差分吸收光谱技术DOAS介绍1

合集下载

紫外差分吸收法原理

紫外差分吸收法原理

3.1 DOAS 测量原理从稳定光源发出的光I o (λ,L),通过气室后,由透镜收集光会聚进入光谱仪。

由于沿光程的气体分子的吸收、分子散射,导致了接收光强减弱。

在光通过距离L 的光程后,接收光I (λ,L )可以由Lambert-Beer 定律来表示:00(,)(,)exp[((,,)()(,)(,))]()l Lj j R M j l I L I L p T c l l l dl N λλσλελελλ===⋅-⋅+++∑⎰ (3.1)对于每一种气体,(,,)j p T σλ是在波长λ,压力p 和温度为T 时的吸收截面。

()j c l 是沿光程在距离l 处的密度。

M ε和R ε分别表示瑞利散射、Mie 散射的消光系数。

N (λ)是光强I (λ,L )上的光子噪声。

在图3.1a 中,I (λ,L )为通过大气的后光谱(为了简化说明,假设其中只含有甲醛的吸收)。

在大多数的DOAS 系统中,回来的光被聚焦到光谱仪的入射狭缝上,经光谱仪分光,光谱由探测器记录。

由于光谱仪有限的分辨率,光谱I (λ,L )的形状发生了变化,这个过程的数学描述是大气光谱I (λ,L )与光谱仪的仪器函数H 进行卷积,图3.1b 表示与典型的仪器函数H 卷积后,投影在探测器上的光谱I*(λ,L )。

在探测器记录光谱的过程中,光谱范围被映射为n 个离散的像元(PDA 或CCD 探测器),用i 来表记,每个像元表示从λ(i)到λ(i+1)的间隔积分。

这个间隔可以根据波长-像元映射ΓI 计算得到。

对于线性色散(:()(0)I i i λλγΓ=+⋅), 像元的光谱宽度为常数(0()(1)()i i i λλλγ∆=+-=)。

像元i 上的光强'()I i 表示为(忽略任何的仪器因子,如不同像元的响应不一样),(1)()'()(',)'i i I i I L d λλλλ+*=⎰(3.2)一般而言,波长-像元映射ΓI 可以用多项式来表示:0:()qk I k k i i λγ=Γ=⋅∑ (3.3)矢量(k γ)确定了像元i-波长λ(i )的映射。

第三章-直接测量式及DOAS原理CEMS

第三章-直接测量式及DOAS原理CEMS

据一些常见污染物的差分吸收光谱,选取一些 特征波段对其进行测量便可得到浓度,经与标 准吸收谱进行比较,便可得到所测气体的浓度。 若要扩展监测种类,只需将污染气体的标准吸 收谱输入数据库即可,无需对硬件进行更新。
主要气体 二氧化硫 一氧化氮 二氧化氮 SO2 NO NO2 参考波长(nm) 210 225 245
9
单波长法
据朗伯-比尔定律,在最大吸收峰处,气体 浓度C可由下式来进行计算。
C A /( K * L) (ln I0 ) /( K * L) It
在给定波长处,某一物质的K值为常数,根 据上式,便可由所测得的计算出该物质的浓度。
10
单波长法
单波长测量原理存在以下问题:




粉尘干扰:粉尘导致透过光强变化,使测量结果不准确; 仪器老化:仪器老化导致原始光强变化,使测量结果不准 确; 交叉干扰:目前采用单波长原理的仪器基本都是采用滤光 片来实现的,一般滤光片的带宽在20~30nm,探测器测 量的是这个波段内光强的积分值。在CEMS领域,这个带 宽内,一般都会有干扰。干扰导致透过光强变化,使测量 结果不准确; 校准周期:仪器老化和光路污染均可导致原始光强变化, 因此需要通过频繁的校准来校正; 光路污染:光路污染导致原始光强变化,使测量结果不准 确。
19
直接测量式CEMS结构介绍

辐射光源 一个良好的光源要求具备发光强度高、光 亮稳定、光谱范围广和使用寿命长等特点。 常用的紫外光源有汞灯、紫外线金属卤化 物灯 、氙灯 、氘灯 。
20
直接测量式CEMS结构介绍

辐射光源
汞灯:汞灯的光谱主要是原子的线状光谱,光谱的连续性很差,一般用作波长 校准、非分光紫外光度分析等。

差分光学吸收光谱

差分光学吸收光谱

差分光学吸收光谱(Differential Optical Absorption Spectroscopy, DOAS)是一种先进的环境监测技术,用于测量大气中痕量气体的浓度。

其基本原理基于不同气体分子在特定波长范围内对太阳光或人工光源的特征吸收现象,并通过比较测量光谱与参考光谱之间的差异来确定目标气体的浓度。

DOAS技术的工作流程包括以下步骤:
光源:使用自然光(如日光)或人造光源发出连续的紫外至可见光谱范围内的光。

光路传输:光线穿过待测的大气层,在这个过程中,气体分子会根据自身的吸收特性吸收部分特定波长的光。

光谱采集:通过望远镜、光纤或其他光学系统收集穿过大气后到达地面或反向散射回来的光信号,并聚焦到光谱仪入口狭缝。

光谱分析:光谱仪将接收到的光信号转换为电信号,然后进行分光和探测,得到连续的光谱数据。

差分处理:根据Lambert-Beer定律计算并分析每个波长点处的光强变化。

通过对测量光谱和背景/清洁空气光谱进行数学上的差分运算,提取出目标气体特有的窄带吸收结构,消除宽谱吸收和其它非目标气体的影响。

反演算法:应用差分吸收光谱反演算法,解算出沿光路路径上目标气体的平均浓度。

DOAS技术的优势在于:
非接触式测量,不受采样器影响。

可实时检测多种气体,具有较高的灵敏度和准确性。

能够有效抑制背景噪声和多组分混合气体干扰。

适用于远程测量,获取较大区域内的平均气体分布信息。

这项技术广泛应用于空气质量监测、环境污染源排放监测、大气化学研究以及环境保护等领域。

烟尘烟气连续自动监测系统复习考试题大题题库:简答、操作题整理

烟尘烟气连续自动监测系统复习考试题大题题库:简答、操作题整理

简答题:1、什么是完全抽取法?它有何优点?答:完全抽取法是采用专用的加热采样探头将烟气从烟道中指取出来,经过伴热传输,使烟气在传输中不发生冷凝,烟气传输到烟气分析机拒后进行除尘、除湿等处理,然后进入分析仪进行分析检测。

完全抽取法也叫直接抽取法。

其优点是:①干基测量,可以直接测得干烟气中污染物含量;②由于烟尘和水蒸汽已经从样品中去除,所以分析仪的测量精度高。

其缺点是:①样品气体需要伴热,保温传送(温度保持在140-160°C之间);②样品气体需要降温、除水等预处理;③在高硫分场合有酸冷凝的可能,采样和预处理部件需要防腐蚀;④采样流量较大(一般>2L/min),过滤器易堵塞,需要定期进行反吹。

第一章2、固定污染源连续监测的采样方式主要有哪些?答:采样方式分为抽取采样法和直接测量法两种。

抽取采样法又分为直接抽取法和采样稀释法;直接测量法又分为内置式测量和外置式测量。

3、直接抽取法中的前处理方式和后处理方式的优缺点?答:直接在探头后降低烟气温度低于环境温度并除湿的方式称为前处理方式。

其优点:烟气经处理后能更灵活地选择分析仪;探头后除水,不需要加热采样管。

其缺点:探头后处理烟气对处理系统进行维护时不太方便;可在探头上降温、除湿,使探头变得复杂;传输距离远使样品气体浓度变化,造成测量误差。

在气体进入分析仪之前对烟气进行净化、降温、除湿的处理方式称为后处理方式。

其优点:便于人员检查处理系统。

其缺点:但须使整个采样管保持适当的温度。

4、直接抽取式CEMS中电子制冷器的原理?答:在两个不同导体组成的回路中通电时,一个接头吸热,另一个接头放热,这是珀尔帖效应。

改变输入直流电源的电流强度,就可以调整制冷或制热的功率。

同时通过改变直流电源的极性,就能使热量的移动方向逆转,从而达到任意选择制冷或制热的目的。

5、直接抽取式CEMS中隔膜泵的原理?答:隔膜泵的工作原理是机械冲程活塞或由连续棒移动活塞。

隔膜往复运动,短脉冲方式移动气体,当隔膜上升,气流从下通过吸气阀进入泵的内腔;当隔膜被推下时,吸气阀关闭同时排气阀打开,气体进入采样管。

差分吸收光谱技术DOAS介绍1

差分吸收光谱技术DOAS介绍1
2、简述DOAS系统的测量原理。 差分光学吸收光谱技术的工作原理是利用分子的窄带吸 收光谱来辨别气体的成分,通过其吸收谱的强度推导被测 气体的浓度,其理论基础是Lambert-Beer定律。
Thank you !
• 资料分析:利用DOAS对主要大气污染物NO2、SO2以 及O3的测量结果,分析了南京市主要大气污染物的 日变化规律、空气污染的“周末效应”以及与天 气情况的密切关系
1、污染物的日变化规律及其相互关系
(1)、O3和NO2的日变化规律
NO2 + hγ → NO + O
O + O2 + M → O3 + M
一、差分吸收光谱技术DOAS介绍
1、DOAS技术简介
差分吸收光谱技术DOAS(Differential Optical Absorption Spectrometry)是在20世纪70年代末由德国Heidelberg大学 环境物理研究所的U.Platt和D.Perner提出的,目前这一技术 广泛应用于大气环境监测。DOAS技术根据记录的在几公里长 的光程上大气中痕量物质对光的差分吸收来计算痕量物质的 浓度。长光程是为了获得极低浓度的大气污染物的可测量的 吸光率。使用差分吸收而不是绝对吸收是由于大多数大气污 染物在大气中连续存在,不可能获得未经衰减的大气光谱。
2、DOAS仪器的特点
DOAS仪器与传统的点探测相比具有以下优点: • 高灵敏度的实时测量:用同一个仪器实现了多种痕量物质的实时、同时 测量。 • 光程上的线测量:DOAS系统测量的是从光源到接收器之间位于大气中的 开放的光程上痕量气体的总吸收,因此得到的是给定光程上污染物的平 均浓度,它比用点探测得到的浓度更具有代表性。 • 高精度的非接触测量:用DOAS技术测量物质的浓度,不确定性仅仅受到 可独立测量的这种物质的差分吸收截面测量精度、大气吸收光谱测量 精度、光谱处理精度的影响。 • 低维护、低成本:由于DOAS是一种绝对测量技术,一旦给DOAS系统提供 了适当的参考光谱就不需要常规的气体校准。另外,维护周期短,运转 成本低。DOAS系统在无人照管的条件下可以长期运转,通过电话网上的 调制解调器与操作者通信,实现数据的自动采集或操作控制。

光化学反应中痕量气体的变化

光化学反应中痕量气体的变化

毕业论文题目光化学反应中痕量气体的变化学生姓名段虎军学号20051320025院系大气物理学院专业大气物理学与大气环境指导教师朱彬(教授)二OO九年六月八日目录1 引言 (1)2 实验仪器介绍 (2)3 实验过程 (2)3.1 数据观测 (2)3.2 数据处理 (3)4结果分析 (3)4.1 O3、NO2和HNO2的季节变化特征 (3)4.1.1 O3、NO2的季节变化特征 (3)4.1.2 HNO2的季节变化特征 (4)4.2 O3、NO2、HNO2的日变化特征 (7)4.2.1 O3的日变化特征 (7)4.2.2 NO2的日变化特征 (7)4.2.3 HNO2的日变化特征 (8)4.3 O3、NO2、HNO2间的关系 (9)4.3.1 O3与NO2的关系 (9)4.3.2 NO2与HNO2的关系 (10)4.3.3 O3与HNO2的关系 (12)5 结论 (13)致谢: (14)参考文献 (14)光化学反应中痕量气体的变化段虎军南京信息工程大学大气物理学院,南京:210044摘要:本文通过对2008年南京江北地区的O3、NO2及HNO2三类大气污染物的DOAS数据进行处理和分析,得出其日变化、季节变化特征,并对三种痕量气体间的光化学变化进行了相应分析。

结果表明:该地O3浓度季节变化十分明显,春季浓度最高,初夏有所降低,之后又回升;NO2浓度呈现出冬、春、秋高,夏季低的特点;HNO2浓度4-6月份较低,其余月份都保持在较高值。

O3、NO2、HNO2三者的日变化都与大气扩散和人类活动密切相关;O3夜间值较低,白天由于光化学反应的发生,在午后太阳辐射最强时达到最大值,之后有下降趋势;NO2由于白天参与光化学反应而被消耗,出现最低值,夜间积累达最大值;HNO2最大值出现在夜间,白天由于自身的光解而消耗,出现最低值。

且三种气体间由于光化学反应及其它化学反应的发生,相互间有密切联系;O3与NO2、HNO2间有负相关关系;NO2与HNO2间有正相关关系。

差分吸收光谱技术中吸收截面的测量

差分吸收光谱技术中吸收截面的测量

差分吸收光谱技术中吸收截面的测量Ξ吴 桢 虞启琏 张 帆 姚建铨(天津大学精密仪器与光电子工程学院 天津 300072)摘要 描述了影响差分吸收光谱技术(DOA S)精度的主要因素——吸收截面的测量原理以及自己设计的测量装置,并用此装置测量了SO2、NO2和O3的吸收截面。

根据测量结果分析了应用DOA S技术测量这三种气体时各自适用的波长区间。

关键词 差分吸收光谱 吸收截面 测量M ea surem en t of Absorption Cross Section i n D ifferen ti a l Optica l Absorption Spectrom etryW u Zhen Yu Q ilian Zhang Fan Yao J ianquan (Colleg e of P recision Instrum en t and Op to2electron ics E ng ineering,T ianj ing U n iversity,T ianj ing300072,Ch ina)Abstract A s the m ain facto r affected the p recisi on of the differential op tical abso rp ti on spectrom etry(DOA S), the abso rp ti on cro ss secti on and its m easurem ent theo ry w as analysed.A new m easurem ent setup w as brough t fo rw ard,and th rogh w h ich the abso rp ti on cro ss secti ons of SO2,NO2and O3w ere m easured.A t last acco rding to the m easurem ent result,the respective app rop riate w avelength ranges of th ree gases m easured by DOA S w ere analysed.Key words D ifferential op tical abso rp ti on spectro scopy A bso rp ti on cro ss secti on M easurem ent1 引 言长光程差分吸收光谱技术,由于其具有高灵敏度、高分辨率、多组分、实时、快速监测的特点,正在成为大气污染监测的理想工具。

光学传感器在环境监测中的应用考核试卷

光学传感器在环境监测中的应用考核试卷
D.化学反应
8.光电二极管的主要功能是将()转换为电信号。
A.光能
B.热能
C.机械能
D.电能
9.光学传感器在环境监测中的应用主要包括()。
A.空气质量监测
B.水质监测
C.噪音监测
D.以上都是
10.光学传感器具有()特点。
A.灵敏度高
B.选择性好
C.抗干扰能力强
D.以上都是
11.光学传感器在水质监测中,常用于检测()。
14.光学传感器在水质监测中,可以检测水的_______。
15.光学气体传感器在检测过程中,需要考虑_______、_______等因素。
16.光学传感器在水质监测中的优点包括_______、_______等。
17.光学传感器在空气质量监测中的主要传感器类型有_______、_______等。
18.光学传感器在环境监测中的应用,有助于提高_______、_______等。
5. PM2.5是指大气中直径小于_______微米的颗粒物。
6.光学传感器在空气质量监测中,可以检测_______浓度。
7.光学气体传感器中,_______传感器主要用于检测氢气。
8.光学传感器在水质监测中,可以检测水的_______。
9.光学传感器在环境监测中,具有_______、_______等特点。
18.光学气体传感器在室内空气质量监测中,主要用于检测()。
A.二氧化硫
B.氨气
C.甲醛
D.以上都是
19.光学传感器在环境监测中,可以检测()。
A.水温
B.水质浊度
C.水质pH值
D.以上都是
20.光学传感器在空气质量监测中,可以检测()。
A. PM2.5
B.温度
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

考虑到瑞利(Rayleigh)散射、米(Mie)散射以及大气中 其它
物质的消光因素,可以得到修正后的Lambert-Beer定律形式:
I(λ )=I0(λ )exp[-L(∑i(σ (λ )ci)+ε R(λ )+ε M(λ ))]A(λ ) (2)
其中,A表示系统的传输函数,ε R表示瑞利散射消光系数,ε M 表示米氏散射消光系数,式中同时考虑存在多种吸收气体的情 况。
NO + O3 → NO2 + O2
1、污染物的日变化规律及其相互关系
(2)、SO2的日变化规律
人类活动开始 地面大气扩散未充分发展
大气层结稳定 不利扩散
2、空气污染的“周末效应”分析
(1) 周末-工作日NO2日变化规律对比
2、空气污染的“周末效应”分析
(2)周末-工作日O3的日变化规律对比
3、DOAS系统的测量原理
差分光学吸收光谱技术的工作原理是利用分子的窄带吸
收光谱来辨别气体的成分,通过其吸收谱的强度推导被测 气体的浓度,其理论基础是Lambert-Beer定律:
I(λ )=I0(λ )exp(-σ (λ )cL) (1)
其中,光源发出的光强为I0,经过光程L,在接收端得到的 强度为I。I0和I都是波长λ 的函数。如果浓度c的单位用 mole/cm3,则气体的吸收能力用吸收截面σ (单位 :cm2/mole)来表示。
2、空气污染的“周末效应”分析
(3)周末-工作日SO2的日变化规律对比
3、污染物浓度日变化与气象条件的关系
不同天气条件下O3的日变化规律
晴天云量少 光照强度大 光化学反应活跃 反应速率常数大
三、思考题
1、DOAS系统主要由哪几部分构成?
其中,I(λ )就是测量得到的采样光谱,I′0(λ )则可通过提 取出I(λ )的慢变化得到。因为差分吸收截面σ ′i(λ )可 由文献或实验室测量的绝对吸收截面σ i(λ )计算得到,光 程长L可通过激光测距等手段获得,所以只要有相应的差分 吸收光谱(足够多的数据点),利用最小二乘,就可以得到各 种吸收气体的浓度ci。
I0(λ )=I0(λ )exp[-L(∑i(σ io(λ )ci)+ε R(λ )+ε M(λ ))]A(λ ) (4)
(4)式包含光谱强度的慢变化部分,即消光、大气紊乱、气体的 “宽带”吸收结构以及系统传输函数等引起的光强变化。
定义D′(λ )为差分吸收光谱,可以表示为:
D′(λ )=lnI′0(λ )I(λ )=L·∑iσ ′i(λ )·ci(5)
• 资料分析:利用DOAS对主要大气污染物NO2、SO2以 及O3的测量结果,分析了南京市主要大气污染物的 日变化规律、空气污染的“周末效应”以及与天 气情况的密切关系
1、污染物的日变化规律及其相互关系
(1)、O3和NO2的日变化规律
NO2 + hγ → NO + O
O + O2 + M → O3 + M
一、差分吸收光谱技术DOAS介绍
1、DOAS技术简介
差分吸收光谱技术DOAS(Differential Optical Absorption Spectrometry)是在20世纪70年代末由德国Heidelberg大学 环境物理研究所的U.Platt和D.Perner提出的,目前这一技术 广泛应用于大气环境监测。DOAS技术根据记录的在几公里长 的光程上大气中痕量物质对光的差分吸收来计算痕量物质的 浓度。长光程是为了获得极低浓度的大气污染物的可测量的 吸光率。使用差分吸收而不是绝对吸收是由于大多数大气污 染物在大气中连续存在,不可能获得未经衰减的大气光谱。
2、DOAS仪器的特点
DOAS仪器与传统的点探测相比具有以下优点: • 高灵敏度的实时测量:用同一个仪器实现了多种痕量物质的实时、同时 测量。 • 光程上的线测量:DOAS系统测量的是从光源到接收器之间位于大气中的 开放的光程上痕量气体的总吸收,因此得到的是给定光程上污染物的平 均浓度,它比用点探测得到的浓度更具有代表性。 • 高精度的非接触测量:用DOAS技术测量物质的浓度,不确定性仅仅受到 可独立测量的这种物质的差分吸收截面测量精度、大气吸收光谱测量 精度、光谱处理精度的影响。 • 低维护、低成本:由于DOAS是一种绝对测量技术,一旦给DOAS系统提供 了适当的参考光谱就不需要常规的气体校准。另外,维护周期短,运转 成本低。DOAS系统在无人照管的条件下可以长期运转,通过电话网上的 调制解调器与操作者通信,实现数据的自动采集或操作控制。
4、DOAS系统的构成
整个DOAS系统主要包括:
• 光源
• • • • • 光发射和接收装置 角反射镜 石英光纤 光谱仪 光探测器(PDA光电二极管阵 列) 配套的计算机
• 数据采集卡(A/D转换)
• 光发射/接收单元采用开路式单 端结构
发射器和接收器
• 一个带氙灯和供电 装置的发射器 • 一个捕捉光源的接 收器
DOAS大气成份测量原理 与数据处理
张艳燕
2008202456
目录
一、差分吸收光谱技术DOAS介绍 1、DOAS技术简介 2、DOAS仪器的特点 3、DOAS系统的测量原理 4、DOAS系统的构成 二、DOAS技术测量数据处理与讨论 1、O3、NO2 及SO2的日变化规律及相互关系 2、空气污染的“周末效应”分析 3、污染物浓度日变化与气象条件的关系 三、思考题
光缆 用于把接收器收 到的光传输到光 谱分析仪内
PS150电源 提供20伏特/8安培直 流电给发射器使用
多路器 切换长、短光路接收 光谱
AR500分析仪 测量、计算及分析的中 央处理器 • 光谱分析仪 • 计算机
二、DOAS技术测量数据处理与讨论
观测资料介绍
• 采样时间:南京市2008年4月至2008年9月
DOAS技术的关键是将吸收截面σ i(λ )分解为两部分:
σ i(λ )=σ i0(λ )+σ i(λ ) (3)
(3)式中σ i0(λ )表示吸收截面中随波长缓慢变化的“宽带”光 谱部分(低频),σ i(λ )表示吸收截面中随波长快速变化的“窄 带”光谱部分(高频),即差分吸收截面。定义I0(λ )为不包含差 分吸收时的光强:
相关文档
最新文档