纵联电流差动保护

合集下载

纵联差动保护原理

纵联差动保护原理

一、发电机相间短路的纵联差动保护将发电机两侧变比和型号相同的电流互感器二次侧图示极性端纵向连接起来,差动继电器KD接于其差回路中,当正常运行或外部故障时,I1与I2反向流入,KD的电流为11TAIn-22TAIn=1I'-2I'≈0 ,故KD不会动作。

当在保护区内K2点故障时,I1与I2 同向流入,KD的电流为:11TAIn+22TAIn=1I'+2I'=2kTAIn当2kTAIn大于KD的整定值时,即1I'-(3)max max/unb st unp i k TAI K K f I n=≠0 ,KD动作。

这里需要指出的是:上面的讨论是在理想情况下进行的,实际上两侧的电流互感器的特性(励磁特性、饱和特性)不可能完全一致,误差也不一样,即nTA1≠nTA2,正常运行及外部故障时,2kTAIn≥I set,总有一定量值的电流流入KD, 此电流称为不平衡电流,用Iunb表示。

通常,在发电机正常运行时,此电流很小,当外部故障时,由于短路电流的作用,TA的误差增大,再加上短路电流中非周期分量的影响,Iunb增大,一般外部短路电流越大,Iunb就可能越大,其最大值可达:.min.min.min()brk brkop ork brk opI II K I I I>≥≤+式中:Kst——同型系数,取0.5;Kunp——非周期性分量影响系数,取为1~1.5;fi ——TA的最大数值误差,取0.1。

为使KD在发电机正常运行及外部故障时不发生误动作,KD的动作值必须大于最大平衡电流Iunb.max,即Iop=KrelIunb.max(Krel为可靠系数,取1.3)。

Iunb.max越大,动作值Iop就越大,这样就会使保护在发电机内部故障的灵敏度降低。

此时,若出现较轻微的内部故障,或内部经比较大的过渡电阻Rg短路时,保护不能动作。

对于大、中型发电机,即使轻微故障也会造成严重后果。

纵联保护第03讲

纵联保护第03讲
4.5 纵联电流差动保护
4.5.1 纵联电流相位差动
电流差动的主要问题: • 数据同步 • 传输数据量大,对通道要求高 • 易受互感器饱和的影响
纵联电流相位差动保护在以上几方面具有优势
4.5 纵联电流差动保护
4.5.1 纵联电流相位差动
(一)基本原理
仅利用输电线路两端电流相位 在区外短路时相差180°区内短 路时相差为0°,也可以区分区 内、外短路,这就是纵联电流相 位差动保护原理。 此时只需要两端传递各自的相 位信息,即可构成电流相位比 较式纵联差动保护。
.
I m
Rg
.
I n
图4-30 负荷电流对纵联电流差动保护的影响示意图
4.5 纵联电流差动保护
4.5.4 影响纵联电流差动保护的因素及其措施 (三)影响因素之三:负荷电流
解决措施: 故障分量差动保护 差动电流:
制动电流:
M
.
Im
Im In Im In K Im In Im In Im In Im In
当该电流为正(或负)半波时,操作发信机 发出连续的高频电流, 而当该电流为负(或正)半波时,则不发高 频电流。
4.5 纵联电流差动保护
4.5.1 纵联电流相位差动
(二)原理框图
收信比较时间t3元件
时间t3 元件对收到的高频电流进行整流并延时t3 后有输出,并展宽t4 时间。 区外短路时高频电流间断的时间短,小于t3 延时, 收信机回路无输出,保护不能跳闸。 区内短路时高频电流间断时间长, t3 延时满足, 收信机回路有输出,保护跳闸。 实际上考虑短路前两侧电势的相角差、分布电 容的影响、高频信号的传输延迟等因素,在区外 短路时收到的高频信号不完全连续,会有一定的 间断时间,同样在区内短路时收到的高频电流间 断时间也会小于半周波,因而对t3 要进行整定。

纵联差动保护原理

纵联差动保护原理

纵联差动保护原理
纵联差动保护是一种电力系统中常用的保护方式,用于检测和保护主变压器、发电机、母线等重要设备的故障。

其基本原理是比较设备两侧电流的差值,当差值超过设定值时,即认为发生了故障,触发保护动作。

纵联差动保护的工作原理可以分为两个阶段:采样和比较。

首先,在设备两侧分别安装电流互感器,采样得到两侧电流的信号。

这些信号经过放大和调节后,送入差动继电器。

差动继电器进行差动计算,即计算两侧电流的差值。

如果差值低于设定值,差动继电器保持动作,表示系统正常。

但当差值超过设定值,差动继电器即判定为发生故障,触发保护装置的动作。

纵联差动保护的核心是差动继电器,其内部包含了一个差动计算单元和一个保护决策单元。

差动计算单元计算两侧电流的差值,并将结果送入保护决策单元。

保护决策单元根据计算结果,进行故障判定和相应的保护动作。

纵联差动保护的设计要考虑到系统的复杂性和可靠性。

在设计时,需要合理选择互感器的参数、差动计算的方式和设定值。

此外,还需要考虑到与其他保护装置的协调工作,使整个保护系统能够快速、准确地检测和定位故障,并采取适当的措施进行隔离和保护。

综上所述,纵联差动保护通过比较设备两侧电流的差值来检测和保护设备的故障。

它是一种重要的电力系统保护方式,能够有效地提升系统的可靠性和安全性。

纵联电流差动保护-

纵联电流差动保护-

2)有制动作用
M IM
k1
IN
N k2
动作线圈: Im In
IImm
Im KD
Im In
I r In
IInn
制动线圈: Im In
Ir
动作方程: Im In k Im In Iop0
动作区
I
op0
I res
动作特性:动作电流不是定值,而是随制动电流变化的特性。
二、纵联电流差动保护的工作原理
M IM
k1
IN N
M IM
IN N k2
区内故障 I IM IN IK1
区外故障 I IM IN 0
工作原理 ——故障特征分析
2. 两端电流相位特征
假设:电源电势相角相等 ,无分布电容、TA、TV
无误差。
M IM
k1
IN N
M IM
IN N k2
区内故障
区外故障
0
180
工作原理 ——电流差动保护
谢谢!
引起保护误动,特别是对于超高压长线路,电容电流的影
响更为严重 。
M
.
IM
.
.
I MN
IN
N d
.
I CM
1 2
XC
.
I CN
图4-29 长距离输电线路的等值电路
四、影响因素分析
2、影响因素之二:电流互感器误差和不平衡电流
差动保护原理是建立在对一次系统的分析基础上的,但保 护所采用的电流信号是互感器的二次输出信号。二次信号 和一次信号之间的传变误差,导致了不平衡电流的出现。
——相位差动保护 1.电流相位特征
内部故障
外部故障
IM
IN

纵联差动保护

纵联差动保护

6.2 纵联差动保护6.2.1 基本原理6.2.1.1 定义差动保护是一种依据被保护电气设备进出线两端电流差值的变化构成的对电气设备的保护装置,一般分为纵联差动保护和横联差动保护。

变压器的差动保护属纵联差动保护,横联差动保护则常用于变电所母线等设备的保护。

6.2.1.2 基本原理变压器纵差保护是按照循环电流原理构成的变压器纵差保护的原理要求变压器在正常运行和纵差保护区(纵差保护区为电流互感器TA 1、TA 2之间的范围)外故障时,流入差动继电器中的电流为零,即2•'I -2•''I =0,保证纵差保护不动作。

但由于变压器高压侧和低压侧的额定电流不同,因此,为了保证纵差保护的正确工作,就须适当选择两侧电流互感器的变比,使得正常运行和外部故障时,两个电流相等。

(a) 双绕组变压器正常运行时的电流分布 (b) 三绕组变压器内部故障时的电流分布(图6.4 变压器纵差保护原理接线图)在图6.4(a )双绕组变压器中,变压器两侧电流1•'I 、1•''I 同相位,所以电流互感器TA 1、TA 2二次的电流2•'I 、2•''I 同相位,则2•'I -2•''I =0的条件是2•'I =2•''I ,即 2•'I =2•''I =11i n I •'=21i n I •'' (6.1) 即 12i i n n =11••'''I I =T K (6.2) 式中,1i n 、2i n ——分别为TA 1、TA 2的变比; T K ——变压器的变比。

若上述条件满足,则当变压器正常运行或纵差保护区外故障(以下简称“区外故障”或“区内故障”)时,流入差动继电器的电流为K I •=2•'I -2•''I =0 (6.3)当区内故障时,2•''I 反向流出,则流入差动继电器的电流为K I •=2•'I +2•''I > 0 (6.4) 当K I > 0时,差动继电器动作,驱动变压器两侧断路器分闸,对变压器起到保护作用。

纵联差动保护

纵联差动保护

(2)带制动特性的差动继电器
Ir
带制动特性的差动继电器动作方程为: m I n K res I res I
I 其中:K res为制动系数,res 为制动电流。
I set
• • m


动作区
非动作区
I res
I res 取值又可分为两种形式:
I res | I
I res | I
• m
- I
r
I

m
I

K2故障(或正常运行)时: K1故障(内部短路)时:

Im In

Ir 0
I m , I n 接近同相 I r 0
具有很大量值
因此利用差动电流的幅值大小可以区分区外和区内短路。 考虑实际在正常运行或外部故障时,由于两端TA不可能完全相同,以及两端 TA饱和情况不一致等因数,流入KD的电流通常不为零(不平衡电流),因而在设 计差动继电器的动作判据时需考虑其影响。
2.电流纵差保护的动作方程及特性
(1)不带制动特性的差动继电器
不带制动特性的差动继电器动作方程为: m I n I set I

Ir
动作区
I set
I set 的整定有两个方面 : 1)躲过外部短路时的最大不平衡电流 2)躲过最大负荷电流 取以上两者的最大值作为整定值。
非动作区
I res
n

|
n| | I|来自(3)差动继电器典型动作方程及特性

I

m
I
n
K res I
I op 0
m
I
n
I
m
I
n

纵联电流差动保护

纵联电流差动保护
纵联电流差动保护原理
K2点短路(区外):M侧电流为正,N侧电流为负
IM IN 0
K1点短路(区内):两侧电流均为正方向
IM IN IK
Ires 0.5 Im In
Ires 0.5( Im In )
Ires Im In cosmn
(1) (2)比率制动方式 (3)标积制动方式
➢ 区外短路或正常运营时,(1)与(2)效果相同 ➢ 单侧电源内部短路,(1)与(2)效果相同,(3)更敏捷 ➢ 双侧电源内部短路,(1)更敏捷
U bc
负序电流滤过器
影响纵联电流差动保护正确动作旳原因
1.电流互感器旳误差和不平衡电流 2.输电线路旳分布电容电流及其补偿措施
3.负荷电流对纵联电流差动保护旳影响
不带制动特征
整定:
1.躲过外部短路时旳最大不平衡电流
I set Krel Knp Ker K st I kmax
2.躲过最大负荷电流
I set K I rel Lmax
两者取较大者
敏捷度:单侧电源运营内部短路时
K sen
Ir I set
I kmin I set
2
带制动线圈
动作线圈:取和电流 制动线圈:取循环电流
Im In Im In
动作方程:
Im In k Im In Iop0
制动特征:动作电流不是定值,而是随制动电流变化,称为制动特征。
两侧电流旳同步测量
基于数据通道旳同步措施
两侧电流旳同步测量
基于统一时钟旳同步措施
纵联电流相位差动保护
Hale Waihona Puke 负序电压滤过器U mn
R1
R1 jX
1
U
ab
jX 2 R2 jX 2

纵联电流差动保护定义

纵联电流差动保护定义

纵联电流差动保护定义《说说纵联电流差动保护定义那些事儿》嘿,朋友们!今天咱来唠唠一个听起来挺专业的玩意儿——纵联电流差动保护定义。

这名字是不是乍一听有点唬人?别急,听我慢慢道来,保证让你搞明白这到底是啥。

咱先从最通俗的角度来理解。

想象一下,有一条电力线路,就好比是一条输送能量的“高速公路”。

而纵联电流差动保护呢,就是这条高速公路上的“超级交警”。

它的任务呀,就是时刻盯着线路的两端,看看进来的电流和出去的电流是不是一样多。

为啥要这么盯着呢?这就好比你开车上高速,在入口交了一定的费用,那到出口的时候,如果交的费用不一样,是不是就有点不对劲啦?同样的道理,在线路上,如果进来的电流和出去的电流不一致,那就说明有问题啦。

可能是哪里漏电了,也可能是被调皮的“电老鼠”偷了电。

这时候,纵联电流差动保护这个“超级交警”就会立刻警觉,然后果断出手,把问题给解决掉,防止出现大麻烦。

而且哦,这个“超级交警”可厉害了,它的反应那叫一个迅速。

一旦发现有电流不一样的情况,马上就行动,速度快得像闪电一样。

它可不允许那些小毛病慢慢变成大问题,简直就是把隐患扼杀在摇篮里啊!有时候我就在想,要是生活中也有这么厉害的“保护神”就好了。

比如,我们吃零食的时候,要是有个“零食纵联电流差动保护”,一旦发现多吃的零食卡路里和消耗的不一样,就立马提醒我们别再吃啦,免得长肉肉,哈哈!当然啦,这只是开个玩笑。

纵联电流差动保护在电力系统中那可是起着至关重要的作用。

它就像是一个默默守护的卫士,保障着电力线路的安全稳定运行,让我们能安心地用上电,不用担心突然停电啦、跳闸啦这些烦心事。

总之,纵联电流差动保护定义虽然听起来挺专业,但其实理解起来也不难。

它就是电力线路上的“守护神”,时刻守护着电流的平衡,保障着我们的生活不受停电困扰。

怎么样,这下你是不是对这个“高大上”的东西有了更清晰的认识啦?。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2)采用浮动门坎,即带制动特性的差动保护。因为 区外故障时流过差动回路的不平衡电流与短路电流的大 小有关系,短路电流小,不平衡电流也越小,因此可以 根据短路电流的大小调整差动保护的动作门坎。
4.4.1 纵联电流差动保护原理
外部短路时穿过两侧电流互感器的实际短路电流 可I re以s 采 用以下方法计算:
(2)带制动特性的差动继电器特性 这种原理的差动继电器有两组线圈:制动线圈和动作线圈。
制动线圈流过两侧互感器的电流之差(循环电流) Im ,In 动作线圈流过两侧互感器的电流之和 Im ,In动作条件为:
I mI nKI mI nIo0p
K
I op 0
制动系数,在0~1之间选择。 很小,克服继电器机械摩擦或保证电路状态发生翻转做需要的值。
比率制动方式
Ires0.5I mI n, Ires0.5I mI n 标积制动方式
Ires I mI nco1s8( 0m)n co1s8( 0m)n0
0
co1s8( 0m)n0
在差动继电器的设计中,差动的动作门坎随着 I res 的增大而增大, I res 起制动作用,称为制动电流。动作
的电流(不平衡电流)为:
I unb I mI nnT 1( A I MI N)
电流继电器正确动作时,差动电流(动作电流) I 应r 躲过
最大不平衡电流,即:
Ir I mI n Iunb
4.4.1 纵联电流差动保护原理
在工程上,不平衡电流稳态值采用电流互感器的10% 的误差曲线按下式计算:
Iun b 0.1KstKnp Ik
因此可以从高频信号的连续和间断反应两端电流相位比 较结果,构成相位纵联保护。
下面结合图形具体说明。
区外故障时
~
Im
k2 ~
In
180° 360°
t
180° 360°
当某端的电流处于正半波时,由该端保护向输电线上发出高频信号。 该高频信号可以同时被本端保护和对端保护所接收。
可见,区外故障时,两端电流反向,输电线路上存在连续的高频信号。
方程为: Ir KreIsres
4.4.1 纵联电流差动保护原理
2.输电线路纵联电流差动保护特性分析
(1)不带制动特性的差动继电器特性
动作方程: Ir I mI n Iset Ise的t 选择方法:
1)躲过外部短路时的最大不平衡电流
Ise tK rபைடு நூலகம் K n l K peK rsItk.max
2)躲过最大负荷电流
Im In 很大,动作作用很强
提高了内部短路时 保护动作的灵敏性
I mI nKI mI nIo0 p
4.4.2 纵联电流相位差动保护
1.纵联电流相位差动保护的工作原理 纵联电流差动保护要求传输两端的电流相量,对传输设
备的容量和速率都有较高的要求,并要求两端的数据要严 格同步,利用电力线载波通道很难满足要求。因此纵联电 流差动保护主要用于发电机、变压器和母线等元件上。
K st
当两侧互感器的型号、容量相同时取0.5,不同取1。
K np
非周期分量系数。
Ik
外部短路时流过互感器的短路电流(二次值)。
可见:不平衡电流的大小和外部短路电流的大小有关,短路 电流越大,不平衡电流越大。
4.4.1 纵联电流差动保护原理
因此,差动保护的判据有两种思路: (1)躲过最大不平衡电流Iunb.max,这种方法可以防止 区外短路的误动,但对区内故障则降低了差动保护的灵 敏度;
纵联电流相位差动保护仅利用输电线路的两端电流相位 在区外短路时相差180°、区内短路时相差0°来区分故障范 围。此时需要传递两端各自的相位信息,需要传递的信息 量小。
4.4.2 纵联电流相位差动保护
在传递相位信息时,两端保护仅在本端正半波(负半波) 时启动发信机发送高频信号,这样外部故障时两端电流按 照规定的正方向相位为反相,则输电线路上将出现连续的 高频信号;若是内部故障,两端电流近似同相,输电线路 上将出现间断的高频信号。
区内故障时
~
Im
k1
~
In
180° 360°
t
180°360°
可见,区内故障时,两端电流同相,向线路发送高频信号的时刻基本相 同,因此,输电线路上的高频信号是不连续的。
对称短路 时启动
I
II
不对称短 路时启动
I
II 2
1 t2 0
启动跳闸 元件
& 跳闸
I
I
t3 t4 1
I
I 2
0 t1
TA
I2
4.4 纵联电流差动保护
——纵联电流差动保护 ——纵联电流相位差动保护
4.4.1 纵联电流差动保护原理
1.纵联电流差动保护原理
IM
~
k1
IN k 2 ~
Im
KD
In
Ir
I r I mI n I mnT1A (I MI M) In n1T( A IN IN)
4.4.1 纵联电流差动保护原理
1.纵联电流差动保护原理 在正常行运行及区外故障时, IM ,I流N过差动继电器
(1)不带制动特性的差动继电器特性 灵敏度检验:保护应满足在单侧电源运行发生内
部短路时有足够灵敏度的要求。
KsenIIsretIkI.smeitn2
I k . min
单侧最小电源作用且被保护线路末端短路时,流过保护的 最小短路电流。
若纵差动保护不满足灵敏度要求,可采用带制动特性 的纵差动保护。
4.4.1 纵联电流差动保护原理
过 滤
故障启动发 信机元件
发信机操作
收信比较时间


元件,功能分 析见后页

I1KI2 元件,正波发信信 信

收信比较时间t 3 元件
时间元件 在t 3收到输电线路上的高频信号后,将延时 后t有3 输出,并展宽 时间t 4。
Ise t KreIlL.max
可非互外靠周感部系 期器短数分1同路0,量型% 时取系系流误数1数.过差2,,~电系差取2流数动0互.回5感或路器1 采的用最速大饱短和路变电流流器(时二取次1;值) 采用串联电阻时取1.5~2;
线路正常运行时的最大负荷电流的二次值
取两者中的较大者作为整定值。
4.4.1 纵联电流差动保护原理
4.4.1 纵联电流差动保护原理
区外故障时(k2点短路),
~
Im
Im In
Im In 很大,制动作用强 Im In 很小,动作作用弱
k2 ~
In
提高了外部短路时 不动作的可靠性。
I mI nKI mI nIo0 p
4.4.1 纵联电流差动保护原理
区内故障时(k1点短路),
~
Im
k1
~
In
Im In 较小,制动作用较弱 Im, In近似同相
相关文档
最新文档