g(sinθ-μ1cosθ).

由于a<gsinθ,可见B随A一起下滑过程中,必然受到A对它沿斜面向上的摩擦力,设力f B(图2)由牛顿第二定律

mgsinθ-f B = ma,

得f B =mgsinθ-ma

= mgsinθ-mg(sinθ-μ1cosθ)

=μ1mgcosθ.

【答】B、C.

【说明】由于所求的摩擦力是未知力,如果不从加速度大小的比较先判定其方向,也可任意假设,若设B受到A对它的摩擦力沿斜面向下.则牛顿第二定律的表达式为

mgsinθ+f B = ma,

得f B = ma- mgsinθ

=mg(sinθ-μ1cosθ)-mgsinθ

= -μ1mgcosθ.

式中负号表示所求摩擦力的方向与假设的方向相反,应为沿斜面向上.

【例9】一个质量为m的物体放在水平地面上,设物体与地面间的摩擦系数为μ,对物体施以作用力F。问:

(1)若F是拉力,则F应沿怎样的方向拉,才能使物体获得最大的加速度?

(2)若F是推力,则为了不产生加速度,F应朝什么方向推?

【误解】

(1)当F沿着水平方向拉,物体才有最大的加速度。

(2)为了使物体不获得加速度F的方向必须与水平地面垂直。

【正确解答】

(1)如图1所示,物体受重力mg、支持力N′、摩擦力f和拉力F作用。设F 与竖直方向成α角,与水平方向成θ角。

在y轴方向有

N′=mg-Fcosα

则f=μ(mg-Fcosα)

在x轴方向上的物体的加速度为

令μ=tgθ,则

在F是拉力情况下,当90°-α=θ时,也就是作用力F的方向与地面的夹角恰为θ=arctgμ时,物体能获得最大的加速度。很明显,若μ=0,则θ=0°,也就是α=90°时,物体能获得最大的加速度。

(2)如图所示,若F是推力,设推力与竖直方向的夹角为α,与水平地面的夹角为θ,则

f=μ(mg + Fcosα)

在x轴方向上物体的加速度为

推力使物体在x方向上获得加速度,即a>0,所以

Fsinα-μ(mg + Fcosα)>0

即F(sinα-μcosα)-μmg>0

当α角使

F(sinα-μcosα)-μmg≤0时,

即sinα-μcosα≤

sinα-μcosα≤0来求解α角的范围。

令μ = tgβ

则有

sinα-tgβcosα≤0

sin(α-β)≤0,

在α、β均为锐角时得

α≤β=arctgμ

当用力推物体时,施力的方向与竖直方向的夹角α小于β,不论F多大都不能使物体获得加速度。

【错因分析与解题指导】[误解]的主要错因是没有注意摩擦力的影响,由于外力F的方向不同,会使摩擦力的大小发生变化。无论是滑动摩擦力还是最大静摩擦力,都和物体与地面间的正压力有关。当外力F以与地面成不同的角度来推、拉物体时,正压力就有不同的值,所以物体所受的合力就有不同的值。只有在正确分析物体的受力情况后,对问题才能作出正确的解答。

【例10】质量为m=2kg的木块原来静止在粗糙水平地面上,现在第1,3,5…奇数秒内给物体施加方向向右、大小为F1=6N的水平推力,在第2,4,6…偶数秒内,给物体施加方向仍向右、大小为F2=2N的水平推力,已知物体与地面间的摩擦因数μ=0.1.取g=10m/s2,问:

(1)木块在奇数秒和偶数秒内各做什么运动?

(2)经过多长时间,木块位移的大小等于40.25m?

【分析】以木块为研究对象,它在竖直方向处于力平衡状态,水平方向仅受推力F1(或F2)和摩擦力f的作用.由牛顿第二定律可判断出木块在奇数秒和偶数秒的运动,结合运动学公式,即可求出运动时间.

【解】(1)木块在奇数秒内的加速度为

木块在偶数秒内的加速度为

所以,木块在奇数秒内做a = a1=2m/s2的匀加速直线运动,在偶数秒内做匀速直线运动.

(2)在第1s内木块向右的位移为

至第1s末木块的速度

v1=at=2×1m/s=2m/s.

在第2s内,木块以第1s末的速度向右做匀速运动,在第2s内木块的位移为

s2=v1t=2×1m=2m.

至第2s末木块的速度

v2=v1=2m/s.

在第3s内,木块向右做初速等于2m/s的匀加速运动,在第3s内的位移为

至第3s末木块的速度

v3=v2+at=2m/s+2×1m/s=4m/s.

在第4s内,木块以第3s末的速度向右做匀速运动,在第4s内木块的位移为

S4=v3t=4×1m=4m.

至第4s末木块的速度

v4=v3=4m/s.

……

由此可见,从第1s起,连续各秒内木块的位移是从1开始的一个自然数列.因此,在ns内的总位移为

当s n=40.25m时,n的值为8<n<9.取n=8,则8s内木块的位移共为

至第8s末,木块的速度为

v8=8m/s.

设第8s后,木块还需向右运动的时间为t x,对应的位移为

s x=40.25m-36m=4.25m,

得合理解

t x=0.5s.

所以,木块的位移大小等于40.25m时需运动时间

T=8s+0.5s=8.5s.

【说明】木块运动的v-t图如下图所示.

因为v-t图线与t轴间的面积表示对应时间内的位移,所以每秒内位移成一等差数列,其公差等于划有斜线的小三角形面积,即

△s=s1=1m.

[例11]如图1所示,一细线的一端固定于倾角为45°的光滑楔形滑块A的顶端P处,细线的另一端拴一质量为m的小球.当滑块以a=2g的加速度向左运动时,线中拉力T等于多少?

【分析】当小球贴着滑块一起向左运动时,小球受到三个力作用:重力mg、线中拉力T、滑块A的支持力N,如图2所示.小球在这三个力作用下产生向左的加速度.当滑块向左运动的加速度增大到一定值时,小球可能抛起,滑块的支持力变为零,小球仅受重力和拉力两个力作用.

由于题设加速度a=2g时,小球的受力情况未确定,因此可先找出使N=0时的临界加速度,然后将它与题设加速度a=2g相比较,确定受力情况后即可根据牛顿第二定律列式求解.

【解】根据小球贴着滑块运动时的受力情况,可列出水平方向和竖直方向的运动方程分别为

Tcos45°-Nsin45°=ma,(1)

Tsin45°+Ncos45°=mg.(2)

联立两式,得

N=mgcos45°-masin45°.

当小球对滑块的压力等于零,即应使N=0,滑块的加速度至少应为

可见,当滑块以a=2g加速向左运动时,小球已脱离斜面飘起.此时小球仅受两个力作用:重力mg、线中拉力T′,(图3)设线与竖直方向间夹角为β.同理由牛顿第二定律得

T′sinβ=ma,

T′cosβ=mg.

联立两式得

【说明】如果没有对临界状态作出分析,直接由(1)、(2)两式联立得线中拉力

这就错了!

【例12】如图1质量为M的斜面体放在有摩擦的地面上,质量为m1的物体A 与质量为m2的物体B之间有摩擦,但物体B与斜面间的摩擦不计,物体B的上表面水平.AB在加速下滑的过程中相对静止,斜面的倾角为θ,求:

①物体B对物体A的摩擦力和弹力

②地面对斜面体的摩擦力和弹力

【分析】本题考察整体和隔离法研究动力学问题,恰当的选取研究对象并正确受力分析是解题关键.

【解】(1)取A和B组成的系统为研究对象,受力如图2(a),沿斜面方向

(m1+m2)gsinθ=(m1+m2)a

∴ a=gsinθ(1)

再以A研究受力如图2(b)则

x方向

m1gsinθ+f1cosθ-N1sinθ=m1a (2)

y方向

N1cosθ+f1sinθ=m1gcosθ(3)

由式(1)(2)(3)得

f1=m1gcosθ·sinθ方向:水平向左

N1=m1gcos2θ方向:竖直向上(2)对物体B受力分析如图2(c)

沿y方向

N′2=m2gcosθ+N′1cosθ+f′1sinθ(4)由牛顿第三定律知

N1=N′1 (5)

f1= f′1 (6)

∴N′2=(m1+m2)gcosθ

对斜面体C分析受力如图2(d),则沿x方向:

N2sinθ-f2=0 (7)

沿y方向:

N-Mg-N2cosθ=0(8)

有牛顿第三定律知

N=N′2(9)

由式(7)(8)(9)得

f2=(m1+m2)gcosθsinθ方向水平向左

N = Mg +(m1+m2)g·cos2θ方向竖直向上

【说明】本题研究对象很多,在分析各力时,力要清晰,且标好各自符号。题目考察综合分析能力.在运用牛顿第二定律解决问题的应用中,我们应当具备把一个复杂问题分解成若干简单问题的能力,找准它们之间的联系,这既是一种解题方法,也是解复杂题目的关键所在.

【例13】如图1所示的三个物体质量分别为m1和m2和m3,带有滑轮的物体放在光滑水平面上,滑轮和所有接触面的摩擦以及绳子的质量均不计,为使三个物体无相对运动.水平推力F等于多少?

【分析】由于三个物体无相对运动,因此可看作一个整体,列出整体的牛顿第二定律方程.然后再隔离m1、m2,分别列出它们的运动方程.

【解】由整体在水平方向的受力列出牛顿第二定律方程为

F=(m1+m2+m3)a.(1)

分别以m1、m2为研究对象作受力分析(图2)设绳张力为T.对m1,在水平方向据牛顿第二定律得

T=m1a.(2)

对m2,在竖直方向由力平衡条件得

T-m2g=0.(3)

联立式(1)、(2)、(3),得水平推力

【说明】也可以全部用隔离法求解.设连接m1与m2的绳中张力为T,m2与m3之间相互作用力为N,滑轮两侧绳子张力形成对m3的合力为F′,画出各个物体的隔离体受力图如图3所示(m1、m3竖直方向的力省略).

对于m1,由受力分析知

T=m1a.(4)

对于m2,由水平方向与竖直方向的受力情况,分别可得

N=m2a,(5)

T-m2g=0.(6)

对于m3,设滑轮两侧绳中张力的合力为F′,其水平分力化都表示物体运动状态已发生了改变.(向左)等于T,因此

F-N-T=m3a.(7)

由(4)、(5)、(6)三式得

把它们代入式(7)得水平推力

显然,全部用隔离法求解时,不仅未知数和方程数多,还可能因疏漏滑轮两侧绳子拉力对m3的影响而造成错误.所以应注意灵活地有分有合,交替使用隔离法和整体法.

牛顿运动定律练习题经典习题汇总.

一、选择题 1.下列关于力和运动关系的说法中,正确的是 ( ) A .没有外力作用时,物体不会运动,这是牛顿第一定律的体现 B .物体受力越大,运动得越快,这是符合牛顿第二定律的 C .物体所受合外力为0,则速度一定为0;物体所受合外力不为0,则其速度也一定不为0 D .物体所受的合外力最大时,速度却可以为0;物体所受的合外力为0时,速度却可以最大 2.升降机天花板上悬挂一个小球,当悬线中的拉力小于小球所受的重力时,则升降机的运动情况可能是 ( ) A .竖直向上做加速运动 B .竖直向下做加速运动 C .竖直向上做减速运动 D .竖直向下做减速运动 3.物体运动的速度方向、加速度方向与作用在物体上合力方向的关系是 ( ) A .速度方向、加速度方向、合力方向三者总是相同的 B .速度方向可与加速度方向成任何夹角,但加速度方向总是与合力方向相同 C .速度方向总是和合力方向相同,而加速度方向可能和合力相同,也可能不同 D .速度方向与加速度方向相同,而加速度方向和合力方向可以成任意夹角 4.一人将一木箱匀速推上一粗糙斜面,在此过程中,木箱所受的合力( ) A .等于人的推力 B .等于摩擦力 C .等于零 D .等于重力的下滑分量 5.物体做直线运动的v-t 图象如图所示,若第1 s 内所受合力为F 1,第2 s 内所受合力为F 2,第3 s 内所受合力为F 3,则( ) A .F 1、F 2、F 3大小相等,F 1与F 2、F 3方向相反 B .F 1、F 2、F 3大小相等,方向相同 C .F 1、F 2是正的,F 3是负的 D .F 1是正的,F 1、F 3是零 6.质量分别为m 和M 的两物体叠放在水平面上如图所示,两物体之间及M 与水平面间的动摩擦因数均为μ。现对M 施加一个水平力F ,则以下说法中不正确的是( ) A .若两物体一起向右匀速运动,则M 受到的摩擦力等于F B .若两物体一起向右匀速运动,则m 与M 间无摩擦,M 受到水平面的摩 擦力大小为μmg C .若两物体一起以加速度a 向右运动,M 受到的摩擦力的大小等于F -M a D .若两物体一起以加速度a 向右运动,M 受到的摩擦力大小等于μ(m+M )g+m a 7.用平行于斜面的推力,使静止的质量为m 的物体在倾角为θ的光滑斜面上,由底端向顶端做匀加速运动。当物体运动到斜面中点时,去掉推力,物体刚好能到达顶点,则推力的大小为 ( ) A .mg(1-sin θ) B .2mgsin θ C .2mgcos θ D .2mg(1+sin θ) 8.从不太高的地方落下的小石块,下落速度越来越大,这是因为 ( ) A .石块受到的重力越来越大 B .石块受到的空气阻力越来越小 C .石块的惯性越来越大 D .石块受到的合力的方向始终向下 9.一个物体,受n 个力的作用而做匀速直线运动,现将其中一个与速度方向相反的力逐渐减小到零,而其他的力保持不变,则物体的加速度和速度 ( ) A .加速度与原速度方向相同,速度增加得越来越快 B .加速度与原速度方向相同,速度增加得越来越慢 C .加速度与原速度方向相反,速度减小得越来越快 D .加速度与原速度方向相反,速度减小得越来越慢 10.下列关于超重和失重的说法中,正确的是 ( ) A .物体处于超重状态时,其重力增加了 B .物体处于完全失重状态时,其重力为零 C .物体处于超重或失重状态时,其惯性比物体处于静止状态时增加或减小了 D .物体处于超重或失重状态时,其质量及受到的重力都没有变化 11.如图所示,一个物体静止放在倾斜为θ的木板上,在木板倾角逐渐增大到某一角 t/s 0 2 2 1 3 -2 v/ms -1 第 5 题 F 第 6 题

牛顿运动定律经典例题(含解析)

7.14作业一牛顿第一定律、牛顿第三定律 看书:《大一轮》第一讲 基础热身 1.2012·模拟用一根轻质弹簧竖直悬挂一小球,小球和弹簧的受力如图K12-1所示,下列说确的是( ) B.F2的反作用力是F3 C.F3的施力物体是地球 D.F4的反作用力是F1 2.2011·模拟关于惯性,下列说法中正确的是( ) A.在月球上物体的重力只有在地面上的1 6 ,但是惯性没有变化 B.卫星的仪器由于完全失重,惯性消失了 C.铁饼运动员在掷出铁饼前快速旋转可增大铁饼惯性,使其飞得更远 D.磁悬浮列车能高速行驶是因为列车浮起后惯性小了 3.2011·模拟跳高运动员蹬地后上跳,在起跳过程中( ) A.运动员蹬地的作用力大小大于地面对他的支持力大小 B.运动员蹬地的作用力大小等于地面对他的支持力大小 C.运动员所受的支持力和重力相平衡 D.运动员所受的支持力小于重力 4.2011·海淀模拟物体同时受到F1、F2、F3三个力的作用而保持平衡状态,则以下说确的是( ) A.F1与F2的合力一定与F3大小相等,方向相反 B.F1、F2、F3在某一方向的分量之和可能不为零 C.F1、F2、F3中的任何一个力变大,则物体必然做加速运动 D.若突然撤去F3,则物体一定沿着F3的反方向做匀变速直线运动 技能强化 5.就一些实际生活中的现象,某同学试图从惯性角度加以解释,其中正确的是( ) A.采用了大功率的发动机后,某些赛车的速度甚至能超过某些老式螺旋桨飞机的速度,这表明可以通过科学进步使小质量的物体获得大惯性 B.射出枪膛的子弹在运动相当长一段距离后连一件棉衣也穿不透,这表明它的惯性小了 C.货运列车运行到不同的车站时,经常要摘下或加挂一些车厢,这会改变它的惯性 D.摩托车转弯时,车手一方面要控制速度适当,另一方面要将身体稍微向里倾斜,通过调控人和车的惯性达到急转弯的目的 6.2011·模拟计算机已经应用于各个领域.如图K12-2所示是利用计算机记录的某作用力和反作用力变化图线,根据图线可以得出的结论是( ) 图K12-2 A.作用力大时,反作用力小 B.作用力和反作用力的方向总是相反的 C.作用力和反作用力是作用在同一个物体上的 D.牛顿第三定律在物体处于非平衡状态时不再适用 7.我国《道路交通安全法》中规定:各种小型车辆前排乘坐的人(包括司机)必须系好安全带,这是因

最新高考物理牛顿运动定律练习题

最新高考物理牛顿运动定律练习题 一、高中物理精讲专题测试牛顿运动定律 1.如图所示,质量2kg M =的木板静止在光滑水平地面上,一质量1kg m =的滑块(可 视为质点)以03m/s v =的初速度从左侧滑上木板水平地面右侧距离足够远处有一小型固定挡板,木板与挡板碰后速度立即减为零并与挡板粘连,最终滑块恰好未从木板表面滑落.已知滑块与木板之间动摩擦因数为0.2μ=,重力加速度210m/s g =,求: (1)木板与挡板碰撞前瞬间的速度v ? (2)木板与挡板碰撞后滑块的位移s ? (3)木板的长度L ? 【答案】(1)1m/s (2)0.25m (3)1.75m 【解析】 【详解】 (1)滑块与小车动量守恒0()mv m M v =+可得1m/s v = (2)木板静止后,滑块匀减速运动,根据动能定理有:2102 mgs mv μ-=- 解得0.25m s = (3)从滑块滑上木板到共速时,由能量守恒得:220111 ()22 mv m M v mgs μ=++ 故木板的长度1 1.75m L s s =+= 2.如图,光滑固定斜面上有一楔形物体A 。A 的上表面水平,A 上放置一物块B 。已知斜面足够长、倾角为θ,A 的质量为M ,B 的质量为m ,A 、B 间动摩擦因数为μ(μ<), 最大静擦力等于滑动摩擦力,重力加速度为g 。现对A 施加一水平推力。求: (1)物体A 、B 保持静止时,水平推力的大小F 1; (2)水平推力大小为F 2时,物体A 、B 一起沿斜面向上运动,运动距离x 后撒去推力,A 、B 一起沿斜面上滑,整个过程中物体上滑的最大距离L ; (3)为使A 、B 在推力作用下能一起沿斜面上滑,推力F 应满足的条件。 【答案】(1) (2) (3)

【物理】物理牛顿运动定律练习题及答案及解析

【物理】物理牛顿运动定律练习题及答案及解析 一、高中物理精讲专题测试牛顿运动定律 1.如图所示,在倾角为θ = 37°的足够长斜面上放置一质量M = 2kg 、长度L = 1.5m 的极薄平板 AB ,在薄平板的上端A 处放一质量m =1kg 的小滑块(视为质点),将小滑块和薄平板同时无初速释放。已知小滑块与薄平板之间的动摩擦因数为μ1=0.25、薄平板与斜面之间的动摩擦因数为μ2=0.5,sin37°=0.6,cos37°=0.8,取g=10m/s 2。求: (1)释放后,小滑块的加速度a l 和薄平板的加速度a 2; (2)从释放到小滑块滑离薄平板经历的时间t 。 【答案】(1)24m/s ,21m/s ;(2)1s t = 【解析】 【详解】 (1)设释放后,滑块会相对于平板向下滑动, 对滑块m :由牛顿第二定律有:0 11sin 37mg f ma -= 其中0 1cos37N F mg =,111N f F μ= 解得:002 11sin 37cos374/a g g m s μ=-= 对薄平板M ,由牛顿第二定律有:0 122sin 37Mg f f Ma +-= 其中00 2cos37cos37N F mg Mg =+,222N f F μ= 解得:2 21m/s a = 12a a >,假设成立,即滑块会相对于平板向下滑动。 设滑块滑离时间为t ,由运动学公式,有:21112x a t =,2221 2 x a t =,12x x L -= 解得:1s t = 2.固定光滑细杆与地面成一定倾角,在杆上套有一个光滑小环,小环在沿杆方向的推力F 作用下向上运动,推力F 与小环速度v 随时间变化规律如图所示,取重力加速度g =10m/s 2.求: (1)小环的质量m ;

高一牛顿运动定律练习题及答案

第三章牛顿运动定律 【知识要点提示】 1.牛顿第一定律:一切物体总保持状态或状态,直到有外力迫使它改变这种状态为止。 2.惯性:物体保持原来的的性质叫惯性。所以牛顿第一定律也称为。惯性是物体本身的,与物体运动情况无关,与受力情况无关。是物体惯性大小的量度。 3.物体运动状态的改变是指它的发生了变化,物体运动状态变化的快慢用来描述。 4.保持物体质量不变,测量物体在不同的力作用下的加速度,可得出与成正比;保持物体所受的力不变,测量不同质量的物体在该力作用下的加速度,可得出与成反比。 5.牛顿第二定律的内容:物体加速度的大小跟所受的合外力成,跟物体的质量成;加速度的方向跟的方向相同。数学表达式 6.牛顿第二定律的说明 ①矢量性:等号不仅表示左右两边,也表示,即物体加速度方向与 方向相同。力和加速度都是矢量,物体加速度方向由物体所受合外力的方向决定。 ②瞬时性:当物体(质量一定)所受外力发生突然变化时,作为由力决定的加速度的大 小和方向也要同时发生;当合外力为零时,加速度同时,加速度与合外力同时产生、同时变化、同时消失。牛顿第二定律是一个瞬时对应的规律,表明了力的瞬间效应。 ③相对性:自然界中存在着一种坐标系,在这种坐标系中,当物体不受力时 将,这样的坐标系叫惯性参照系。地面和相对于地面静止或作匀速直线运动的物体可以看作是惯性参照系,牛顿定律只在中才成立。 7.在国际单位制中,力的单位,符号,它是根据定义的,使质量为的物体产生的加速度的力叫1N。 8.F=ma是一个矢量方程,应用时应先,凡与正方向相同的力或加速度均取,反之取,通常取的方向为正方向。根据力的独立作用原理,用牛顿第二定律处理物体在一个平面内运动的问题时,可将物体所受各力,在两个互相垂直的方向上分别应用牛顿第二定律的分量形式:F x=ma x,F y=ma y列方程。 9.在物理学中,我们选定几个物理量的单位作为;根据物理公式,推导出其它物理量的单位,叫。基本单位和导出单位一起组成单位制。例如国际单位制。10.在力学中三个基本物理量分别为、、,在国际单位制中对应的三个基本单位为、、。 11.牛顿第三定律的内容:两个物体之间的作用力和反作用力总是 。 12.物体之间的作用总是相互的,所以施力物体同时也一定是物体,物体间相互作用的一对力叫做,其性质一定相同。 13.我们常用牛顿运动定律解决两类问题:一类是已知要求确定;另一类是已知要求确定,首先求解加速度是解决问题的关键。 14.超重现象:物体对支持物的压力(或对悬挂物的拉力)物体所受重力的现象,产生超重现象的条件:是物体具有的加速度,与物体速度的大小和方向无关。15.失重现象:物体对支持物的压力(或对悬挂物的拉力)物体所受重力的现象,产

牛顿运动定律-经典习题汇总

牛顿运动定律经典练习题 一、选择题 1.下列关于力和运动关系的说法中,正确的是 ( ) A .没有外力作用时,物体不会运动,这是牛顿第一定律的体现 B .物体受力越大,运动得越快,这是符合牛顿第二定律的 C .物体所受合外力为0,则速度一定为0;物体所受合外力不为0,则其速度也一定不为0 D .物体所受的合外力最大时,速度却可以为0;物体所受的合外力为0时,速度却可以最大 2.升降机天花板上悬挂一个小球,当悬线中的拉力小于小球所受的重力时,则升降机的运动情况可能是 ( ) A .竖直向上做加速运动 B .竖直向下做加速运动 C .竖直向上做减速运动 D .竖直向下做减速运动 3.物体运动的速度方向、加速度方向与作用在物体上合力方向的关系是 ( ) A .速度方向、加速度方向、合力方向三者总是相同的 B .速度方向可与加速度方向成任何夹角,但加速度方向总是与合力方向相同 C .速度方向总是和合力方向相同,而加速度方向可能和合力相同,也可能不同 D .速度方向与加速度方向相同,而加速度方向和合力方向可以成任意夹角 4.一人将一木箱匀速推上一粗糙斜面,在此过程中,木箱所受的合力( ) A .等于人的推力 B .等于摩擦力 C .等于零 D .等于重力的下滑分量 5.物体做直线运动的v-t 图象如图所示,若第1 s 内所受合力为F 1,第2 s 内所受合力为F 2,第3 s 内所受合力为F 3, 则( ) A .F 1、F 2、F 3大小相等,F 1与F 2、F 3方向相反 B .F 1、F 2、F 3大小相等,方向相同 C .F 1、F 2是正的,F 3是负的 D .F 1是正的,F 1、F 3是零 6.质量分别为m 和M 的两物体叠放在水平面上如图所示,两物体之间及M 与 水平面间的动摩擦因数均为μ。现对M 施加一个水平力F ,则以下说法中不正确的是( ) A .若两物体一起向右匀速运动,则M 受到的摩擦力等于F B .若两物体一起向右匀速运动,则m 与M 间无摩擦,M 受到水平面的摩擦力大小为μmg C .若两物体一起以加速度a 向右运动,M 受到的摩擦力的大小等于F -M a D .若两物体一起以加速度a 向右运动,M 受到的摩擦力大小等于μ(m+M )g+m a 7.用平行于斜面的推力,使静止的质量为m 的物体在倾角为θ的光滑斜面上,由底端向顶端做匀加速运动。当物体运动到斜面中点时,去掉推力,物体刚好能到达顶点,则推力的大小为 ( ) A .mg(1-sin θ) B .2mgsin θ C .2mgcos θ D .2mg(1+sin θ) 8.从不太高的地方落下的小石块,下落速度越来越大,这是因为 ( ) A .石块受到的重力越来越大 B .石块受到的空气阻力越来越小 C .石块的惯性越来越大 D .石块受到的合力的方向始终向下 9.一个物体,受n 个力的作用而做匀速直线运动,现将其中一个与速度方向相反的力逐渐减小到零,而其他的力保持不变,则物体的加速度和速度 ( ) A .加速度与原速度方向相同,速度增加得越来越快 B .加速度与原速度方向相同,速度增加得越来越慢 C .加速度与原速度方向相反,速度减小得越来越快 D .加速度与原速度方向相反,速度减小得越来越慢 10.下列关于超重和失重的说法中,正确的是 ( ) 第 5 题 第 6 题

牛顿运动定律-最全面、经典题型

1. 如图所示,在光滑的水平 面上,有一物体A,质量为3kg, 当用F=10N 的力通过滑轮拉 物体A 时,物体做什么运动? 绳子上的拉力是多大?若改用质量为1kg 的物体B 拉物体A 时,物体A 又做什么运动?绳子上的拉力又是多大? (g 取10m/s 2) 2. 如图甲所示,物体A 与B 用一根不可伸长的轻绳连接,放置 于光滑的水平面上,现用F=6N 的力拉物体A,则物体的加速度为多少?绳上的张力为多大?若图乙呢? A B 2kg 1kg F=6N A B 2kg 1kg F=6N 3.如图所示,光滑水平面上静止放着长L=1.6m ,质量为M=3kg 的木块(厚度不计),一个质量为m=1kg 的小物体放在木板的最右端,m 和M 之间的动摩擦因数μ=0.1,今对木板施加一水平向右的拉力F ,(g 取10m/s2). A B F (1)为使物体与木板不发生滑动,F 不能超过多少? (2)如果拉力F=10N 恒定不变,求小物体所能获得的最大速度? (3)如果拉力F=10N ,要使小物体从木板上掉下去,拉力F 作用的时间至少为多少? 4.水平传送带以v=2m/s 速度匀速运动,将物体轻放在传送带的A 端,它运动到传送带另一端B 所需时间为11s ,物体和传送带间的动摩擦因数μ=0.1,求: (1)传送带AB 两端间的距离? (2)若想使物体以最短时间到达B 端,则传送带的速度大小至少调为多少?(g=10m/s2) 5.如图所示,传送带与地面倾角θ=37°,A→B 长度为L=16m ,传送带 以v0=10m/s 的速率逆时针转动,在传送带上端A 无初速度地释放一个质量为0.5kg 的物体,它与传送带之间的动摩擦因数 为0.5.求:物体从A 运动到B 需时间是多少? 6.将金属块用压缩的轻弹簧卡在一个矩形箱子中,如图所示,在箱子的上顶板和下底板装有压力传感器,能随时显示出金属块和弹簧对箱子上顶板和下底板的压力大小.将箱子置于电梯中,随电梯沿竖直方向运动.当箱子随电梯以a=4.0m/s2的加速度竖直向上做匀减速运动时,上顶板的传感器显示的压力为4.0N ,下底板的传感器显示的压力为10.0N .取g=10m/s2,若 上顶板传感器的示数是下底板传感器的示数的一半,则升降机的运动状态可能是( ) A .匀加速上升,加速度大小为5m/s2 B .匀速上升 C .匀加速下降,加速度大小为5m/s2 D .静止状态 7.质量为50kg 的一学生从1.8m 高处跳下,双脚触地后,他紧接着弯曲双腿使重心下降0.6m ,则着地过程中,地面对他的平均作用力为多少? 8.如图所示,在水平面上行驶的车厢中,车厢顶部悬挂一质量为m 的球,悬绳与竖直方向成α角,相对车厢处于静止状态,求箱子的运动状态? 9.如图所示,一个箱子质量为M 放在水平地面上,箱子内有一固定的竖直杆,在杆上套着一个质量为m 的圆环,圆环沿着杆加速下滑,环与杆的摩擦力大小为f ,则此时箱子对地面的压力为( ) A .等于Mg B .等于(M+m )g C .等于Mg+ f D .等于(M+m )g- f A A B 1kg F=10N M m

牛顿运动定律测试题

《牛顿运动定律》测试题 一、选择题(每小题给出的四个选项中至少有一项是正确的,将正确选项填入括号内,每题4分,共48分。) 1、关于物体运动状态的改变,下列说法中正确的是() A、物体运动的速率不变,其运动状态就不变 B、物体运动的加速度不变,其运动状态就不变 C、物体运动状态的改变包括两种情况:一是由静止到运动,二是由运动到静止 D、物体的运动速度不变,我们就说它的运动状态不变 2、关于惯性的大小,下列说法中正确的是() A、质量相同的物体,在阻力相同情况下,速度大的不容易停下来,所以速度大的物体惯性大 B、上面两个物体既然质量相同,那么惯性就一定相同 C、推动地面上静止的物体比维持这个物体做匀速运动所需的力大,所以静止的物体惯性大 D、在月球上举重比在地球上容易,所以同一个物体在月球上比在地球上惯性小 3、关于物体运动状态与所受外力的关系,下列说法中正确的是() A、物体受到恒定外力作用时,它的运动状态一定不变 B、物体受到的合力不为零时,一定做变速运动 C、物体受到的合外力为零时,一定处于静止状态 D、物体的运动方向就是物体受到的合外力的方向 4、物体静止于水平桌面上,则下列说法中正确的是() A、桌面对物体的支持力的大小等于物体的重力,这两个力是一对平衡力 B、物体所受的重力和桌面对它的支持力是一对作用力与反作用力 C、物体对桌面的压力就是物体的重力,这两个力是同一种性质的力 D、物体对桌面的压力和桌面对物体的支持力是一对平衡的力 5、下列说法正确的是() A、体操运动员双手握住单杠吊在空中不动时处于失重状态 B、蹦床运动员在空中上升和下落过程中都处于失重状态 C、举重运动员在举起杠铃后不动的那段时间内处于超重状态 D、游泳运动员仰卧在水面静止不动时处于失重状态 6、设雨滴从很高处竖直下落,所受空气阻力f和速度v成正比.则雨滴的运动情况() A、先加速后减速,最后静止 B、先加速后匀速 C、先加速后减速直至匀速 D、加速度逐渐减小到零 1,g为重力加速度。人对电梯7、一质量为m的人站在电梯中,电梯加速上升,加速大小为g 3

牛顿运动定律典型例题分析报告

牛顿运动定律典型例题分析 基础知识回顾 1、牛顿第一定律:一切物体总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止。 对牛顿第一定律的理解要点: (1)运动是物体的一种属性,物体的运动不需要力来维持; (2)它定性地揭示了运动与力的关系,即力是改变物体运动状态的原因,是使物体产生加速度的原因;(3)定律说明了任何物体都有一个极其重要的属性——惯性; (4)不受力的物体是不存在的,牛顿第一定律不能用实验直接验证,但是建立在大量实验现象的基础之上,通过思维的逻辑推理而发现的。它告诉了人们研究物理问题的另一种方法,即通过大量的实验现象,利用人的逻辑思维,从大量现象中寻找事物的规律; (5)牛顿第一定律是牛顿第二定律的基础,不能简单地认为它是牛顿第二定律不受外力时的特例,牛顿第一定律定性地给出了力与运动的关系,牛顿第二定律定量地给出力与运动的关系。 2、牛顿第二定律:物体的加速度跟所受的外力的合力成正比,跟物体的质量成反比,加速度的方向跟合外力的方向相同。公式F=ma. 对牛顿第二定律的理解要点: (1)牛顿第二定律定量揭示了力与运动的关系,即知道了力,可根据牛顿第二定律研究其效果,分析出物体的运动规律;反过来,知道了运动,可根据牛顿第二定律研究其受力情况,为设计运动,控制运动提供了理论基础; (2)牛顿第二定律揭示的是力的瞬时效果,即作用在物体上的力与它的效果是瞬时对应关系,力变加速度就变,力撤除加速度就为零,注意力的瞬时效果是加速度而不是速度; (3)牛顿第二定律是矢量关系,加速度的方向总是和合外力的方向相同的,可以用分量式表示,

F x=ma x,F y=ma y,F z=ma z; (4)牛顿第二定律F=ma定义了力的基本单位——牛顿(定义使质量为1kg的物体产生1m/s2的加速度的作用力为1N,即1N=1kg.m/s2. 3、牛顿第三定律:两个物体之间的作用力与反作用力总是大小相等,方向相反,作用在同一直线上。对牛顿第三定律的理解要点: (1)作用力和反作用力相互依赖性,它们是相互依存,互以对方作为自已存在的前提; (2)作用力和反作用力的同时性,它们是同时产生、同时消失,同时变化,不是先有作用力后有反作用力; (3)作用力和反作用力是同一性质的力; (4)作用力和反作用力是不可叠加的,作用力和反作用力分别作用在两个不同的物体上,各产生其效果,不可求它们的合力,两个力的作用效果不能相互抵消,这应注意同二力平衡加以区别。 4.物体受力分析的基本程序: (1)确定研究对象; (2)采用隔离法分析其他物体对研究对象的作用力; (3)按照先重力,然后环绕物体一周找出跟研究对象接触的物体,并逐个分析这些物体对研究对象的弹力和摩擦力,最后分析其他场力; (4)画物体受力图,没有特别要求,则画示意图即可。 5.超重和失重: (1)超重:物体有向上的加速度称物体处于超重。处于失重的物体的物体对支持面的压力F(或对悬挂物的拉力)大于物体的重力,即F=mg+ma.;

牛顿运动定律经典例题(含解析)

7.14作业一 牛顿第一定律、牛顿第三定律 看书 :《大一轮》 第一讲 基础热身 1.2012·厦门模拟用一根轻质弹簧竖直悬挂一小球,小球和弹簧的受力如图K12-1所示, 下列说法正确的是( ) B .F 2的反作用力是F 3 C .F 3的施力物体是地球 D .F 4的反作用力是F 1 2.2011·芜湖模拟关于惯性,下列说法中正确的是( ) A .在月球上物体的重力只有在地面上的16 ,但是惯性没有变化 B .卫星内的仪器由于完全失重,惯性消失了 C .铁饼运动员在掷出铁饼前快速旋转可增大铁饼惯性,使其飞得更远 D .磁悬浮列车能高速行驶是因为列车浮起后惯性小了 3.2011·金华模拟跳高运动员蹬地后上跳,在起跳过程中( ) A .运动员蹬地的作用力大小大于地面对他的支持力大小 B .运动员蹬地的作用力大小等于地面对他的支持力大小 C .运动员所受的支持力和重力相平衡 D .运动员所受的支持力小于重力 4.2011·海淀模拟物体同时受到F 1、F 2、F 3三个力的作用而保持平衡状态,则以下说法正确的是( ) A .F 1与F 2的合力一定与F 3大小相等,方向相反 B .F 1、F 2、F 3在某一方向的分量之和可能不为零 C .F 1、F 2、F 3中的任何一个力变大,则物体必然做加速运动 D .若突然撤去F 3,则物体一定沿着F 3的反方向做匀变速直线运动 技能强化 5.就一些实际生活中的现象,某同学试图从惯性角度加以解释,其中正确的是( ) A .采用了大功率的发动机后,某些赛车的速度甚至能超过某些老式螺旋桨飞机的速度,这表明可以通过科学进步使小质量的物体获得大惯性 B .射出枪膛的子弹在运动相当长一段距离后连一件棉衣也穿不透,这表明它的惯性小了 C .货运列车运行到不同的车站时,经常要摘下或加挂一些车厢,这会改变它的惯性 D .摩托车转弯时,车手一方面要控制速度适当,另一方面要将身体稍微向里倾斜,通过调控人和车的惯性达到急转弯的目的 6.2011·台州模拟计算机已经应用于各个领域.如图K12-2所示是利用计算机记录的某作用力和反作用力变化图线,根据图线可以得出的结论是( ) 图K12-2 A .作用力大时,反作用力小 B .作用力和反作用力的方向总是相反的 C .作用力和反作用力是作用在同一个物体上的 D .牛顿第三定律在物体处于非平衡状态时不再适用 7.我国《道路交通安全法》中规定:各种小型车辆前排乘坐的人(包括司机)必须系好安全带,这是因

牛顿运动定律试题及答案

高一物理牛顿运动定律测试 一、选择题:(每题5分,共50分)每小题有一个或几个正确选项。 1.下列说法正确的是 A.力是物体运动的原因B.力是维持物体运动的原因 C.力是物体产生加速度的原因D.力是使物体惯性改变的原因 2.下列说法正确的是 A.加速行驶的汽车比它减速行驶时的惯性小 B.静止的火车启动时速度变化缓慢,是因为火车静止时惯性大 C.已知月球上的重力加速度是地球上的1/6,故一个物体从地球移到月球惯性减小为1/6 D.为了减小机器运转时振动,采用螺钉将其固定在地面上,这是为了增大惯性 3.在国际单位制中,力学的三个基本单位是 A.kg 、m 、m / s2 B.kg 、 m / s 、 N C.kg 、m 、 s D.kg、 m / s2 、N 4.下列对牛顿第二定律表达式F=ma及其变形公式的理解,正确的是()A.由F=ma可知,物体所受的合外力与物体的质量成正比,与物体的加速度成正比 B.由m=F/a可知,物体的质量与其所受合外力成正比,与其运动加速度成反比 C.由a=F/m可知,物体的加速度与其所受合外力成正比,与其质量成反比 D.由m=F/a可知,物体的质量可以通过测量它的加速度和它受到的合外力而求得 5.大小分别为1N和7N的两个力作用在一个质量为1kg的物体上,物体能获得的最小加速度和最大加速度分别是 A.1 m / s2和7 m / s2 B.5m / s2和8m / s2 C.6 m / s2和8 m / s2 D.0 m / s2和8m / s2 6.弹簧秤的秤钩上挂一个物体,在下列情况下,弹簧秤的读数大于物体重力的是A.以一定的加速度竖直加速上升B.以一定的加速度竖直减速上升 C.以一定的加速度竖直加速下降D.以一定的加速度竖直减速下降 7.一物体以 7 m/ s2的加速度竖直下落时,物体受到的空气阻力大小是 ( g取10 m/ s2 ) A.是物体重力的0.3倍 B.是物体重力的0.7倍 C.是物体重力的1.7倍 D.物体质量未知,无法判断

牛顿运动定律试题

牛顿运动定律试题文件排版存档编号:[UYTR-OUPT28-KBNTL98-UYNN208]

2017-2018学年度3E试题4-1 分卷I 一、单选题 1.有关超重和失重,以下说法中正确的是( ) A.物体处于超重状态时,所受重力增大,处于失重状态时,所受重力减小 B.若空气阻力忽略不计,竖直上抛的木箱中的物体处于完全失重状态 C.在沿竖直方向运动的升降机中出现失重现象时,升降机必定处于下降过程 D.站在月球表面的人处于失重状态 2.如图所示,光滑水平面上放置质量分别为m、2m 和3m的三个木块,其中质量为2m和3m的木块间用一不可伸长的轻绳相连,轻绳能承受的最大拉力为T.现用水平拉力F拉其中一个质量为3m的木块,使三个木块以同一加速度运动,则以下说法正确的是( ) A.质量为2m的木块受到四个力的作用B.当F逐渐增大到T时,轻绳刚好被拉断C.当F逐渐增大到时,轻绳还不会被拉断D.轻绳刚要被拉断时,质量为m和2m的木块间的摩擦力为 3.竖直上抛一小铁球,小铁球上升到最高点后自由下落,穿过湖水并陷入湖底的淤泥中.不计空气阻力,取向上为正方向,在下列图象中最能反映小铁球运动情况的是( )A. B. C. D. 4.某跳水运动员在3 m长的踏板上起跳,我们通过录像观察到踏板和运动员要经历如图所示的状态,其中A为无人时踏板静止点,B 为人站在踏板上静止时的平衡点,C为人在起跳过程中人和踏板运动的最低点,则下列说法中正确的是( ) A.人和踏板由C到B过程中,人向上做匀加速运动 B.人和踏板由C到A的过程中,人处于超重状态 C.人和踏板由C到A的过程中,先超重后失重 D.人在C点具有最大速度 5.为了节省能量,某商场安装了智能化的电动扶梯.无人乘行时,扶梯运转得很慢;有人站上扶梯时,它会先慢慢加速,再匀速运转.一顾客乘扶梯上楼,恰好经历了这两个过程,如图所示.那么下列说法中正确的是( ) A.顾客始终受到三个力的作用 B.顾客始终处于超重状态 C.顾客对扶梯作用力的方向先指向左下方,再竖直向下

高一物理牛顿运动定律练习及答案

相关习题:(牛顿运动定律) 一、牛顿第一定律练习题 一、选择题 1.下面几个说法中正确的是[ ] A.静止或作匀速直线运动的物体,一定不受外力的作用 B.当物体的速度等于零时,物体一定处于平衡状态 C.当物体的运动状态发生变化时,物体一定受到外力作用 D.物体的运动方向一定是物体所受合外力的方向 2.关于惯性的下列说法中正确的是[ ] A.物体能够保持原有运动状态的性质叫惯性 B.物体不受外力作用时才有惯性 C.物体静止时有惯性,一开始运动,不再保持原有的运动状态,也就失去了惯性 D.物体静止时没有惯性,只有始终保持运动状态才有惯性 3.关于惯性的大小,下列说法中哪个是正确的[ ] A.高速运动的物体不容易让它停下来,所以物体运动速度越大,惯性越大 B.用相同的水平力分别推放在地面上的两个材料不同的物体,则难以推动的物体惯性大 C.两个物体只要质量相同,那么惯性就一定相同 D.在月球上举重比在地球上容易,所以同一个物体在月球上比在地球上惯性小 4.火车在长直的轨道上匀速行驶,门窗紧闭的车厢内有一人向上跳起,发现仍落回到原处,这是因为[ ] A.人跳起后,车厢内空气给他以向前的力,带着他随火车一起向前运动 B.人跳起的瞬间,车厢的地板给人一个向前的力,推动他随火车一起运动 C.人跳起后,车继续前进,所以人落下必然偏后一些,只是由于时间很短,偏后的距离不易观察出来 D.人跳起后直到落地,在水平方向上人和车具有相同的速度 5.下面的实例属于惯性表现的是[ ] A.滑冰运动员停止用力后,仍能在冰上滑行一段距离 B.人在水平路面上骑自行车,为维持匀速直线运动,必须用力蹬自行车的脚踏板 C.奔跑的人脚被障碍物绊住就会摔倒 D.从枪口射出的子弹在空中运动 6.关于物体的惯性定律的关系,下列说法中正确的是[ ] A.惯性就是惯性定律 B.惯性和惯性定律不同,惯性是物体本身的固有属性,是无条件的,而惯性定律是在一定条件下物体运动所遵循的规律 C.物体运动遵循牛顿第一定律,是因为物体有惯性 D.惯性定律不但指明了物体有惯性,还指明了力是改变物体运动状态的原因,而不是维持物体运动状态的原因

高中物理牛顿运动定律典型例题精选讲解解析

2012牛顿运动定律典型精练 基础知识回顾 1、牛顿第一定律:一切物体总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止。 对牛顿第一定律的理解要点:(1)运动是物体的一种属性,物体的运动不需要力来维持;(2)它定性地揭示了运动与力的关系,即力是改变物体运动状态的原因,是使物体产生加速度的原因;(3)定律说明了任何物体都有一个极其重要的属性——惯性;(4)不受力的物体是不存在的,牛顿第一定律不能用实验直接验证,但是建立在大量实验现象的基础之上,通过思维的逻辑推理而发现的。它告诉了人们研究物理问题的另一种方法,即通过大量的实验现象,利用人的逻辑思维,从大量现象中寻找事物的规律;(5)牛顿第一定律是牛顿第二定律的基础,不能简单地认为它是牛顿第二定律不受外力时的特例,牛顿第一定律定性地给出了力与运动的关系,牛顿第二定律定量地给出力与运动的关系。 2、牛顿第二定律:物体的加速度跟所受的外力的合力成正比,跟物体的质量成反比,加速度的方向跟合外力的方向相同。公式F=ma. 对牛顿第二定律的理解要点:(1)牛顿第二定律定量揭示了力与运动的关系,即知道了力,可根据牛顿第二定律研究其效果,分析出物体的运动规律;反过来,知道了运动,可根据牛顿第二定律研究其受力情况,为设计运动,控制运动提供了理论基础;(2)牛顿第二定律揭示的是力的瞬时效果,即作用在物体上的力与它的效果是瞬时对应关系,力变加速度就变,力撤除加速度就为零,注意力的瞬时效果是加速度而不是速度;(3)牛顿第二定律是矢量关系,加速度的方向总是和合外力的方向相同的,可以用分量式表示,F x =ma x ,F y =ma y ,F z =ma z ;(4)牛顿第二定律F=ma 定义了力的基本单位——牛 顿(定义使质量为1kg 的物体产生1m/s 2的加速度的作用力为1N,即1N=1kg.m/s 2. 3、牛顿第三定律:两个物体之间的作用力与反作用力总是大小相等,方向相反,作用在同一直线上。 对牛顿第三定律的理解要点:(1)作用力和反作用力相互依赖性,它们是相互依存,互以对方作为自已存在的前提;(2)作用力和反作用力的同时性,它们是同时产生、同时消失,同时变化,不是先有作用力后有反作用力;(3)作用力和反作用力是同一性质的力;(4)作用力和反作用力是不可叠加的,作用力和反作用力分别作用在两个不同的物体上,各产生其效果,不可求它们的合力,两个力的作用效果不能相互抵消,这应注意同二力平衡加以区别。 4.物体受力分析的基本程序:(1)确定研究对象;(2)采用隔离法分析其他物体对研究对象的作用力;(3)按照先重力,然后环绕物体一周找出跟研究对象接触的物体,并逐个分析这些物体对研究对象的弹力和摩擦力,最后分析其他场力;(4)画物体受力图,没有特别要求,则画示意图即可。 5.超重和失重:(1)超重:物体有向上的加速度称物体处于超重。处于失重的物体的物体对支持面的压力F (或对悬挂物的拉力)大于物体的重力,即F=mg+ma.;(2)失重:物体有向下的加速度称物体处于失重。处于失重的物体对支持面的压力F N (或对悬挂物的拉力)小于物体的重力mg ,即F N =mg -ma ,当a=g 时,F N =0,即物体处于完全失重。 6、牛顿定律的适用范围:(1)只适用于研究惯性系中运动与力的关系,不能用于非惯性系;(2)只适用于解决宏观物体的低速运动问题,不能用来处理高速运动问题;(3)只适用于宏观物体,一般不适用微观粒子。 二、解析典型问题 问题1:必须弄清牛顿第二定律的矢量性。 牛顿第二定律F=ma 是矢量式,加速度的方向与物体所受合外力的方向相同。在解题时,可以利用正交分解法进行求解。 练习1、如图1所示,电梯与水平面夹角为300,当电梯加速向上运动时,人对梯面压力是其重力 的6/5,则人与梯面间的摩擦力是其重力的多少倍? 分析与解:对人受力分析,他受到重力mg 、支持力F N 和摩擦力F f 作用,如图1所示.取水平向右 为x 轴正向,竖直向上为y 轴正向,此时只需分解加速度,据牛顿第二定律可得:F f =macos300, 0 图1

高中物理牛顿运动定律典型例题精选讲解

牛顿运动定律典型精练 基础知识回顾 1、牛顿第一定律:一切物体总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止。 对牛顿第一定律的理解要点:(1)运动是物体的一种属性,物体的运动不需要力来维持;(2)它定性地揭示了运动与力的关系,即力是改变物体运动状态的原因,是使物体产生加速度的原因;(3)定律说明了任何物体都有一个极其重要的属性——惯性;(4)不受力的物体是不存在的,牛顿第一定律不能用实验直接验证,但是建立在大量实验现象的基础之上,通过思维的逻辑推理而发现的。它告诉了人们研究物理问题的另一种方法,即通过大量的实验现象,利用人的逻辑思维,从大量现象中寻找事物的规律;(5)牛顿第一定律是牛顿第二定律的基础,不能简单地认为它是牛顿第二定律不受外力时的特例,牛顿第一定律定性地给出了力与运动的关系,牛顿第二定律定量地给出力与运动的关系。 2、牛顿第二定律:物体的加速度跟所受的外力的合力成正比,跟物体的质量成反比,加速度的方向跟合外力的方向相同。公式F=ma. 对牛顿第二定律的理解要点:(1)牛顿第二定律定量揭示了力与运动的关系,即知道了力,可根据牛顿第二定律研究其效果,分析出物体的运动规律;反过来,知道了运动,可根据牛顿第二定律研究其受力情况,为设计运动,控制运动提供了理论基础;(2)牛顿第二定律揭示的是力的瞬时效果,即作用在物体上的力与它的效果是瞬时对应关系,力变加速度就变,力撤除加速度就为零,注意力的瞬时效果是加速度而不是速度;(3)牛顿第二定律是矢量关系,加速度的方向总是和合外力的方向相同的,可以用分量式表示, F x =ma x ,F y =ma y ,F z =ma z ;(4)牛顿第二定律F=ma 定义了力的基本单位——牛顿(定义使质量为1kg 的物体产生1m/s 2 的加速度的作用力为 1N,即1N=1kg.m/s 2 . 3、牛顿第三定律:两个物体之间的作用力与反作用力总是大小相等,方向相反,作用在同一直线上。 对牛顿第三定律的理解要点:(1)作用力和反作用力相互依赖性,它们是相互依存,互以对方作为自已存在的前提;(2)作用力和反作用力的同时性,它们是同时产生、同时消失,同时变化,不是先有作用力后有反作用力;(3)作用力和反作用力是同一性质的力;(4)作用力和反作用力是不可叠加的,作用力和反作用力分别作用在两个不同的物体上,各产生其效果,不可求它们的合力,两个力的作用效果不能相互抵消,这应注意同二力平衡加以区别。 4.物体受力分析的基本程序:(1)确定研究对象;(2)采用隔离法分析其他物体对研究对象的作用力;(3)按照先重力,然后环绕物体一周找出跟研究对象接触的物体,并逐个分析这些物体对研究对象的弹力和摩擦力,最后分析其他场力;(4)画物体受力图,没有特别要求,则画示意图即可。 5.超重和失重:(1)超重:物体有向上的加速度称物体处于超重。处于失重的物体的物体对支持面的压力F (或对悬挂物的拉力)大于物体的重力,即F=mg+ma.;(2)失重:物体有向下的加速度称物体处于失重。处于失重的物体对支持面的压力F N (或对悬挂物的拉力)小于物体的重力mg ,即F N =mg -ma ,当a=g 时,F N =0,即物体处于完全失重。 6、牛顿定律的适用范围:(1)只适用于研究惯性系中运动与力的关系,不能用于非惯性系;(2)只适用于解决宏观物体的低速运动问题,不能用来处理高速运动问题;(3)只适用于宏观物体,一般不适用微观粒子。 二、解析典型问题 问题1:必须弄清牛顿第二定律的矢量性。 牛顿第二定律F=ma 是矢量式,加速度的方向与物体所受合外力的方向相同。在解题时,可以利用正交分解法进行求解。 练习1、如图1所示,电梯与水平面夹角为300 ,当电梯加速向上运动时,人对梯面压力是其重力的6/5,则人与梯面间的摩擦力是其重力的多少倍? 分析与解:对人受力分析,他受到重力mg 、支持力F N 和摩擦力F f 作用,如图1所示.取水平向右为x 轴正向, 竖直向上为y 轴正向,此时只需分解加速度,据牛顿第二定律可得:F f =macos300, F N -mg=masin300 因为 56=mg F N ,解得5 3 =mg F f . 练习2.一物体放置在倾角为θ的斜面上,斜面固定于加速上升的电梯中,加速度为a ,如图3-1-15所示.在物体始终相对于斜 面静止的条件下,下列说法中正确的是( ) A .当θ一定时,a 越大,斜面对物体的正压力越小 B .当θ一定时,a 越大,斜面对物体的摩擦力越大 C .当a 一定时,θ越大,斜面对物体的正压力越小 D .当a 一定时,θ越大,斜面对物体的摩擦力越小 练习3.一物体放置在倾角为θ的斜面上,斜面固定于在水平面上加速运动的小车中,加速度为a ,如图3—1-16所示,在物体始终相对于斜面静止的条件下,下列说法中正确的是() A .当θ一定时,a 越大,斜面对物体的正压力越大 B .当θ一定时,a 越大,斜面对物体的摩擦力越大 C .当θ一定时,a 越大,斜面对物体的正压力越小 D .当θ一定时,a 越大,斜面对物体的摩擦力越小 问题2:必须弄清牛顿第二定律的瞬时性。 1.物体运动的加速度a 与其所受的合外力F 有瞬时对应关系,每一瞬时的加速度只取决于这一瞬时的合外力.若合外力的大小或方向改变,加速度的大小或方向也立即(同时)改变;或合外力变为零,加速度也立即变为零(物体运动的加速度可以突变). 2.中学物理中的“绳”和“线”,是理想化模型,具有如下几个特性: A .轻:即绳(或线)的质量和重力均可视为等于零,由此特点可知,同一根绳(或线)的两端及其中间各点的张力大小相等. B .软:即绳(或线)只能受拉力,不能承受压力(因绳能变曲),由此特点可知,绳与其物体相互间作用力的方向总是沿着绳子且背离受力物体的方向. C .不可伸长:即无论绳所受拉力多大,绳子的长度不变,由此特点可知,绳子中的张力可以突变. 30a F m g F f 图1 x y x a a 图图

相关文档
最新文档