无锡市惠山区2015年初三二模考试数学试卷及答案
无锡市惠山区初三数学中考一模试卷

15无锡市惠山区2015年初三数学中考一模试卷2015.04.29本试卷分试题和答题卡两部分,所有答案一律写在答题卡上.考试时间为120分钟.试卷满分为130分. 注意事项:1. 答卷前,考生务必用0.5毫米墨水签字笔将自己的姓名、准考证号填写在答题卡的相应位置上.2. 答题务必用0.5毫米墨水签字笔作答.写在答题卡上各题目指定区域内相应的位置,在其他位置答题一律无效.3. 卷中除要求近似计算的结果取近似值外,其他均应给出精确结果. 一、选择题(本大题共10小题,每小题3分,共30分.在每小题所给出的四个选项中,只有一项是正确的,请.将答案写在答题卡上.........) 1.-5的相反数是A.-5B.5C. - D2. 下面四个图形中,不是轴对称图形的是3.下列运算正确的是235.A a a a += 33.(2)2B x x -=-.2832C += 22.()()2D a b a b a ab b +-+=---4. 如图是有几个相同的小正方体组成的一个几何体.它的俯视图是A. B. C. D.5.若12,x x 是一元二次方程210160x x ++=的两个根,则12x x +的值是A.-10B.10C.-16D.166.圆锥的底面半径为2,母线长为4,则它的侧面积为A.4πB.8πC.16πD. 43π 7. 如图,已知△ABC (AC<BC ),用尺规在BC 上确定一点P ,使PA+PC=BC ,则符合要求的作图痕迹是158.定义符号max{a,b}的含义为:当a≥b,则max{a,b}=a;当a<b,则max{a,b}=b.如max{-1,-3}=-1,max{-4,-2}=-2.则max{x2-1,x}的最小值为.0A.1B51.2C+15.2D-9.如图,在一张矩形纸片ABCD中,AB=4,BC=8,点E,F分别在AD,BC上,将纸片ABCD沿直线EF折叠,点C落在AD上的一点H处,点D落在点G处,有以下四个结论:①四边形CFHE是菱形;②EC平分∠DCH;③线段BF的取值范围为3≤BF≤4;④当点H与点A重合时,EF=2.以上结论中,你认为正确的有()个.10. 在平面直角坐标系内,函数334y x=+的图像与x轴,y轴分别交于A、B两点,点O为坐标原点,若在该坐标平面内有点P(不与点A、B、O重合)为顶点的直角三角形与Rt△ABO 全等,且这个以点P为顶点的直角三角形与Rt△ABO有一条公共边,则所有符合条件的P 点个数为()A.9个B.7个C.6个D.5个A.1B.2C.3D.41xy x -=011(1)(31)()42---+二、 填空题(本大题共8小题,每小题2分,共16分.不需写出解答过程,只需把答案直接填在答题卡上相应的位置处..........) 11.函数 中,自变量x 的取值范围是 . 12.“清明”小长假无锡火车站共发送旅客1 680 000人,这个数据用科学计数法可表示为.13.若一个多边形的内角和为360°,则这个多边形的边数为 . 14.分解因式:22a a -= .15. 如图是石景山当代商场地下广场到地面广场的手扶电梯示意图.其中AB 、CD 分别表示地下广场、地面广场电梯口处的水平线,已知∠ABC=135°,BC 的长约是62m ,则乘电梯从点B 到点C 上升的高度h 是 m .第15题图 第16题图 第17题图 第18题图 16. 如图,点A 、B 、C 都在圆O 上,如果∠AOB+∠ACB=84°,那么∠ACB 的大小是 .17. 如图,平行四边形AOBC 中,对角线交于点E ,双曲线(k >0)经过A ,E 两点,若平行四边形AOBC 的面积为24,则k= .18. 在正方形ABCD 中,动点E ,F 分别从D ,C 两点同时出发,以相同的速度在直线DC ,CB 上移动.连接AE 和DF 交于点P ,由于点E ,F 的移动,使得点P 也随之运动,若AD=2,试求出线段CP 的最小值 . 三、解答题(本大题共10小题,共84分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤) 19.(本题满分8分)计算:241(2)42x x +-+ 20.(本题满分8分)(1)解方程212x x =+ (2)解不等式组3123x x x x +>-⎧⎨-≤⎩21.(本题满分8分)如图,在平行四边形ABCD 中,E 、F 为对角线BD 上的两点,且AE ⊥BD ,CF⊥BD.求证:BE=DF.22.(本题满分8分)无锡市对初三年级学生的体育、物理实验操作、化学实验操作成绩进行抽样调查,成绩评定为A,B,C,D四个等级.现抽取这三种成绩共1000份进行统计分析,其中A,B,C,D分别表示优秀,良好,合格,不合格四个等级.相关数据统计如下表及图所示.科目人数等级 A B C D物理实验操作120 90 20化学实验操作90 110 30体育140 160 27(1)请将上表补充完整(直接填数据,不写解答过程).(2)无锡市共有40000名学生参加测试,试估计该市初三年级学生化学实验操作合格及合格以上大约有多少人?(3)在这40000 名学生中,体育成绩不合格的大约有多少人?23.(本题满分10分)在一个不透明的口袋里装有分别标有数字-3、-1、0、2的四个小球,除数字不同外,小球没有任何区别,每次试验先搅拌均匀.(1)从中任取一球,求抽取的数字为正数的概率;(2)从中任取一球,将球上的数字记为a,求关于x的一元二次方程ax2-2ax+a+3=0有实数根的概率;(3)从中任取一球,将球上的数字作为点的横坐标记为x(不放回);在任取一球,将球上的数字作为点的纵坐标,记为y,试用画树状图(或列表法)表示出点(x,y)所有可能出现的结果,并求点(x,y)落在第二象限内的概率.24.(本题满分8分)小明坐于堤边垂钓,如图,河堤AC 的坡角为30°,AC 长米,钓竿AO 的倾斜角是60°,其长为3米,若AO 与钓鱼线OB 的夹角为60°,求浮漂B 与河堤下端C 之间的距离.25.(本题满分6分)为了考察冰川的融化状况,一支科考队在某冰川上设定一个以大本营O 为圆心,半径为4km 的圆形考察区域,线段P 1P 2是冰川的部分边界线(不考虑其它边界),当冰川融化时,边界线沿着与其垂直的方向朝考察区域平等移动,若经过n 年,冰川的边界线P 1P 2移动的距离为s (km ),并且s 与n (n 为正整数)的关系是2397205025s n n =-+.以O 为原点,建立如图所示的平面直角坐标系,其中P 1、P 2的坐标分别为(-4,9)、(-13、-3).(1)求线段P 1P 2所在直线对应的函数关系式; (2)求冰川边界线移动到考察区域所需的最短时间.26.(本题满分8分)九(1)班数学兴趣小组经过市场调查,整理出某种商品在第x (1≤x ≤90)天的售价与销售量的相关信息如下表:时间x (天)1≤x <5050≤x ≤90 售价(元/件) x +40 90每天销量(件) 200-2x已知该商品的进价为每件30元,设销售该商品的每天利润为y 元 (1) 求出y 与x 的函数关系式(2) 问销售该商品第几天时,当天销售利润最大,最大利润是多少?(3) 该商品在销售过程中,共有多少天每天销售利润不低于4800元?请直接写出结果.27.(本题满分10分)如图①,直线l :y =mx +n(m <0,n >0)与x ,y 轴分别相交于A ,B两点,将△AOB 绕点O 逆时针旋转90°,得到△COD ,过点A ,B ,D 的抛物线P 叫做l 的关联抛物线,l 叫做P 的关联直线. (1)若直线:33l y x =-+,E 为AD 的中点①在CD 上有一动点F ,求当△DEF 与△COD 相似时的点F 的坐标.②如图②,过E 做x 轴的垂线a ,在西线a 上是否存在一点Q ,使∠CQO =∠CDO ?若存在,求出Q 点坐标;若不存在,请说明理由(2)如图③,若l :y =mx -4m ,G 为AB 中点,H 为CD 中点,连接GH ,M 为GH 中点,连接OM .若,直接写出l ,P 表示的函数解析式.28.(本题满分10分)已知矩形纸片ABCD 中,AB =24厘米,BC =10厘米.(1)按如下操作:先将矩形纸片上下对折,而后左右对折,再沿对角线对折,而后展开得到图中的折痕四边形EFGH (如图1),求菱形EFGH 的面积.(2)如图2,将矩形纸片ABCD 先沿对角线AC 对折,再将纸片折叠使点A 与点C 重合得折痕EF ,则四边形AECF 必为菱形,请加以证明.(3)请通过一定的操作,构造一个菱形EFGH (不同于第(1)题中的特殊图形),使菱形的四个顶点分别落在矩形ABCD 的四条边上(E 、F 、G 、H 分别在边AB 、BC 、CD 、DA 上,且不与矩形ABCD 的顶点重合).①请简述操作的方法,并在图3中画出菱形EFGH . ②求菱形EFGH 的面积的取值范围.。
2015初三二模数学试题参考答案

初三二模数学试题参考答案一.选择题:1-5:BDCAC ,6-10:BDCDA二.填空题:11. 1,-1 ;12. 12 ;13.A. 120°;B. 2.64;14. 3324-.17.解:原式=÷=•=﹣, ……2分解方程x 2﹣4x +3=0得,(x ﹣1)(x ﹣3)=0,x 1=1,x 2=3.……3分 当x =1时,原式无意义; ……4分当x =3时,原式=﹣=﹣51.……5分18.(1)证明:∵DF ∥BE , ∴∠FDO=∠EBO ,∠DFO=∠BEO , ∵O 为AC 的中点, ∴OA=OC , 又∵AE=CF ,∴OA ﹣AE=OC ﹣CF ,即OE=OF , 在△BOE 和△DOF 中,,∴△BOE ≌△DOF (AAS );……3分(2)若OD=AC ,则四边形ABCD 是矩形,理由如下: 证明:∵△BOE ≌△DOF ,∴OB=OD ,∵OD=AC∴OA=OB=OC=OD ,即BD=AC , ∴四边形ABCD 为矩形.……6分≈0.9,sin44°=,,的图象过 y=,的图象上,=,解得y=,+22.(1)2……3分(2)树状图(或列表法)略.共有16种等可能结果,其中两张卡片都是中心对称图形的有4种 P (两张都是中心对称图形)=164=41………8分23.(1)证明:连接OB∵OB =OA ,CE =CB ,∴∠A =∠OBA ,∠CEB =∠又∵CD ⊥OA ,∴∠A +∠AED =∠A +∠CEB =90° ∴∠OBA+∠ABC =90°,∴OB ⊥BC ∴BC 是⊙O 的切线 ………3分 (2)过点C 作CG ⊥BE 于点G , ∵CE =CB ,∴EG =12BE =5 又Rt △ADE ∽Rt △CGE ,∴sin ∠ECG =sin A = 5 13∴CE =EGsin ∠ECG=13,∴CG =CE 2-EG 2=12又CD =15,CE =13,∴DE =2 由Rt △ADE ∽Rt △CGE ,得 ADCG =DEGE∴AD =DE GE·CG =245∴⊙O 的半径为2AD =485……8分24.解:(1)∵y=2x+2, ∴当x=0时,y=2, ∴B(0,2).当y=0时,x=﹣1, ∴A(﹣1,0).∵抛物线y=﹣x 2+bx+c 过点B (0,2),D (3,﹣4), ∴解得:,∴y=﹣x 2+x+2; ……4分(2)E(49,21) ……6分(3)设直线BD 的解析式为y=kx+b ,由题意,得,解得:,∴直线BD 的解析式为:y=﹣2x+2; 设P (b ,﹣b 2+b+2),H (b ,﹣2b+2).如图3,∵四边形BOHP 是平行四边形, ∴BO=PH=2.∵PH=﹣b 2+b+2+2b ﹣2=﹣b 2+3b . ∴2=﹣b 2+3b ∴b 1=1,b 2=2.当b=1时,P (1,2), 当b=2时,P (2,0)∴P 点的坐标为(1,2)或(2,0).……10分 25.解:∵AB=10cm,AC=8cm ,BC=6cm ,∴由勾股定理逆定理得△ABC 为直角三角形,∠C 为直角. (1)BP=2t ,则AP=10﹣2t . ∵PQ∥BC,∴,即,解得t=,∴当t=s 时,PQ∥BC. ……3分(2)如答图1所示,过P 点作PD⊥AC 于点D . ∴PD∥BC,∴,即,解得PD=6﹣t .S=×AQ×PD=×2t×(6﹣t )=﹣t 2+6t=﹣(t ﹣)2+,∴当t=s 时,S 取得最大值,最大值为cm 2.……6分(3)假设存在某时刻t ,使线段PQ 恰好把△ABC 的面积平分, 则有S △AQP =S △ABC ,而S △ABC =AC•BC=24,∴此时S △AQP =12.由(2)可知,S △AQP =﹣t 2+6t ,∴﹣t 2+6t=12,化简得:t 2﹣5t+10=0, ∵△=(﹣5)2﹣4×1×10=﹣15<0,此方程无解,∴不存在某时刻t ,使线段PQ 恰好把△ABC 的面积平分.……9分 (4)假设存在时刻t ,使四边形AQPQ′为菱形,则有AQ=PQ=BP=2t . 如答图2所示,过P 点作PD⊥AC 于点D ,则有PD∥BC, ∴,即,解得:PD=6﹣t ,AD=8﹣t ,∴QD=AD﹣AQ=8﹣t﹣2t=8﹣t.在Rt△PQD中,由勾股定理得:QD2+PD2=PQ2,即(8﹣t)2+(6﹣t)2=(2t)2,化简得:13t2﹣90t+125=0,解得:t1=5,t2=,∵t=5s时,AQ=10cm>AC,不符合题意,舍去,∴t=.由(2)可知,S△AQP=﹣t2+6t∴S菱形AQPQ′=2S△AQP=2×(﹣t2+6t)=2×[﹣×()2+6×]=cm2.所以存在时刻t,使四边形AQPQ′为菱形,此时菱形的面积为cm2.…12分。
江苏省无锡市2015年中考模拟名校调研检测联合考试数学试题及解答

百分比
孙楠
1 7%
韩红
a
黄丽玲
10%
李健
38%
郑淳元
b
根据统计图表提供的信息,解答下列问题:
(1)a=,b=;
(2)根据以上信息,请直接在答题卡中补全条形统计图;
(3)根据抽样调查结果,请你估计在提供有效问卷的这4800人中有多少人预测韩红最有可能获得冠军.
23. (本题满分8分)小英与她的父亲、母亲计划清明小长假外出旅游,初步选择了苏州、常州、上海、南京四个城市,由于时间仓促,他们只能去其中一个城市,到底去哪一个城市三个人意见不统一,在这种情况下,小英父亲建议,用小英学过的摸球游戏来决定,规则如下:
4.如图,所给图形中是中心对称图形但不是轴对称图形的是( ▲ )
A B C D
5.一次数学测试后,随机抽取九年级某班5名学生的成绩如下:91,78,98,85,98.关于这组数据说法错误的是(▲)
A.极差是20B .中位数是91 C.众数是98 D.平均数是91
6.圆锥的底面半径为2,母线长为4,则它的侧面积为(▲)
作□A1B1A2C2;…;按此作法继续下去,则Cn的坐标是(▲)
A.(﹣ ×4n,4n)B.(﹣ ×4n-1,4n-1)
C.(﹣ ×4n﹣1,4n)D.(﹣ ×4n,4n-1)
二、填空题(每小题2分,共16分)
11.函数 中自变量 的取值范围是▲。
12.国家统计局的相关数据显示2015年第1季度我国国民生产总值为118855亿元,这一数据用科学记数法表示为▲ 亿元(保留2个有效数字).
按照上面的规则,请你解答下列问题:
(1)已知小英的理想旅游城市是常州,小英和母亲随机各摸球一次,,请用画树状图或列表法求两人均摸出白球的概率是多少?
2015年惠山区数学一模试卷(附答卷纸、答案)

2014年上学期理化教研组工作总结高炳兴本学期围绕学校工作总目标,充分发挥理化生学科的特点,全面推行素质教育思想。
加强对理化生课堂教学的研究,以教学工作为中心,以校本研究为理念,以新课标课改为主线,以科研课题为引领,以学生为本,以提高学生素质为服务宗旨,让每位学生得到全面发展,积极探索教学过程的管理,不断完善学校理化生常规教育教学工作和实验教学工作,使我理化生教育水平不断提高。
一、抓好常规教学工作三个学科的老师在认真钻研新大纲的同时积极学习新课程标准,并结合学校和学生实际制定学期教学计划,认真备课和组织教学。
在教学过程中注重抓基础、抓“课课练”,加强课堂直观性教学,做到多示范,力争学生综合素质得到全面发展。
全组教师坚持常规的校内教研活动,进行学习,理论研究,探讨教育教学改革,努力提高自己的教学业务水平,提高教学的质量。
加强管理,抓好课堂教学。
落实各项课堂管理制度,加强学生的说理教育,因此教学秩序良好,没有出现教学意外事故,保证了教学任务的顺利完成。
二、教研工作1、全面贯彻落实新课程标准根据上级教育部门的计划要求,积极推行新的课程标准,为此我们科组老师在参加学习培训的基础上,根据学校的实际以及各科的情况,认真钻研教材,制定教学计划,实施新的课程标准。
教研组充分利用教研活动时间学习有关文件资料,使大家的学习自觉性不断增强,对新的课程标准有了较全面的认识,对新的教学理念有了进一步的理解。
2、努力开展教学科研,积极撰写文章论文教研工作是教研组工作的重要一环,是不断提高教学水平的重要保证。
本学期,开展正常的教研活动,组织本教研组教师认真学习,研讨本学科的教育教学方法,探索教改之路。
教研组全体教师在教研组内部进行了高质量的赛教活动,大家相互学习,共同进步与提高。
在教育教学理论学习上,除了积极参加政治及业务学习活动,还自己利用书籍进行学习,以提高教育教学科学理论和学习有关教学文章,不断丰富完善自我,组内的教师还积极围绕本教研组教研课题撰写各教学论文,提高科研创作能力水平。
2015年区二模数学答案

3 2 2
3 ..............................................................................................2 分
22.(本题满分 7 分) (1)画图正确...............................................................................................................................................3 分 △ABC 的面积为6..................................................................................................................................1 分 (2) 画图正确.................................................................................................................................................3 分 23.(本题满分 8 分) (1)解:m = 100,x = 40,y = 0.18........................................................................................................3 分 (2)补图正确..................................................................................................................................................2 分 (3)解: 估计该校学生劳动的总时间为 2640 小时..........................................................................................3 分 24.(本题满分 8 分) (1)在△ABC 中,∵AC=BC,∠ACB=90,CG 平分∠ACB, ∴∠CAB=∠CBA=
2015年初三二模数学题(含答案)

数 学 九 年 级 第 二 学 期 期 中 练 习一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个..是符合题意的. 1.中国国家图书馆是亚洲最大的图书馆,截止到今年初馆藏图书达3 119万册,其中古籍善本约有2 000 000册.2 000 000用科学记数法可以表示为A .70.210⨯ B .6210⨯ C .52010⨯ D .6102⨯2.若二次根式2x -有意义,则x 的取值范围是 A . 0≤x B .0≥x C .2≤x D . 2≥x 3.我国古代把一昼夜划分成十二个时段,每一个时段叫一个时辰,古时与今时的对应关系(部分)如下表所示.天文兴趣小组的小明等4位同学从今夜23:00至明晨7:00将进行接力观测,每人两小时,观测的先后顺序随机抽签确定,小明在子时观测的概率为古时子时丑时寅时卯时今时 23:00~1:00 1:00~3:00 3:00~5:00 5:00~7:00A .13B .14C.16 D .1124.如图,小明将几块六边形纸片分别减掉了一部分(虚线部分),得到了一个新多边形.若新多边形的内角和为540°,则对应的是下列哪个图形A B C D5.如图,根据计算正方形ABCD 的面积,可以说明下列哪个等式成立A .()2222a b a ab b +=++ B. ()2222a b a ab b -=-+C. ()()22a b a b a b +-=- D. ()2a ab a ab -=-6.甲和乙入选学校的定点投篮大赛,他们每天训练后投10个球测试,记录命中的个数,五天后将记录的数据绘制成折线统计图,如右图所示.则下列对甲、乙数据描述正确的是A .甲的方差比乙的方差小B .甲的方差比乙的方差大C .甲的平均数比乙的平均数小D .甲的平均数比乙的平均数大D CB A abab ab b a7.在学习“用直尺和圆规作一个角等于已知角”时,教科书介绍如下:对于“想一想”中的问题,下列回答正确的是:A .根据“边边边”可知,△'''C O D ≌△COD ,所以∠'''A OB =∠AOB B .根据“边角边”可知,△'''C OD ≌△COD ,所以∠'''A O B =∠AOB C .根据“角边角”可知,△'''C O D ≌△COD ,所以∠'''A O B =∠AOB D .根据“角角边”可知,△'''C O D ≌△COD ,所以∠'''A O B =∠AOB8.小明家端午节聚会,需要12个粽子.小明发现某商场正好推出粽子“买10赠1”的促销活动,即顾客每买够10个粽子就送1个粽子.已知粽子单价是5元/个,按此促销方法,小明至少应付钱A .45元B .50元C .55元D . 60元 9.如图,点A ,B 是棱长为1的正方体的两个顶点,将正方体按图中所示展开,则在展开图中A ,B 两点间的距离为A .2B .5C .22D .1010.如右图所示,点Q 表示蜜蜂,它从点P 出发,按照着箭头所示的方向沿P →A →B →P →C →D →P 的路径匀速飞行,此飞行路径是一个以直线l 为对称轴的轴对称图形,在直线l 上的点O 处(点O 与点P 不重合)利用仪器测量了∠POQ 的大小.设蜜蜂飞行时间为x ,∠POQ 的大小为y ,则下列图象中,能表示y 与x 的函数关系的图象大致是A B C DDBACPQOABADACB二、填空题(本题共18分,每小题3分)11. 将函数y =x 2 −2x + 3写成()2y a x h k =-+的形式为 . 12. 点A,B 是一个反比例函数图象上的两个不同点.已知点A (2,5),写出一个满足条件的B 点的坐标是 .13. 如图,四边形ABCD 内接于⊙O ,∠BCD=100°,AC 平分∠BAD ,则∠BAC 的度数为 .14.如图,在一次测绘活动中,某同学站在点A 观测放置于B ,C 两处的标志物,数据显示点B 在点A 南偏东75°方向20米处,点C 在点A 南偏西15°方向20米处,则点B 与点C 的距离为 米.15. 如图,在Rt △ABC 中,∠C =90°,∠BAC =30°, BC =1,以B 为圆心,BA 为半径画弧交CB 的延长线与点D ,则AD 的长为 .16. 五子棋是一种两人对弈的棋类游戏,规则是:在正方形棋盘中,由黑方先行,白方后行,轮流弈子,下在棋盘横线与竖线的交叉点上,直到某一方首先在任一方向(横向、竖向或者是斜着的方向)上连成五子者为胜.如图,这一部分棋盘是两个五子棋爱好者的对弈图.观察棋盘,以点O 为原点,在棋盘上建立平面直角坐标系,将每个棋子看成一个点,若黑子A 的坐标为 (7,5),则白子B 的坐标为______________;为了不让白方获胜,此时黑方应该下在坐标为______________的位置处.三、解答题(本题共30分,每小题5分)17.计算:13128tan 45+()3--+-+︒-. 18.解不等式2(1)13x x -≤+,并把它的解集在数轴上表示出来.19.如图,已知∠BAC =∠BCA ,∠BAE =∠BCD =90°,BE=BD .求证:∠E =∠D .20.已知2410x x --=,求代数式314x x x---的值. 21.列方程或方程组解应用题:小明坚持长跑健身.他从家匀速跑步到学校,通常需30分钟.某周日,小李与同学相约早上八点学校见,他七点半从家跑步出发,平均每分钟比平时快了40米,结果七点五十五分就到达了学校,求小明家到学校的距离.22.已知关于x 的方程24310x x a -+-=有两个实数根. (1)求实数a 的取值范围; (2)若a 为正整数,求方程的根.西东南北B CABOCDADACBEAOB四、解答题(本题共20分,每小题5分)23.已知,ABC △中,D 是BC 上的一点,且∠DAC=30°,过点D 作ED ⊥AD 交AC 于点E ,4AE =,2EC =.(1)求证:AD=CD ;(2)若tan B=3,求线段AB 的长.24. 小明和小腾大学毕业后准备自主创业,开一个小店卖腊汁肉夹馍.为了使产品更好地适合大众口味,他们决定进行一次抽样调查.在某商场门口将自己制作的肉夹馍免费送给36人品尝,并请每个人填写了一份调查问卷,以调查这种肉夹馍的咸淡程度是否适中.调查问卷如下所示:经过调查,他们得到了如下36个数据:B C B A D A C D B C B C D C D C E C C A B E A D E C B C B C E D E D D C(1)小明用表格整理了上面的调查数据,写出表格中m 和n 的值; (2)小腾根据调查数据画出了条形统计图,请你补全这个统计图;(3)根据所调查的数据,你认为他们做的腊汁肉夹馍味道适中吗? .(填“适中”或者“不适中”)调查问卷 年 月你觉得这种肉夹馍的口味 (单选) A. 太咸 B. 稍咸 C. 适中 D. 稍淡 E. 太淡BEACD25.如图,Rt △ABC 中,∠A =90°,以AB 为直径的⊙O 交BC 于点D ,点E 在⊙O 上, CE =CA , AB ,CE 的延长线交于点F . (1) 求证:CE 与⊙O 相切;(2) 若⊙O 的半径为3,EF =4,求BD 的长.26.阅读下面材料:小明研究了这样一个问题:求使得等式20(0)kx x k +-=>成立的x 的个数.小明发现,先将该等式转化为2kx x +=,再通过研究函数2y kx =+的图象与函数y x =的图象(如图)的交点,使问题得到解决.xyy = |x |–5–4–3–2–112345–5–4–3–2–112345oxy()–5–4–3–2–112345–5–4–3–2–112345o请回答:(1) 当k =1时,使得原等式成立的x 的个数为 _______; (2) 当0<k <1时,使得原等式成立的x 的个数为_______; (3) 当k >1时,使得原等式成立的x 的个数为 _______. 参考小明思考问题的方法,解决问题:关于x 的不等式240 ()x a a x+-<>0只有一个整数解,求a 的取值范围.DFB EAOC五、解答题(本题共22分,第27题7分,第28题7分,第29题8分)27.在平面直角坐标系xOy 中,抛物线224y mx m m x -++=与y 轴交于点A (0,3),与x 轴交于点B ,C (点B 在点C 左侧).(1)求该抛物线的表达式及点B ,C 的坐标;(2)抛物线的对称轴与x 轴交于点D ,若直线y kx b =+经过点D 和点 E (1,2)--,求直线DE 的表达式;(3)在(2)的条件下,已知点P (t ,0),过点P 作垂直于x 轴的直线交抛物线于点M ,交直线DE 于点N ,若点M 和点N 中至少有一个点在x 轴下方,直接写出t 的取值范围.28.如图1,在△ABC 中,AB =AC ,∠ABC =α,D 是BC 边上一点,以AD 为边作△ADE ,使AE =AD , DAE ∠+BAC ∠=180°. (1)直接写出∠ADE 的度数(用含α的式子表示); (2)以AB ,AE 为边作平行四边形ABFE ,①如图2,若点F 恰好落在DE 上,求证:BD =CD ; ②如图3,若点F 恰好落在BC 上,求证:BD =CF .ECAB DFEBCADFEBCA D图1 图2 图3xy()–5–4–3–2–112345–5–4–3–2–112345o29. 如图1,在平面直角坐标系xOy 内,已知点(1,0)A -,(1,1)B -,(1,0)C ,(1,1)D ,记线段AB 为1T ,线段CD 为2T ,点P 是坐标系内一点.给出如下定义:若存在过点P 的直线l 与1T ,2T 都有公共点,则称点P 是12T T -联络点.例如,点P 1(0,)2是12T T -联络点.(1)以下各点中,__________________是12T T -联络点(填出所有正确的序号);①(0,2);②(4,2)-;③(3,2).xy–4–3–2–11234–3–2–1123B AC D Oxy–4–3–2–11234–3–2–1123B AC D O图1备用图(2)直接在图1中画出所有12T T -联络点所组成的区域,用阴影部分表示;(3)已知点M 在y 轴上,以M 为圆心,r 为半径画圆,⊙M 上只有一个点为12T T -联络点, ①若1r =,求点M 的纵坐标; ②求r 的取值范围.海淀区九年级第二学期期末练习数学试卷答案及评分参考2015.6一、 选择题(本题共30分,每小题3分)题号 1 2 3 4 5 6 7 8 9 10 答案BDBCAAACBD二、填空题(本题共18分,每小题3分)题号1112 13 14 15 16 答案 2(1)2y x =-+(1,10)注:答案不唯一40º 20243π (5,1); (1分)(3,7)或(7,3)(2分)答对1个给1分三、解答题(本题共30分,每小题5分)17.(本小题满分5分)解:原式2213=-+-……………………..……………………………………………………...4分24=-.……………………………………………………………………………………...5分18. (本小题满分5分) 解法一:去括号,得22133x x -+≤.…………………………………………………………………..1分 移项, 得22133x x -+≤.…………………………………………………………………..2分 合并,得 1533x -≤. ……………………………………………………………………3分系数化为1,得 5x -≥. …………………………………………………………...……4分不等式的解集在数轴上表示如下:-1-2-3-4-5-66543210. …………………………………………………………5分解法二:去分母,得 2233x x -+≤. …………………………………………………………………1分移项, 得 2332x x -+≤.……………………………………………………………………2分合并, 得 5x -≤. ………………………………………………………………..3分 系数化为1,得 5x -≥. …………………………………………………………………..4分不等式的解集在数轴上表示如下:-1-2-3-4-5-66543210. …………………………………………………………5分19.(本小题满分5分)ACE证明:在△ABC 中 ∵∠BAC =∠BCA ,∴AB =CB . ……………………………………………1分 ∵∠BAE =∠BCD =90°, 在Rt △EAB 和Rt △DCB 中, ,,AB CB BE BD =⎧⎨=⎩∴Rt △EAB ≌Rt △DCB . ……………………………………4分 ∴∠E =∠D . …………………………………………5分20.(本小题满分5分) 解:原式()()()3444x x x x x x x --=---……………………………………………………………………….1分()2344x x x x x --+=-……………………………………………..………………………………2分22444x x x x-+=-.………………………………………………………………………………3分 ∵2410x x --=,∴241x x -=.………………………………………………………………………………………4分 ∴原式1451+==.………………………………………………………………………………..5分 21. (本小题满分5分)解:设小明家到学校的距离为x 米.……………………………………………………………………..1分由题意,得403025x x +=.………………………………………………………………………..3分解得 6000x =. ……………………………………………………………………..4分答:小明家到学校的距离为6000米. ………………………………………………………………….5分22. (本小题满分5分)解:(1)∵关于x 的方程24310x x a -+-=有两个实数根,∴2(4)4(31)0a ∆=---≥.……………………………………………………………………..1分 解得 53a ≤.……………………………………………………………………………………2分∴a 的取值范围为53a ≤.(2)∵53a ≤,且a 为正整数,∴1a =.…………………………………………………………………………………………3分∴方程24310x x a -+-=可化为2420x x -+=.∴此方程的根为1222,22x x =+=-.………………………………………………………5分四、解答题(本题共20分,每小题5分)23. (本小题满分5分) (1)证明: ∵ED ⊥AD ,∴∠ADE =90°.在Rt △ADE 中,∠DAE=30°,AE =4, ∴60DEA =∠o,122DE AE ==.………………………………………………………………1分∵2EC =, ∴DE EC =. ∴EDC C =∠∠.又60,EDC C DEA +=∠=∠∠o Q∴30C DAE =∠=∠o.∴AD=DC . ………………….…………………………………………………………………2分(2)解:过点A 作AF ⊥BC 于点F ,如图. ∴∠AFC =∠AFB =90°.∵AE =4,EC =2, ∴AC =6.在Rt △AFC 中,∠AFC =90°,∠C=30°, ∴132AF AC == …………………………………………………………………………3分 在Rt △AFB 中,∠AFB =90°,tan B=3, ∴1tan AFBF B==.……….………………………4分 ∴2210AB AF FB =+=.…………………5分24. (本小题满分5分)(1)8m =;5n =;……………………...2分 (2)……………………...4分(3)适中. ………………………………….5分 25.(本小题满分5分) 证明:连接OE ,OC .AFBEACD在△OEC 与△OAC 中, ,,,OE OA OC OC CE CA =⎧⎪=⎨⎪=⎩∴△OEC ≌△OAC .………………………………………………………………………………..1分 ∴∠OEC =∠OAC .∵∠OAC =90°,∴∠OEC =90°. ∴OE ⊥CF 于E .∴CF 与⊙O 相切.………………………………………………………………………………...2分(2)解:连接AD .∵∠OEC =90°, ∴∠OEF =90°. ∵⊙O 的半径为3, ∴OE =OA=3.在Rt △OEF 中,∠OEF =90°,OE = 3,EF = 4,∴225OF OE EF =+=,………………………………………………………………………3分3tan 4OE F EF ==. 在Rt △F AC 中,∠F AC =90°,8AF AO OF =+=,∴tan 6AC AF F =⋅=.…………………………………………………………………………4分 ∵AB 为直径,∴AB =6=AC ,∠ADB =90°. ∴BD =2BC. 在Rt △ABC 中,∠BAC =90°, ∴2262BC AB AC =+=.∴BD =32.…………………………………………………………………………………….5分26. (本小题满分5分)解:(1)当k =1时,使得原等式成立的x 的个数为 1 ;…………………………………….………1分 (2)当0<k <1时,使得原等式成立的x 的个数为 2 ;…………………………………………2分DF BEAOC(3)当k >1时,使得原等式成立的x 的个数为 1 .…..…………………………………………3分 解决问题:将不等式240 ()x a a x +-<>0转化为24()x a a x +<>0, 研究函数2(0)y x a a =+>与函数4y x=的图象的交点. ∵函数4y x=的图象经过点A (1,4),B (2,2),函数2y x =的图象经过点C (1,1),D (2,4),若函数2(0)y x a a =+>经过点A (1,4),则3a =, ……………………………………………………4分 结合图象可知,当03a <<时,关于x 的不等式24(0)x a a x+<>只有一个整数解.也就是当03a <<时,关于x 的不等式240 ()x a a x+-<>0只有一个整数解. ……………………5分 五、解答题(本题共22分,第27题7分,第28题7分,第29题8分)27. (本小题满分7分)解:(1)∵抛物线224y mx m m x -++=与y 轴交于点A (0,3),∴43m +=. ∴1m =-.∴抛物线的表达式为232y x x =-++.…………………………………………………………………1分 ∵抛物线232y x x =-++与x 轴交于点B ,C , ∴令0y =,即 2320x x +-=+. 解得 11x =-,23x =. 又∵点B 在点C 左侧,∴点B 的坐标为(1,0)-,点C 的坐标为(3,0).…………………………………………………...……3分 (2)∵2223(1)4y x x x +=---++=,∴抛物线的对称轴为直线1x =. ∵抛物线的对称轴与x 轴交于点D ,∴点D 的坐标为(1,0).…………………………………………………………………………...………4分 ∵直线y kx b =+经过点D (1,0)和点E (1,2)--,∴0,2.k b k b +=⎧⎨-+=-⎩ xy ()()()()–5–4–3–2–112345–5–4–3–2–112345CD BA o解得1,1.k b =⎧⎨=-⎩∴直线DE 的表达式为1y x =-. ………………………………………………………………………5分 (3)1t <或3t > ……………………………………………………………………………………………7分 28.(本小题满分7分)(1)∠ADE =90α︒-.…………………………………………………………………………………….…1分 (2)①证明:∵四边形ABFE 是平行四边形, ∴AB ∥EF .∴EDC ABC α∠=∠=. …………………………….……2分 由(1)知,∠ADE =90α︒-,∴90ADC ADE EDC ∠=∠+∠=︒. …………………...……3分 ∴AD ⊥BC . ∵AB =AC ,∴BD =CD .…………………………………………………………………..……………4分 ②证明:∵AB =AC ,∠ABC =α, ∴C B α∠=∠=.∵四边形ABFE 是平行四边形,∴AE ∥BF , AE =BF .∴EAC C α∠=∠=.……………………………………………………………………………………………5分 由(1)知,2DAE α∠=,∴DAC α∠=.…………………………………………………………………………………………………6分 ∴DAC C ∠=∠. ∴AD =CD . ∵AD =AE =BF , ∴BF =CD .∴BD =CF .………………………………………………………………………………………………………7分 29. (本小题满分8分)(1) ②,③ 是12T T -联络点.…………………………………………………………………………2分 (2)所有12T T -联络点所组成的区域为图中阴影部分(含边界).FEBC ADF EBCAD………………………………………………………………………4分(3)① ∵点M 在y 轴上,⊙M 上只有一个点为12T T -联络点,阴影部分关于y 轴对称,∴⊙M 与直线AC 相切于(0,0), 或与直线BD 相切于(0,1),如图所示. 又∵⊙M 的半径1r =,∴点M 的坐标为(0,1-)或(0,2).………………6分经检验:此时⊙M 与直线AD ,BC 无交点,⊙M 上只有一个点为12T T -联络点,符合题意. ∴点M 的坐标为(0,1-)或(0,2).∴点M 的纵坐标为1-或2. ② 阴影部分关于直线12y =对称,故不妨设点M 位于阴影部分下方. ∵点M 在y 轴上,⊙M 上只有一个点为12T T -联络点, 阴影部分关于y 轴对称,∴⊙M 与直线AC 相切于O (0,0),且⊙M 与直线AD 相离. 作ME ⊥AD 于E ,设AD 与BC 的交点为F , ∴MO = r ,ME > r ,F (0,12).在Rt △AOF 中,∠AOF =90°,AO =1,12OF =, ∴2252AF AO OF =+=,25sin 5AO AFO AF ∠==. 在Rt △FEM 中,∠FEM =90°,FM = FO + OM = r +12,25sin sin 5EFM AFO ∠=∠=,∴5(21)sin 5r ME FM EFM +=⋅∠=. ∴5(21)5r r +>.又∵0r >, ∴052r <<+.……………………………………………………………………………………8分xy–4–3–2–11234–3–2–1123B AC D Oxy–4–3–2–11234–3–2–1123EF B A CD OM。
中考二模检测《数学试卷》含答案解析
一、选择题(每小题3分,共计36分) 1.下列计算正确的是( ) A .(﹣a +b )(﹣a ﹣b )=b 2﹣a 2 B .x +2y =3xyC =0D .(﹣a 3)2=﹣a 52.在中考复习中,老师出了一道题”化简23224x xx x +-++-“.下列是甲、乙、丙三位同学的做法,下列判断正确的是( )甲:原式2222232232284444x x x x x x x x x x x +--+----=-==----()()()(); 乙:原式=(x +3)(x ﹣2)+(2﹣x )=x 2+x ﹣6+2﹣x =x 2﹣4 丙:原式323131222222x x x x x x x x x x +-++-=-=-==++-+++()() 1 A .甲正确 B .乙正确 C .丙正确D .三人均不正确3.如图,甲、乙两动点分别从正方形ABCD 的顶点A ,C 同时沿正方形的边开始移动,甲按顺时针方向环形,乙按逆时针方向环行,若乙的速度是甲的3倍,那么它们第一次相遇在AD 边上,请问它们第2015次相遇在( )边上.A .ADB .DC C .BCD .AB4..方程70050020x x =-的解为( ) A .x =0B .x =20C .x =70D .x =505.下列结论正确的是( ) A .如果a >b ,c >d ,那么a ﹣c >b ﹣dB .如果a >b ,那么1a b>C .如果a >b ,那么11a b<D .如果22a b c c<,那么a <b 6.在一次函数y =kx +2中,若y 随x 的增大而增大,则它的图象不经过第( )象限. A .一B .二C .三D .四7.一副直角三角板如图放置,点C 在FD 的延长线上,AB ∥CF ,∠F =∠ACB =90°,则∠BCF 度数为( )A .15°B .18°C .25°D .30°8.如图,▱ABCD 的对角线AC 与BD 相交于点O ,过点O 作OE ⊥AD 于点E ,若AB =4,∠ABC =60°,则OE 的长是( )A B .C .2 D .589.如图,线段BC 的两端点的坐标分别为B (3,8),C (6,3),以点A (1,0)为位似中心,将线段BC 缩小为原来的12后得到线段DE ,则端点D 的坐标为( )A.(1,4) B.(2,4) C.(32,4) D.(2,2)10.知正六边形的边心距是,则正六边形的边长是A.B.C.D.11.如图,将△ABC沿BC边上的高线AD平移到△A′B′C′的位置,已知△ABC的面积为18,阴影部分三角形的面积为2,若AA′=4,则AD的长度为A.2 B.6C.4 D.812.在平面直角坐标系中,二次函数y=ax2+bx+c(a≠0)的图象如图所示,现给出下列结论:①ab<0;②b2﹣4ac>0;③9a﹣3b+c<0;④b﹣4a=0;⑤ax2+bx=0的两个根为x1=0,x2=﹣4,其中正确的结论有( )A .①③④B .②④⑤C .①②⑤D .②③⑤二、填空题(每小题3分,共计12分)13.25的平方根是__________,16的算术平方根是__________,﹣8的立方根是__________. 14.设α、β是方程x 2﹣x ﹣2018=0的两根,则α3+2019β﹣2018的值为__________.15.在平面直角坐标系xOy 中,点A (4,3)为⊙O 上一点,B 为⊙O 内一点,请写出一个符合条件要求的点B 的坐标__________.16.如图,在△A 1B 1C 1中,已知A 1B 1=8,B 1C 1=6,A 1C 1=7,依次连接△A 1B 1C 1的三边中点,得到△A 2B 2C 2,再依次连接△A 2B 2C 2的三边中点,得到△A 3B 3C 3,…,按这样的规律下去,△A 2019B 2019C 2019的周长为__________.三、简答题(17-21每题8分,22-23每题10分,24题12分)17.先化简再求值:24)44222(22--÷+----+x x x x x x x x ,其中x=4tan45°+2cos30°.18.如图,在△ABC中,AB=AC,点D、E分别在AB、AC上,BD=CE,BE、CD相交于点O.(1)求证:△DBC△△ECB;(2)求证:OB=OC.19.我市某校为了让学生的课余生活丰富多彩,开展了以下课外活动:为了解学生的选择情况,现从该校随机抽取了部分学生进行问卷调查(参与问卷调查的每名学生只能选择其中一项),并根据调查得到的数据绘制了如图所示的两幅不完整的统计图.请根据统计图提供的信息回答下列问题(要求写出简要的解答过程).(1)此次共调查了名学生.(2)将条形统计图补充完整.(3)”数学兴趣与培优”所在扇形的圆心角的度数为.(4)若该校共有2000名学生,请估计该校喜欢A、B、C三类活动的学生共有多少人?(5)学校将从喜欢”A”类活动的学生中选取4位同学(其中女生2名,男生2名)参加校园”金话筒”朗诵初赛,并最终确定两名同学参加决赛,请用列表或画树状图的方法,求出刚好一男一女参加决赛的概率.20.如图所示,某施工队要测量隧道长度BC,AD=600米,AD⊥BC,施工队站在点D处看向B,测得仰角45°,再由D 走到E 处测量,DE ∥AC,DE=500米,测得仰角为53°,求隧道BC 长.(sin53°≈54,cos53°≈53,tan53°≈34).21.如图,一次函数与反比例函数的图象交于点A (﹣4,﹣2)和B (a ,4),直线AB 交y 轴于点C ,连接QA 、O B . (1)求反比例函数的解析式和点B 的坐标:(2)根据图象回答,当x 的取值在什么范围内时,一次函数的值大于反比例函数的值; (3)求△AOB 的面积.22.”莓好河南,幸福家园”,2019年河南省草莓旅游文化节期间,甲、乙两家草莓采摘园草莓品质相同,销售价格也相同,且推出了如下的优惠方案:甲园游客进园需购买20元/人的门票,采摘的草莓六折优惠乙园游客进园不需购买门票,采摘的草莓超过一定数量后,超过部分打折优惠活动期间,小雪与爸爸妈妈决定选一个周末一同去采摘草莓,若设他们的草莓采摘量为x(千克)(出园时欲将自己采摘的草莓全部购买),在甲采摘园所需总费用为y1(元),在乙采摘园所需总费用为y2(元),图中折线OAB表示y2与x之间的函数关系.(1)求y1、y2与x之间的函数关系式;(2)请在图中画出y1与x之间大致的函数图象;(3)若小雪和爸爸妈妈当天所采摘的草莓不少于10千克,则选择哪个草莓园更划算?请说明理由.23.四边形ABCD是⊙O的圆内接四边形,线段AB是⊙O的直径,连结A C.B D.点H是线段BD上的一点,连结AH、CH,且∠ACH=∠CBD,AD=CH,BA的延长线与CD的延长线相交与点P.(1)求证:四边形ADCH是平行四边形;(2)若AC=BC,PB=PD,AB+CD=2(+1)①求证:△DHC为等腰直角三角形;②求CH的长度.24.如图,二次函数y=﹣x2+bx+c的图象过原点,与x轴的另一个交点为(8,0)(1)求该二次函数的解析式;(2)在x轴上方作x轴的平行线y1=m,交二次函数图象于A.B两点,过A.B两点分别作x轴的垂线,垂足分别为点D.点C.当矩形ABCD为正方形时,求m的值;(3)在(2)的条件下,动点P从点A出发沿射线AB以每秒1个单位长度匀速运动,同时动点Q以相同的速度从点A出发沿线段AD匀速运动,到达点D时立即原速返回,当动点Q返回到点A时,P、Q两点同时停止运动,设运动时间为t秒(t>0).过点P向x轴作垂线,交抛物线于点E,交直线AC于点F,问:以A.E.F、Q四点为顶点构成的四边形能否是平行四边形.若能,请求出t的值;若不能,请说明理由.答案与解析一、选择题(每小题3分,共计36分) 1.下列计算正确的是( ) A .(﹣a +b )(﹣a ﹣b )=b 2﹣a 2 B .x +2y =3xyC =0D .(﹣a 3)2=﹣a 5【答案】C【解析】A .原式=a 2﹣b 2,故A 错误;B .x 与2y 不是同类项,不能合并,原式=x +2y ,故B 错误;C .原式=0,故C 正确;D .原式=a 6,故D 错误.2.在中考复习中,老师出了一道题”化简23224x xx x +-++-“.下列是甲、乙、丙三位同学的做法,下列判断正确的是( )甲:原式2222232232284444x x x x x x x x x x x +--+----=-==----()()()(); 乙:原式=(x +3)(x ﹣2)+(2﹣x )=x 2+x ﹣6+2﹣x =x 2﹣4 丙:原式323131222222x x x x x x x x x x +-++-=-=-==++-+++()() 1 A .甲正确 B .乙正确 C .丙正确 D .三人均不正确【答案】C【解析】原式2222223226244444x x x x x x x x x x x +--+-+--=+===----()()1,则丙正确.3.如图,甲、乙两动点分别从正方形ABCD的顶点A,C同时沿正方形的边开始移动,甲按顺时针方向环形,乙按逆时针方向环行,若乙的速度是甲的3倍,那么它们第一次相遇在AD边上,请问它们第2015次相遇在( )边上.A.AD B.DC C.BC D.AB【答案】C【解析】设正方形的边长为a,因为甲的速度是乙的速度的3倍,时间相同,甲乙所行的路程比为1:3,把正方形的每一条边平均分成2份,由题意知:①第一次相遇甲乙行的路程和为2a,乙行的路程为2a33a132⨯=+,甲行的路程为2a11132⨯=+a,在AD边的中点相遇;②第二次相遇甲乙行的路程和为4a,乙行的路程为4a313⨯=+3a,甲行的路程为4a113⨯=+a,在CD边的中点相遇;③第三次相遇甲乙行的路程和为4a,乙行的路程为4a313⨯=+3a,甲行的路程为4a113⨯=+a,在BC边的中点相遇;④第四次相遇甲乙行的路程和为4a,乙行的路程为4a313⨯=+3a,甲行的路程为4a113⨯=+a,在AB边的中点相遇;⑤第五次相遇甲乙行的路程和为4a,乙行的路程为4a313⨯=+3a,甲行的路程为4a113⨯=+a,在AD边的中点相遇;…四次一个循环,因为2015=503×4+3,所以它们第2015次相遇在边BC上.故选C .4..方程70050020x x =-的解为( ) A .x =0 B .x =20C .x =70D .x =50【答案】C【解析】去分母得:700x ﹣14000=500x , 移项合并得:200x =14000, 解得:x =70,经检验x =70是分式方程的解. 5.下列结论正确的是( ) A .如果a >b ,c >d ,那么a ﹣c >b ﹣dB .如果a >b ,那么1ab>C .如果a >b ,那么11a b<D .如果22a b c c<,那么a <b 【答案】D【解析】∵c >d ,∴﹣c <﹣d ,∴如果a >b ,c >d ,那么a ﹣c >b ﹣d 不一定成立,∴选项A 不符合题意;∵b =0时,ab 无意义, ∴选项B 不符合题意;∵a >0>b 时,11ab>,∴选项C 不符合题意;∵如果22a b c c<,那么a <b ,∴选项D 符合题意.6.在一次函数y=kx+2中,若y随x的增大而增大,则它的图象不经过第( )象限.A.一B.二C.三D.四【答案】D【解析】∵在一次函数y=kx+2中,y随x的增大而增大,∴k>0,∵2>0,∴此函数的图象经过一、二、三象限,不经过第四象限.7.一副直角三角板如图放置,点C在FD的延长线上,AB∥CF,∠F=∠ACB=90°,则∠BCF度数为( )A.15°B.18°C.25°D.30°【答案】D【解析】由题意可得:∠ABC=30°,∵AB∥CF,∴∠BCF=∠ABC=30°.8.如图,▱ABCD的对角线AC与BD相交于点O,过点O作OE⊥AD于点E,若AB=4,∠ABC=60°,则OE的长是( )A B.C.2 D.5 8【答案】A【解析】作CF⊥AD于F,如图所示:∵四边形ABCD是平行四边形, ∴∠ADC=∠ABC=60°,CD=AB=4,OA=OC,∴∠DCF=30°,∴DF 12=CD =2,∴CF =∵CF ⊥AD ,OE ⊥AD ,CF ∥OE ,∵OA =OC ,∴OE 是△ACF 的中位线,∴OE 12=CF =9.如图,线段BC 的两端点的坐标分别为B (3,8),C (6,3),以点A (1,0)为位似中心,将线段BC 缩小为原来的12后得到线段DE ,则端点D 的坐标为( )A .(1,4)B .(2,4)C .(32,4) D .(2,2)【答案】B【解析】∵将线段BC 缩小为原来的12后得到线段DE , ∴△ADE ∽△ABC ,∴12AD DE AB BC ==, ∴点D 是线段AB 的中点,∵A (1,0),B (3,8), ∴点D 的坐标为(2,4),10.知正六边形的边心距是,则正六边形的边长是A .B .C .D .【答案】A【解析】∵正六边形的边心距为,∴OB ,∠OAB =60°,∴ABtan60OB ===︒,∴AC =2AB11.如图,将△ABC 沿BC 边上的高线AD 平移到△A ′B ′C ′的位置,已知△ABC 的面积为18,阴影部分三角形的面积为2,若AA ′=4,则AD 的长度为A .2B .6C .4D .8【答案】B【解析】设AD =x ,则A ′D =x ﹣4,根据平移性质可知△ABC 与阴影部分三角形相似,则222418x x-=(),解得x =6. 12.在平面直角坐标系中,二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,现给出下列结论:①ab <0;②b 2﹣4ac >0;③9a ﹣3b +c <0;④b ﹣4a =0;⑤ax 2+bx =0的两个根为x 1=0,x 2=﹣4,其中正确的结论有( )A .①③④B .②④⑤C .①②⑤D .②③⑤【答案】B【解析】∵抛物线开口向下,∴a <0, ∵2ba-=-2,∴b =4a ,ab >0,∴b ﹣4a =0,∴①错误,④正确, ∵抛物线与x 轴交于﹣4,0处两点,∴b 2﹣4ac >0,方程ax 2+bx =0的两个根为x 1=0,x 2=﹣4, ∴②⑤正确,∵当x =﹣3时y >0,即9a ﹣3b +c >0,∴③错误, 故正确的有②④⑤.故选B . 二、填空题(每小题3分,共计12分)13.25的平方根是__________,16的算术平方根是__________,﹣8的立方根是__________. 【答案】±5,4,﹣2. 【解析】25的平方根是±5,16的算术平方根是4,﹣8的立方根是﹣2.14.设α、β是方程x 2﹣x ﹣2018=0的两根,则α3+2019β﹣2018的值为__________. 【答案】2019【解析】由根与系数关系α+β=1, α3+2019β﹣2018=α3﹣2019α+(2019α+2019β)﹣2018=α3﹣2019α+2019(α+β)﹣2018=α3﹣2019α+2019﹣2018=α3﹣2019α+1=α(α2﹣2019)+1=α(α+2018﹣2019)+1=α(α﹣1)+1=α2﹣α+1=2018+1=2019.15.在平面直角坐标系xOy中,点A(4,3)为⊙O上一点,B为⊙O内一点,请写出一个符合条件要求的点B的坐标__________.【答案】故答案为:(2,2).【解析】如图,连结OA,OA=5,∵B为⊙O内一点,∴符合要求的点B的坐标(2,2)答案不唯一.16.如图,在△A1B1C1中,已知A1B1=8,B1C1=6,A1C1=7,依次连接△A1B1C1的三边中点,得到△A2B2C2,再依次连接△A2B2C2的三边中点,得到△A3B3C3,…,按这样的规律下去,△A2019B2019C2019的周长为__________.【答案】2018212【解析】∵A 1B 1=8,B 1C 1=6,A 1C 1=7,∴△A 1B 1C 1的周长是8+6+7=21,依次连接△A 1B 1C 1的三边中点,得到△A 2B 2C 2, ∴A 2B 212=A 1B 1=4,B 2C 212=B 1C 1=3,A 2C 212=A 1C 1=3.5, ∴△A 2B 2C 2的周长为4+3+3.5=10.512=⨯21, 同理△A 3B 3C 3的周长1122=⨯⨯21214=,… 所以,△A 2019B 2019C 2019的周长为(12)2018×212018212=.三、简答题(17-21每题8分,22-23每题10分,24题12分)17.先化简再求值:24)44222(22--÷+----+x x x x x x x x ,其中x=4tan45°+2cos30°. 【答案】见解析.【解析】先根据分式的混合运算顺序和运算法则化简原式,再据特殊锐角三角函数值求得x 的值,代入计算可得.原式=[22x x +-﹣2(2)(2)x x x --]÷42x x -- =(22x x +-﹣2x x -)•24x x --=2x x -•24x x -- =4x x -当x =4tan45°+2cos30°=4×1+2=时,18.如图,在△ABC 中,AB =AC ,点D 、E 分别在AB 、AC 上,BD =CE ,BE 、CD 相交于点O . (1)求证:△DBC △△ECB ; (2)求证:OB =OC .【答案】见解析.【解析】(1)根据等腰三角形的性质得到△ECB =△DBC 根据全等三角形的判定定理即可得到结论; 证明:△AB =AC , △△ECB =△DBC ,在△DBC 与△ECB 中,△△DBC △△ECB (SAS );(2)根据全等三角形的性质得到△DCB =△EBC 根据等腰三角形的判定定理即可得到OB =OC证明:由(1)知△DBC△△ECB,△△DCB=△EBC,△OB=OC.19.我市某校为了让学生的课余生活丰富多彩,开展了以下课外活动:为了解学生的选择情况,现从该校随机抽取了部分学生进行问卷调查(参与问卷调查的每名学生只能选择其中一项),并根据调查得到的数据绘制了如图所示的两幅不完整的统计图.请根据统计图提供的信息回答下列问题(要求写出简要的解答过程).(1)此次共调查了名学生.(2)将条形统计图补充完整.(3)”数学兴趣与培优”所在扇形的圆心角的度数为.(4)若该校共有2000名学生,请估计该校喜欢A、B、C三类活动的学生共有多少人?(5)学校将从喜欢”A”类活动的学生中选取4位同学(其中女生2名,男生2名)参加校园”金话筒”朗诵初赛,并最终确定两名同学参加决赛,请用列表或画树状图的方法,求出刚好一男一女参加决赛的概率.【答案】见解析.【解析】(1)此次调查的总人数为40÷20%=200(人),故答案为:200;(2)D类型人数为200×25%=50(人),B类型人数为200﹣(40+30+50+20)=60(人),补全图形如下:(3)”数学兴趣与培优”所在扇形的圆心角的度数为360°×=108°,故答案为:108°;(4)估计该校喜欢A、B、C三类活动的学生共有2000×=1300(人);(5)画树状图如下:,由树状图知,共有12种等可能结果,其中一男一女的有8种结果,∴刚好一男一女参加决赛的概率=.20.如图所示,某施工队要测量隧道长度BC,AD=600米,AD ⊥BC,施工队站在点D 处看向B,测得仰角45°,再由D 走到E 处测量,DE ∥AC,DE=500米,测得仰角为53°,求隧道BC 长.(sin53°≈54,cos53°≈53,tan53°≈34).【答案】隧道BC 的长度为700米.【解析】作EM ⊥AC 于点M,构建直角三角形,解直角三角形解决问题. 如图,△ABD 是等腰直角三角形,AB=AD=600. 作EM ⊥AC 于点M,则AM=DE=500,∴BM=100.在Rt △CEM 中,tan53°=CM EM ,即600CM =43, ∴CM=800,∴BC=CM -BM=800-100=700(米), ∴隧道BC 的长度为700米. 答:隧道BC 的长度为700米.21.如图,一次函数与反比例函数的图象交于点A (﹣4,﹣2)和B (a ,4),直线AB 交y 轴于点C ,连接QA 、O B . (1)求反比例函数的解析式和点B 的坐标:(2)根据图象回答,当x 的取值在什么范围内时,一次函数的值大于反比例函数的值; (3)求△AOB 的面积.【解析】(1)设反比例函数的解析式为y kx =(k ≠0), ∵反比例函数图象经过点A (﹣4,﹣2),∴﹣24k =-, ∴k =8,∴反比例函数的解析式为y 8x=, ∵B (a ,4)在y 8x =的图象上,∴48a=, ∴a =2,∴点B 的坐标为B (2,4);(2)根据图象得,当x >2或﹣4<x <0时,一次函数的值大于反比例函数的值; (3)设直线AB 的解析式为y =ax +b ,∵A (﹣4,﹣2),B (2,4),∴24a b ⎨+=⎩,解得2b ⎨=⎩,∴直线AB 的解析式为y =x +2,∴C (0,2),∴S △AOB =S △AOC +S △BOC 12=⨯2×41222+⨯⨯=6. 22.”莓好河南,幸福家园”,2019年河南省草莓旅游文化节期间,甲、乙两家草莓采摘园草莓品质相同,销售价格也相同,且推出了如下的优惠方案: 甲园 游客进园需购买20元/人的门票,采摘的草莓六折优惠乙园游客进园不需购买门票,采摘的草莓超过一定数量后,超过部分打折优惠活动期间,小雪与爸爸妈妈决定选一个周末一同去采摘草莓,若设他们的草莓采摘量为x (千克)(出园时欲将自己采摘的草莓全部购买),在甲采摘园所需总费用为y 1(元),在乙采摘园所需总费用为y 2(元),图中折线OAB 表示y 2与x 之间的函数关系.(1)求y 1、y 2与x 之间的函数关系式;(2)请在图中画出y 1与x 之间大致的函数图象;(3)若小雪和爸爸妈妈当天所采摘的草莓不少于10千克,则选择哪个草莓园更划算?请说明理由. 【解析】(1)根据题意,结合图象可知:甲乙两园的草莓单价为:300÷10=30(元/千克), y 1=30×0.6x +20×3=18x +60; 由图可得,当0≤x ≤10时,y 2=30x ,当x >10时,设y 2=kx +b ,将(10,300)和(20,450)代入y 2=kx +b ,20450k b ⎨+=⎩,解得150b ⎨=⎩, ∴当x >10时,y 2=15x +150,∴2300101515010x x y x x ≤≤⎧=⎨+>⎩()();(2)y 2与x 之间大致的函数图象如图所示:(3)y 1<y 2(x ≥10),即18x +60<15x +150,解得x <30; y 1=y 2,即18x +60=15x +150,解得x =30; y 1>y 2,即18x +60>5x +150,解得x >30,答:当草莓采摘量x 的范围为:10≤x <30时,甲采摘园更划算; 当草莓采摘量x =30时,两家采摘园所需费用相同; 当草莓采摘量x 的范围为x >30时,乙采摘园更划算.23.四边形ABCD 是⊙O 的圆内接四边形,线段AB 是⊙O 的直径,连结A C.B D .点H 是线段BD 上的一点,连结AH 、CH ,且∠ACH =∠CBD ,AD =CH ,BA 的延长线与CD 的延长线相交与点P .(1)求证:四边形ADCH 是平行四边形; (2)若AC =BC ,PB =PD ,AB +CD =2(+1)①求证:△DHC 为等腰直角三角形; ②求CH 的长度.【答案】见解析.【解析】本题是圆的综合题,考查了圆的有关知识,平行四边形的判定和性质,相似三角形的判定和性质等知识,求CD的长度是本题的关键.(1)由圆周角的定理可得∠DBC=∠DAC=∠ACH,可证AD∥CH,由一组对边平行且相等的是四边形是平行四边形可证四边形ADCH是平行四边形;(2)①由平行线的性质可证∠ADH=∠CHD=90°,由∠CDB=∠CAB=45°,可证△DH为等腰直角三角形;②通过证明△ADP∽△CBP,可得,可得,通过证明△CHD∽△ACB,可得,可得AB=CD,可求CD=2,由等腰直角三角形的性质可求CH的长度.证明:(1)∵∠DBC=∠DAC,∠ACH=∠CBD∴∠DAC=∠ACH,∴AD∥CH,且AD=CH∴四边形ADCH是平行四边形(2)①∵AB是直径∴∠ACB=90°=∠ADB,且AC=BC∴∠CAB=∠ABC=45°,∴∠CDB=∠CAB=45°∵AD∥CH∴∠ADH=∠CHD=90°,且∠CDB=45°∴∠CDB=∠DCH=45°,∴CH=DH,且∠CHD=90°∴△DHC为等腰直角三角形;②∵四边形ABCD是⊙O的圆内接四边形,∴∠ADP=∠PBC,且∠P=∠P,∴△ADP∽△CBP∴,且PB=PD,∴,AD=CH,∴∵∠CDB=∠CAB=45°,∠CHD=∠ACB=90°∴△CHD∽△ACB∴AB=CD∴,∵AB+CD=2(+1),∴CD+CD=2(+1)∴CD=2,且△DHC为等腰直角三角形,∴CH=24.如图,二次函数y=﹣x2+bx+c的图象过原点,与x轴的另一个交点为(8,0)(1)求该二次函数的解析式;(2)在x轴上方作x轴的平行线y1=m,交二次函数图象于A.B两点,过A.B两点分别作x轴的垂线,垂足分别为点D.点C.当矩形ABCD为正方形时,求m的值;(3)在(2)的条件下,动点P从点A出发沿射线AB以每秒1个单位长度匀速运动,同时动点Q以相同的速度从点A出发沿线段AD匀速运动,到达点D时立即原速返回,当动点Q返回到点A时,P、Q两点同时停止运动,设运动时间为t秒(t>0).过点P向x轴作垂线,交抛物线于点E,交直线AC于点F,问:以A.E.F、Q四点为顶点构成的四边形能否是平行四边形.若能,请求出t的值;若不能,请说明理由.【答案】见解析.【解析】本题考查了待定系数法求二次函数解析式、二次函数图象上点的坐标特征、正方形的性质、待定系数法求一次函数解析式、一次函数图象上点的坐标特征以及平行四边形的性质,解题的关键是:(1)根据点的坐标,利用待定系数法求出二次函数解析式;(2)利用正方形的性质,找出关于m的方程;(3)分0<t≤4,4<t≤7,7<t≤8三种情况,利用平行四边形的性质找出关于t的一元二次方程.(1)将(0,0),(8,0)代入y=﹣x2+bx+c,得:,解得:,∴该二次函数的解析式为y=﹣x2+x.(2)当y=m时,﹣x2+x=m,解得:x1=4﹣,x2=4+,∴点A的坐标为(4﹣,m),点B的坐标为(4+,m),∴点D的坐标为(4﹣,0),点C的坐标为(4+,0).∵矩形ABCD为正方形,∴4+﹣(4﹣)=m,解得:m1=﹣16(舍去),m2=4.∴当矩形ABCD为正方形时,m的值为4.(3)以A.E.F、Q四点为顶点构成的四边形能为平行四边形.由(2)可知:点A的坐标为(2,4),点B的坐标为(6,4),点C的坐标为(6,0),点D的坐标为(2,0).设直线AC的解析式为y=kx+a(k≠0),将A(2,4),C(6,0)代入y=kx+a,得:,解得:,∴直线AC的解析式为y=﹣x+6.当x=2+t时,y=﹣x2+x=﹣t2+t+4,y=﹣x+6=﹣t+4,∴点E的坐标为(2+t,﹣t2+t+4),点F的坐标为(2+t,﹣t+4).∵以A.E.F、Q四点为顶点构成的四边形为平行四边形,且AQ∥EF,∴AQ=EF,分三种情况考虑:①当0<t≤4时,如图1所示,AQ=t,EF=﹣t2+t+4﹣(﹣t+4)=﹣t2+t,∴t=﹣t2+t,解得:t1=0(舍去),t2=4;②当4<t≤7时,如图2所示,AQ=t﹣4,EF=﹣t2+t+4﹣(﹣t+4)=﹣t2+t,∴t﹣4=﹣t2+t,解得:t3=﹣2(舍去),t4=6;③当7<t≤8时,AQ=t﹣4,EF=﹣t+4﹣(﹣t2+t+4)=t2﹣t,∴t﹣4=t2﹣t,解得:t5=5﹣(舍去),t6=5+(舍去).综上所述:当以A.E.F、Q四点为顶点构成的四边形为平行四边形时,t的值为4或6.。
2015-2016学年第二学期4月无锡惠山区初三数学期中试卷(内含答案)
九年级数学模拟试卷 2016.04一、选择题(本大题共10小题,每题3分,共30分)1.2的相反数是 ( ▲ )A .2B .2-C .12-D .12 2.函数5-=x y 中自变量x 的取值范围是 ( ▲ )A.5-≥xB.5-≤xC.5≥xD.5≤x3.截止到2015年6月1日,北京市已建成34个地下调蓄设施,蓄水能力达到1 40 000立方平米。
将1 40 000用科学记数法表示应为( ▲ )A .14×104B .1.4×105C .1.4×106D .0.14×1064.下列说法正确的是( ▲ )A .一个游戏中奖的概率是,则做100次这样的游戏一定会中奖B .为了了解全国中学生的心理健康状况,应采用普查的方式C .一组数据0,1,2,1,1的众数和中位数都是1D .若甲组数据的方差S 甲2=0.2,乙组数据的方差S 乙2=0.5,则乙组数据比甲组数据稳定5.将二次函数322+-=x x y 化为k h x y +-=2)(的形式,结果为( ▲ )A. 4)1(2++=x yB. 2)1(2++=x yC. 4)1(2+-=x yD. 2)1(2+-=x y 6. 在平面直角坐标系中,把点P (-3,2)绕原点O 顺时针旋转180°,所得到的对应点P ′的坐标为( ▲ )A.(3, 2)B.(2,-3)C.(-3,-2)D. (3,-2)7.在边长为1的小正方形组成的网格中,有如图所示的A ,B 两点,在格点上任意放置点C ,恰好能使得△ABC 的面积为1的概率为( ▲ )A.B.C.D.8.在长方形ABCD中,AB=2,BC=1,动点P从点B出发,沿路线B→C→D做匀速运动,那么△ABP 的面积S与点P运动的路程x之间的函数图象大致为(▲)A. B.C.D.9.如图,以平行四边形ABCD的边CD为斜边向内作等腰直角△CDE,使AD=DE=CE,∠DEC=90°,且点E在平行四边形内部,连接AE、BE,则∠AEB的度数是(▲)A.120°B.135°C.150°D.45°10.如图,AB为直径,AB=4,C、D为圆上两个动点,N为CD中点,CM⊥AB于M,当C、D在圆上运动时保持∠CMN=30°,则CD的长(▲)A .随C 、D 的运动位置而变化,且最大值为4B .随C 、D 的运动位置而变化,且最小值为2C .随C 、D 的运动位置长度保持不变,等于2D .随C 、D 的运动位置而变化,没有最值二、填空题(本大题共8小题,每题2分,共16分)11.分解因式:5x 2-10x+5=____▲_____.12. 计算2x +6x 2-9得___▲______ 13. 同一温度的华氏度数y (℉)与摄氏度数x (℃)之间的函数关系是y =59x +32.如果某一温度的 摄氏度数是25℃,那么它的华氏度数是___▲_____℉. 14.若反比例函数13k y x-=的图像经过第一、三象限,则 k 的取值范围是 ▲ . 15.如图是由射线AB ,BC ,CD ,DE ,组成的平面图形,则∠1+∠2+∠3+∠4+∠5=___▲__. 16. 如图,已知AD 、BC 相交于点O ,AB ∥CD ∥EF ,如果CE=2,EB=4,FD=1.5,那么AD= ▲ .17. 如图,等边△ABC 中,D 是边BC 上的一点,且BD :DC=1:3,把△ABC 折叠,使点A 落在边BC 上的点D处,那么的值为 ▲ .18.若m 1,m 2,…m 2016是从0,1,2这三个数中取值的一列数,若m 1+m 2+…+m 2016=1546, (m 1﹣1)2+(m 2﹣1)2+…+(m 2016﹣1)2=1510,则在m 1,m 2,…m 2016中,取值为2的个数为 ▲ .三、解答题(本大题共10小题,共84分)19. (本题满分8分)计算:(1)101()(5)6tan 604-︒-π+ (2)(x +1)2-2(x -2).20. (本题满分8分) (1) 解方程:13132=-+--x x x (2)解不等式组:2(2)43251x x x x-≤-⎧⎨--⎩<第15题 第16题 第17题21. (本题满分8分) 如图,在平行四边形ABCD中,已知点E在AB上,点F在CD上,且AE=CF.求证:DE=BF.22. (本题满分8分)如图,AB是半圆O的直径,点P在BA的延长线上,PD切⊙O于点C,BD⊥PD,垂足为D,连接BC.(1)求证:BC平分∠PBD;(2)若PA=6,PC=6,求BD的长.23.(本题满分8分)四川雅安发生地震后,某校学生会向全校1900名学生发起了“心系雅安”捐款活动,为了解捐款情况,学会生随机调查了部分学生的捐款金额,并用得到的数据绘制了如下统计图①和图②,请根据相关信息,解答下列是问题:(Ⅰ)本次接受随机抽样调查的学生人数为,图①中m的值是;(Ⅱ)求本次调查获取的样本数据的平均数、众数和中位数;(Ⅲ)根据样本数据,估计该校本次活动捐款金额为10元的学生人数.24. (本题满分6分)九(1)班组织班级联欢会,最后进入抽奖环节,每名同学都有一次抽奖机会,抽奖方案如下:将一副扑克牌中点数为“2”,“3”,“3”,“5”,“6”的五张牌背面朝上洗匀,先从中抽出1张牌,再从余下的4张牌中抽出1张牌,记录两张牌点数后放回,完成一次抽奖,记每次抽出两张牌点数之差为x,按表格要求确定奖项.(1)用列表或画树状图的方法求出甲同学获得一等奖的概率;(2)是否每次抽奖都会获奖,为什么?25. (本题满分10分)甲、乙两人匀速从同一地点到1500米处的图书馆看书,甲出发5分钟后,乙以50米/分的速度沿同一路线行走.设甲、乙两人相距s(米),甲行走的时间为t(分),s 关于t的函数图象的一部分如图所示.(1)求甲行走的速度;(2)在坐标系中,补画s关于t的函数图象的其余部分;(3)问甲、乙两人何时相距360米?26. (本题满分10分)某地质公园为了方便游客,计划修建一条栈道BC连接两条进入观景台OA的栈道AC和OB,其中AC⊥BC,同时为减少对地质地貌的破坏,设立一个圆形保护区⊙M(如图所示),M是OA上一点,⊙M与BC相切,观景台的两端A、O到⊙M上任意一点的距离均不小于80米.经测量,OA=60米,OB=170米,tan∠OBC=.(1)求栈道BC的长度;(2)当点M位于何处时,可以使该圆形保护区的面积最大?27.(本题满分10分)如图,在平面直角坐标系xOy内,正方形AOBC顶点C的坐标为(2,2),过点B的直线l∥OC,P是直线上一个动点,抛物线y=ax2+bx过O、C、P三点.(1)填空:直线的函数解析式为;a,b的关系式是.(2)当△PBC是等腰Rt△时,求抛物线的解析式;(3)当抛物线的对称轴与正方形有交点时,直接写出点P横坐标x的取值范围.28.(本题满分8分) 在初中数学中,我们学习了“两点间的距离”、“点到直线的距离”、“平行线之间的距离”,距离的本质是“最短”,图形之间的距离总可以转化为两点之间的距离,如“垂线段最短”的性质,把点到直线的距离转化为点到点(垂足)的距离.一般的,一个图形上的任意点A与另一个图形上的任意点B之间的距离的最小值叫做两个图形的距离.(1)如图1,过A,B分别作垂线段AC、AD、BE、BF,则线段AB和直线l的距离为垂线段的长度.(2)如图2,RT△ABC中,∠ACB=90°,∠B=30°,CD⊥AB,AD=2,那么线段AD与线段BC 的距离为.(3)如图3,若长为1个单位的线段CD与已知线段AB的距离为1.5个单位长度,请用适当的方法表示满足条件的所有线段CD.注:若满足条件的线段是有限的,请画出;若满足条件的线段是无限的,请用阴影表示其所在区域.(保留画图痕迹,简要标注数据)一模答案长安中学 吴军 ####一、选择题B ;C ;B ;C ;D ; D ; C ; C ; B ;C二、填空题11、5(x -1)212、2/x-3 13、77 14、 k< 1/315、360° 16、4.5 17、5/7 18、 520三、解答题19. (1)101()(5)6tan 604-︒-π+.解:原式=416-+ ……………………………………………… 2分=5+. ……………………………………………… 4分(2)(x +1)2-2(x -2).解:原式=x 2+2x+1﹣2x+4 ……………………………………………… 2分=x 2+5……………………………………………… 4分 20(1) 解方程:13132=-+--xx x 解:去分母得2-x-1=x-3. ………………………………………(2分)解得 x=2 …………………………………………………………(3分)经检验,x=2都是原方程的根. ………………………………………………(4分).(2)解方程组:2(2)43251x x x x -≤-⎧⎨--⎩< 解:由①得 21-≥x ; ------------------------------------------2分 由②得 x< 2.----------------------------------------------3分∴ 此不等式组的解集为221<≤-x ----------------------------4分21.证明:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD.………………(2分)∵AE=CF.∴BE=FD,BE∥FD,…………(4分)∴四边形EBFD是平行四边形,………(6分)∴DE=BF.………(8分)(其他方法对应给分)22(1)证明:连接OC,∵PD为圆O的切线,∴OC⊥PD,……………………(1分)∵BD⊥PD,∴OC∥BD,……………………(2分)∴∠OCB=∠CBD,∵OC=OB,∴∠OCB=∠OBC,∴∠CBD=∠OBC,则BC平分∠PBD;……………………(4分)(2)解:在RT△PCO中求出OA=OC=3……………………(6分)∵△OCP∽△BDP,∴=,即=,则BD=4.……………………(8分)24.(1)画树状图得:…………(2分)∵共有20种等可能的结果,甲同学获得一等奖的有2种情况,……………………(3分) ∴甲同学获得一等奖的概率为:=;……………………(4分)(2)不是……………………(5分)当两张牌都是3时,|x|=0,不会有奖.……………………(6分)25.解:(1)甲行走的速度:150÷5=30(米/分);……………………(2分)(2)补画的图象如图所示(横轴上对应的时间为50);……………………(4分)(3)由函数图象可知,当t =12.5时,s =0.……………………(6分)当12.5≤t ≤35时,s =20250t -.……………………(7分)当35<t ≤50时,s =301500t -+.……………………(8分)∵甲、乙两人相距360米,即s =360,解得1t =30.5,2t =38.……………………(9分) ∴当甲行走30.5分钟或38分钟时,甲、乙两人相距360米.……………………(10分)26解:(1)如图1,过C点作CE⊥OB于E,过A作AF⊥CE于F,……………………(1分)∵∠ACB=90°∠BEC=90°,∴∠ACF=∠CBE,∴tan∠ACF=tan∠OBC=,……………………(2分)(证相似也可得分)设AF=4x,则CF=3x,∵∠AOE=∠AFE=∠OEF=90°,∴OE=AF=4x,EF=OA=60,∴CE=3x+60,∵tan∠OBC=.∴BE=CE=x+45,……………………(3分)∴OB=OE+BE=4x+x+45,∴4x+x+45=170,解得:x=20,∴CE=120(米),BE=90(米),……………………(4分)∴BC==150(米).……………………(5分)(2)如图2,设BC与⊙M相切于Q,延长QM交直线BO于P,∵∠POM=∠PQB=90°,∴∠PMO=∠CBO,∴tan ∠OBC=.∴tan ∠PMO=.……………………(6分)(证相似也可得分)设OM=x ,则OP=x ,PM=x ,∴PB=x+170,在RT △PQB 中,tan ∠PBQ==.∴=,∴PQ=(x+170)=x+136,……………………(7分) 设⊙M 的半径为R ,∴R=MQ=x+136﹣x=136﹣x ,……………………(8分)∵A 、O 到⊙M 上任意一点的距离均不小于80米,∴R ﹣AM ≥80,R ﹣OM ≥80,∴136﹣x ﹣(60﹣x )≥80,136﹣x ﹣x ≥80,解得:10≤x ≤35,∴当且仅当x=10时R 取最大值,……………………(9分)∴OM=10米时,保护区的面积最大.……………………(10分)27.(1)填空:y=x﹣2;……(1分)2a+b=1.…(2分)(2)当∠BCP=90°时,则P的坐标为(4,2),如图2,把B(2,2),P(4,2)代入y=ax2+bx得,解得,∴抛物线的解析式为;……………………(4分)当∠BPC=90°时,则P的坐标为(3,1),如图3,把B(2,2),P(3,1)代入y=ax2+bx得解得,∴抛物线的解析式为;……………………(6分)(3)(3)当抛物线的对称轴与正方形有交点时,直接写出点P横坐标x的取值范围≤x≤,且x≠0和2……………………(10分)(x≠0和x≠2一个不写扣一分)28.(本题满分8分)解:(1)AC;…………………………………(2分)(2)3;…………………………………(5分)(3)如图3所示:…………………………………(8分)注:未标注必要数据扣1分。
无锡市中考数学二模考试试卷
无锡市中考数学二模考试试卷姓名:________ 班级:________ 成绩:________一、选择题(本题共16分,每小题2分)第1-8题均有四个选。
正确 (共8题;共16分)1. (2分)(2020·北京模拟) 某正方体的每个面上都有一个汉字,如图是它的一中展开图,那么在原正方体中,与点字所在面相对的面上的汉字是()A . 青B . 春C . 梦D . 想2. (2分)(2019·临海模拟) 估计﹣1的值在()A . 1到2之间B . 2到3之间C . 3到4之间D . 4到5之间3. (2分)(2017·娄底模拟) 我国第一艘航母“辽宁舰”最大排水量为67500吨,用科学记数法表示这个数字是()A . 6.75×103吨B . 67.5×103吨C . 6.75×104吨D . 6.75×105吨4. (2分) (2019七下·端州期中) 如图,由AB∥CD,可以得到()A . ∠1=∠2B . ∠2=∠3D . ∠A=∠C5. (2分) (2015九上·新泰竞赛) 小明乘出租车去体育场,有两条路线可供选择:路线一的全程是25千米,但交通比较拥堵,路线二的全程是30千米,平均车速比走路线一时的平均车速能提高80%,因此能比走路线一少用10分钟到达.若设走路线一时的平均速度为x千米/小时,根据题意得:()A .B .C .D .6. (2分)(2017·邵阳模拟) 在一个不透明的盒子中装有12个白球,若干个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球是白球的概率是,则黄球的个数为()A . 18B . 20C . 24D . 287. (2分)(2017·松江模拟) 已知非零向量,,,下列条件中,不能判定∥ 的是()A . ∥ ,∥B .C . =D . = , =8. (2分)(2017·蓝田模拟) 如图,在平面直角坐标系中,正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且相似比为,点A,B,E在x轴上,若正方形BEFG的边长为6,则点C的坐标为()A . (2,2)B . (3,1)C . (3,2)二、填空题(本题共16分,每小题2分) (共8题;共16分)9. (2分)(2018·松桃模拟) 当x________时,二次根式有意义.10. (2分)(2019·无锡) 的平方根为________11. (2分) a是最大的负整数,b是最小的正整数,c为绝对值最小的数,则6a﹣2b+4c=________ .12. (2分) (2019七下·通州期末) 把“对顶角相等”改写成“如果…那么…”的形式为________.13. (2分) (2020八下·北京期中) 某球员参加一场篮球比赛,比赛分4节进行,该球员每节得分如折线统计图所示,则该球员平均每节得分为________分.14. (2分)(2017·靖江模拟) 两块大小一样斜边为4且含有30°角的三角板如图水平放置.将△CDE绕C 点按逆时针方向旋转,当E点恰好落在AB上时,△C DE旋转了________度,线段CE旋转过程中扫过的面积为________.15. (2分)(2019·顺义模拟) 如图,DE为△ABC的中位线,点F在DE上,且∠AFB=90°,若AB=6,BC =8,则EF的长为________.16. (2分)如图,矩形ABCD中,AB=2,AD=4,AC的垂直平分线EF交AD于点E、交BC于点F,则EF=________.三、解答题(本题共68分) (共12题;共63分)17. (5分) (2019七下·如皋期中)(1)计算:,(2)解下列方程组:i ,ii ,(3)求不等式的解集,并把解集在数轴上表示出来..18. (5分)(2017·槐荫模拟) 求不等式组的解集并把解集表示在数轴上.19. (5.0分) (2016八上·凉州期中) 近年来,国家实施“村村通”工程和农村医疗卫生改革,某县计划在张村、李村之间建一座定点医疗站P,张、李两村坐落在两相交公路内(如图所示).医疗站必须满足下列条件:①使其到两公路距离相等;②到张、李两村的距离也相等.请你通过作图确定P点的位置.20. (5.0分)(2019·广州模拟) 已知关于x的方程x2+2kx+ k2﹣2=0(1)求证:不论k取什么实数值,方程总有两个不相等的实数根;(2)设x1 , x2是方程的两实根,且x12+2kx1+2x1x2=12.求k的值.21. (5.0分)(2019·台州模拟) 如图,在△ABC中,AC=BC,∠ACB=90°,点D在BC的延长线上,连接AD,过B作BE⊥AD,垂足为E,交AC于点F,连接CE.(1)求证:△BCF≌△ACD.(2)猜想∠BEC的度数,并说明理由;(3)探究线段AE,BE,CE之间满足的等量关系,并说明理由.22. (5.0分)(2019·怀化) 如图,是上的5等分点,连接,得到一个五角星图形和五边形.(1)计算的度数;(2)连接,证明:;(3)求证:.23. (6分)在一个不透明的盒子里,装有四个分别标有数字1,2,3,4的小球,他们的形状、大小、质地等完全相同.小兰先从盒子里随机取出一个小球,记下数字为x,放回盒子,摇匀后,再由小田随机取出一个小球,记下数字为y.(1)用列表法或画树状图法表示出(x,y)的所有可能出现的结果;(2)求小兰、小田各取一次小球所确定的点(x,y)落在反比例函数y=的图象上的频率;(3)求小兰、小田各取一次小球所确定的数x,y满足y<的概率.24. (6分)张老师要从班级里数学成绩较优秀的甲、乙两位学生中选拔一人参加“全国初中数学联赛”为此,他对两位同学进行了辅导,并在辅导期间测验了10次,测验成绩如下表:第1次2345678910甲68807879788481837792乙86807583798085807775利用表中数据,解答下列问题:(1)填空完成下表:平均成绩中位数众数甲80乙8080(2)张老师从测验成绩表中,求得甲的方差,请你计算乙10次测验成绩的方差.(3)请你根据上面的信息,运用所学统计知识,帮张老师选拔出参加“全国数学联赛”的人选,并简要说明理由.25. (6分)(2017·和平模拟) 在△ABC中,AB=AC,以AB为直径的⊙O分别交边BC、AC于点D、点E,且AE=BE.(1)如图①,求∠EBC的度数;(2)如图②,过点D作⊙O的切线交AB的延长线于点G,交AC于点F,若⊙O的直径为10,求BG的长.26. (6分)抛物线y=x2﹣4x+3与x轴交于A、B两点(点A在点B的左侧),点C是此抛物线的顶点.(1)求点A、B、C的坐标;(2)点C在反比例函数(k≠0)的图象上,求反比例函数的解析式.27. (2分)如图,7×7的网格中,A,B,C均在格点上,请用无刻度的直尺作图(保留作图痕迹,不写作法)(1)在图1中找一格点D,使得△ACD为等腰三角形(找到一个即可);(2)在图2中作出∠BAC的角平分线。
2014~2015学年度 无锡外国语学校2015届九年级模拟考试数学试题及答案
2014—2015学年度中考模拟考试(一)初三数学试卷 2015.4一、选择题(本大题共10小题,每小题3分,共30分.)1.23-的绝对值是 ( ▲ ) A. 23- B. 23 C. 32- D. 322.函数1xy x =-中自变量x 的取值范围是 ( ▲ )A .x >1B .x >0C .x ≠0D .x ≠13.下列运算中,正确的是 ( ▲ )A .(a 3)2=a 5B .(-2x 2)3=-8x 6C .a 3·(-a )2=-a 5D . (-x )2÷x =-x4.我们从不同的方向观察同一物体时,可能看到不同的图形,则从正面、左面、上面观察都不可能看到矩形的是 ( ▲ )5.三张卡片上分别画有直角三角形、等边三角形和正六边形,从这三张卡片中随机抽取一张,则取到的卡片上的图形是中心对称图形的概率是 ( ▲ )A .13B .23C .12D .16.无锡市环保检测中心网站公布的2015年4月某日的PM2.5研究性检测部分数据如下表:A .B .C .D .则该日这6个时刻的PM2.5的众数和中位数分别是 ( ▲ ) A. 0.032, 0.0295 B. 0.026, 0.0295 C. 0.026, 0.032 D. 0.032, 0.027 7. 如图,AB ∥CD ,点E 在AB 上,点F 在CD 上,且∠FEG =90°,∠EFD =55°,则∠AEG 的 度数是 ( ▲ ) A .25° B .35° C .45° D .55 °8.如图,矩形ABCD 中,以A 为圆心,AD 长为半径画弧,交AB 于E 点,取BC 的中点为F ,过F 作一直线与AB 平行,且交D E 于G 点,则∠AGF 的度数为 ( ▲ )A.110︒B. 120︒C.135︒D.150︒9.如图,半径均为整数..的同心圆组成的“圆环带”,若大圆的弦AB 与小圆相切于点P ,且弦AB 的长度为定值则满足条件的不全等的“圆环带”有 ( ▲ ) A.1个 B. 2个 C. 3个 D.无数个10.如图,点M (-3,4),点P 从O 点出发,沿射线OM 方向1个单位/秒匀速运动,运动的过程中以P 为对称中心,O 为一个顶点作正方形OABC ,当正方形面积为128时,点A 坐标( ▲ )(第7题) (第8题) GEFDCB A(第9题)(第16题)A. 365(,)26B.C. (2,D. 856(,)55二、填空题(本大题共8小题,每小题2分,共16分)11.无锡大剧院演出歌剧时,信号经电波转送,收音机前的北京观众经过 0.005秒以听到,这个数据用科学计数法可以表示为 ▲ 秒. 12. 不等式22x x +>的解集是 ▲ . 13.若反比例函数xky =的图像经过点(-3,-4),则在每个象限内y 随x 的增大而 ▲ . 14.用一个半径为10cm 半圆纸片围成一个圆锥的侧面(接缝忽略不计),则该圆锥的高为 ▲cm .15.如图,△ABC 中,AB=AC ,以AC 为斜边作Rt △ADC ,使∠ADC=90°,∠CAD=∠CAB=26°,E 、FEDF 等于 ▲ °.16.如图,四边形ABCD 中,AD ∥BC ,∠B=90°,将四边形ABCD 沿CE 折叠,使点D 落在AB上的F 点,若AB=BC=6,EF=5,∠FCD=90°,则AF 长度为 ▲ . 17.如图,将直线y x =向上平移2个单位交坐标轴于点A 、D ,然后绕AD 中点B 逆时针旋转60°,三条直线与y 轴围成四边形ABCO ,若四边形始终覆盖着二次函数y=x 2-2mx +m 2(第15题)1图象的一部分,则满足条件的实数m的取值范围为▲.18.如图,一条笔直的公路l穿过草原,公路边有一消防站A,距离公路5千米的地方有一居民点B,A、B的直线距离是13千米.一天,居民点B着火,消防员受命欲前往救火,若消防车在公路上的最快速度是80千米/小时,而在草地上的最快速度是40千米/小时,则消防车在出发后最快经过▲小时可到达居民点B.(友情提醒:消防车可从公路的任意位置进入草地行驶.)三、解答题(本大题共10小题,共84分.)19.(本题满分8分)计算:1-2sin60°;(2)(x-2)2-(x+1)(x-1). (1)(-2)2+(3-π)0+||20.(本题满分8分)(1)解方程:x2-4x-12=0;(2)先化简⎝ ⎛⎭⎪⎫1x +2-12-x ÷xx +2,然后从2,-2,0,3这4个数中选取一个你认为合适的数作为x 的值代入求值.21. (本题满分6分)耩(ji ǎng )子是一种传统农用播种的工具,大小款式不一,图(1)是改良后有轮子的一种,图(2)是其示意图,现测得AC=40cm ,∠C=30°,∠BAC=45°.为了使耩子更牢固,AB 处常用粗钢筋制成,则制作此耩子时需要准备多长的粗钢筋?(结果保留根号)22.(本题满分8分)已知:如图,□ABCD 中, CD=CB=2,∠C=60°,点E 是CD 边上自D 向C 的动点(点E 运动到点C 停止运动),连结AE,以AE 为一边作等边△AEP ,连结DP . (1)求证:△ABE ≌△ADP ;(2)点P 随点E 的运动而运动,请直接写出点P 的运动路径长 ▲ .(图1) (图2)23.(本题满分6分)为了让更多的失学儿童重返校园,某社区组织“献爱心手拉手”捐款活动. 对社区部分捐款户数进行调查和分组统计后,将数据整理成如图所示的统计图(图中信息不完整). 已知A 、B 两组捐款户数的比为1 : 5.请结合以上信息解答下列问题.(1) a= ▲ ,本次调查样本的容量是 ▲ ;(2)补全“捐款户数分组统计图1”,“捐款户数分组统计图2”中B 组扇形圆心角度数为 ▲ ; (3)若该社区有500户住户,请根据以上信息,估计全社区捐款不少于300元的户数 ▲ .24.(本题满分10分)在数学上,对于两个正数p 和q 有三种平均数,即算术平均数.....A 、几何..捐款户数分组统计表捐款户数分组统计图1捐款户数分组统计图2平均数...G 、调和平均数.....H ,其中2p q A +=,G H 满足1111p H H q -=-.我们把A 、G 、H 称为p 、q 的平均数组..... ① 若p =2,q =6,则A = ▲ ,G = ▲ ,H= ▲ .② 根据上述关系,可以推导出A 、G 、H 三者的等量关系 ▲ .③现在小明手里有一张卡片,上面标有数字325,另外在一个不透明的布袋中有三个小球,表面分别标有10,8,1,这三个球除了标的数不同外,其余均相同.若从布袋中任意摸出两个小球,求摸出的两个数字与卡片上数字恰好构成平均数组....的概率.(请用“画树状图”或“列表”等方法给出分析过程,并求出结果)25.(本题满分8分)阅读下面材料:小明遇到这样一个问题:如图1,△ABO 和△CDO 均为等腰直角三角形, ∠AOB =∠COD =90︒.若△BOC 的面积为1, 试求以AD 、BC 、OC+OD 的长度为三边长的三角形的面积.ODA图1 图2小明是这样思考的:要解决这个问题,首先应想办法移动这些分散的线段,构造一个三角形,再计算其面积即可.他利用图形变换解决了这个问题,其解题思路是延长CO到E, 使得OE=CO, 连接BE, 可证△OBE≌△OAD, 从而得到的△BCE即是以AD、BC、OC+OD的长度为三边长的三角形(如图2).请你回答:图2中△BCE的面积等于▲,图1中△BOC与△AOD的面积关系为▲ .请你尝试用选择平移、旋转或翻折的方法,解决下列问题:如图3,已知△ABC, 分别以AB、AC、BC为边向外作正方形ABDE、AGFC、BCHI, 连接EG、FH、ID.(1)在图3中利用图形变换画出并指明以EG、FH、ID的长度为三边长的一个三角形▲;(2)若△ABC的面积为1,则以EG、FH、ID的长度为三边长的三角形的面积等于▲.26. (本题10分)在我校一年一度的校园文化艺术节中,数学组的传统项目是设计轴对称图案和七巧板创意拼图.初二年级将52位报名的同学分成A、B两组进行现场设计,学校要求A组完成150份轴对称图案,B组完成200份七巧板拼图.(假定A、B组同时进行,整个过程不休息.一副作品可由一人独做也可多人合做或他人续做,且每幅作品制作过程是连续的.)(1)根据历年数据统计,一人设计一副轴对称图案约用时25h,一副七巧板拼图约用时12h,应I HGFAB CDE图3如何分配A、B两组的人数,使活动持续时间最短?(2)在按(1)分配的人数开始1h后发现,设计一副轴对称图案用时仍为2h,而设计一副七5巧板实际用时2h,于是从A组抽调6名同学加入B组继续设计,求整个活动实际所持续的时间.327.(本题满分10分)如图1,在Rt△ABC中,∠B=90°,AB=3,BC=4.动点P从点A出发沿AC向终点C运动,同时动点Q从点B出发沿BA向点A运动,到达A点后立刻以原来的速度沿AB返回.点P,Q运动速度均为每秒1个单位长度,当点P到达点C时停止运动,点Q也同时停止.连结PQ,以PQ为直径作⊙O,设运动时间为t(t >0)秒.(1)在点Q从B到A的运动过程中,当t= ▲时,⊙O与△ABC某条边相切.(2)伴随着P、Q两点的运动,过O作直径PQ的垂线l,在整Array个过程中:①直线l▲次过C点;②如图2,当l过点A时,过A作BC的平行线AE,交射线QP于点E,求△AQE的面积;③当l经过点B时,求t的值.28.(本题满分10分)平面直角坐标系xOy 中,抛物线244y ax ax a c =-++(a >0)与x 轴交于点A 、B ,与y 轴的正半轴交于点C ,点 A 的坐标为(1, 0),OB =OC ,抛物线的顶点为D . (1) 求此抛物线的解析式;(2) 若此抛物线的对称轴上的点P 满足∠APB =∠ACB ,求点P 的坐标;(3) Q 为线段BD 上一点,点A 关于∠AQB 的平分线的对称点为A ',若2=-QB QA ,求点Q 的坐标和此时△QAA '的面积.(图1)(备用图1)(备用图2)(图2)初三数学试卷共6页第11页初三数学试卷共6页第12页。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A.a8B.a6C.2a6D.2a8
3.下列代数式中,次数为4的单项式是(▲)
A.x4+y4B.xy2C.4xyD.x3y
4.2015年1月份,无锡市某周的日最低气温统计如下表,则这七天中日最低气温的众数和中位数分别是(▲)
日期
19
20
21
22
23
24
25
最低气温/℃
三、解答题:(本大题共10小题,共84分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.)
19.(本题满分8分)(1)2sin60°+2 -2015 -|1- |;(2) (a+2) +(1-a)(1+a).
20.(本题满分8分)(1)解方程: = ;(2)解不等式组:
21.(本题满分8分)如图,在△ABC中,CD是AB边上的中线,E是CD的中点,过点C作AB的平行线交AE的延长线于点F,连接BF.
∴如果小明第一题不使用“求助”,那么小明答对第一道题的概率是: ;……1分
(2)分别用A,B,C表示第一道单选题的3个选项,a,b,c表示剩下的第二道单选题的3个选项,
画树状图得:
………………………………………………………4分
∵共有9种等可能的结果,小明顺利通关的只有1种情况,
∴小明顺利通关的概率为: ;……………………………………………………5分
,
解得1200<x≤2400
在y=12x+20000中,
∵12>0,
∴y随x的增大而增大,
∴当x=2400时,
y最大=48800,………………………………………………………………………8分
②若成活率达到94%以上(含94%),则0.9x+0.95(6000-x)≥0.94×6000,
解得:x≤1200,
无锡市惠山区2015年初三第二次模拟考试试卷
数学试卷2015.5
(考试时间:120分钟,试卷满分:130分.)
一、选择题:(本大题共10小题,每小题3分,共30分.在每小题所给出的四个选项中,只有一项是正确的,请用2B铅笔把答题卡上相应的选项标号涂黑.)
1.下列各数中,属于无理数的是(▲)
A.-2B.0C. D.0.101001000
2
4
5
3
4
6
7
A.4,4B.5,4C.4,3D.4,4.5
5.左图是由八个相同的小正方体组合而成的几何体,其俯视图是(▲)
6.如图,在四边形ABCD中,E、F、G、H分别是AB、BD、CD、AC的中点,要使四边形EFGH是菱形,则四边形ABCD需满足的一个条件是(▲)
A.四边形ABCD是梯形B.四边形ABCD是菱形
(1)将△ABC绕点C顺时针旋转120°得△A′B′C.
①求点B旋转经过的路径长;
②求线段BB′的长;
(2)如图2,过点C作AC的垂线与AB的延长线交于点D,将△ACD绕点C顺时针旋转90°得△A′CD′.在图2中画出线段AD绕点C旋转所形成的图形(用阴影表示),并求出该图形的面积.
25.(本题满分8分)直线y=- x+2与x坐标轴相交与B、C两点,抛物线也过B、C两点,还与x轴相交于A点,抛物线对称轴与BC相交于E点,顶点为F,∠FEC=∠CAO.
自变量的取值范围是:0<x≤3000;………………………………………………3分
(2)由题意,得
12x+20000≥260000×16%,
解得:x≥1800,
∴1800≤x≤3000,
购买甲种树苗不少于1800棵且不多于3000棵;………………………………5分
(3)①若成活率不低于93%且低于94%时,由题意得
(1)本次调查共抽取了▲天的空气质量检测结果进行统计;
(2)补全条形统计图;
(3)扇形统计图中3级空气质量所对应的圆心角为▲°;
(4)如果空气污染达到中度污染或者以上,将不适宜进行户外活动,根据目前的统计,请你估计2015年该城市有多少天不适宜开展户外活动.(2015年共365天)
24.(本题满分8分)如图1,在△ABC中,∠B=90°,∠A=30°,AC=2.
(1)如果小明第一题不使用“求助”,那么小明答对第一道题的概率是▲;
(2)如果小明第二题使用“求助”,请用树状图或者列表来分析小明通关的概率;
(3)从概率的角度分析,你建议小明在第几题使用“求助”.(直接写出答案)
23.(本题满分8分)国家环保局统一规定,空气质量分为5级:当空气污染指数达0—50时为1级,质量为优;51—100时为2级,质量为良;101—200时为3级,轻度污染;201—300时为4级,中度污染;300以上时为5级,重度污染.某城市随机抽取了2015年某些天的空气质量检测结果,并整理绘制成如下两幅不完整的统计图.请根据图中信息,解答下列各题:
11.函数y= 中,自变量x的取值范围是▲.
12.因式分解:2m2-8m+8=▲.
13.在亚投行注册资本1000亿美元中,中国所持的股份将低于30%,数据“1000亿”用科学记数法表示为▲.
14.已知方程2x2-3x-2=0的两个解分别为x1、x2,则x1+x2的值为▲.
15.在根式 , , , 中随机抽取一个,它是最简二次根式的概率为▲.
16.如图,在四边形ABCD中,∠A+∠B=200°,∠ADC、∠BCD的平分线相交于点O,则∠COD的度数是▲.
17.正方形ABCD、BEFG和矩形DGHI的位置如图,其中G、F两点分别在BC、EH上.
若AB=5,BG=3,则△GFH的面积为▲.
18.如图,菱形ABCD的对角线AC上有一动点P,BC=6,∠ABC=150°,则线段AP+BP+PD的最小值为▲.
因此,所求长宽比为A:B=(2L):( L)=2: .
做一个这样的正六棱柱所需最小的矩形纸片的长与宽的比为:2: ;………………5分
(2)∵矩形的长为2a,
∴正六边形边长为a,其面积为:
设高为x,S= ,
当x= 时,S= ,
此时,底面积= , + = ,利用率= .……10分
∵CA=CB,CD为AB边上的中线,
∴CD⊥AB,即∠BDC=90°,
∴四边形CDBF为矩形,………………………………………………7分
∵等腰直角△ABC中,CD为斜边上的中线,
∴CD= AB,即CD=BD,
则四边形CDBF为正方形.……………………………………………………8分
22.(本题满分6分)
解:(1)∵第一道单选题有3个选项,
①□ADEF的面积是否存在最小值?若存在,求出这个最小值;若不存在,请说明理由;
②若点M、N、P分别为AE、AD、DE上动点,直接写出MN+MP的最小值.
28.(本题满分10分)动手实验:利用矩形纸片(如图1)剪出一个正六边形纸片;再利用这个正六边形纸片做一个无盖的正六棱柱(棱柱底面为正六边形),如图2.
(3)∵如果在第一题使用“求助”小明顺利通关的概率为: ;如果在第二题使用“求助”小明顺利通关的概率为: ;
∴建议小明在第一题使用“求助”.………………………………………………6分
23.(本题满分8分)(1)50;……………2分(2)图略;……………4分
(3)72;……………6分(4)219天;…………8分
27.(1)正确说理;………………4分
(2) 6 ;………………8分
(3)3………………10分
部分原始参考答案:
28.(1)如图所示:
由于正六边形内角和为(6﹣2)×180°=720°,则其一角的角平分线所分的两个角同为60°;
设所需矩形的长宽分别为A、B,剪出的正六边形半径长为L,那么
A=2L,B=2L•sin60°= L;
27.(本题满分10分)如图1,等边△ABC的边长为4 cm,动点D从点B出发,沿射线BC方向移动,以AD为边作等边△ADE.
(1)在点D运动的过程中,点E能否移动至直线AB上?若能,求出此时BD的长;若不能,请说明理由;
(2)如图2,在点D从点B开始移动至点C的过程中,以等边△ADE的边AD、DE为边作□ADEF.
由题意得y=12x+20000+260000×6%=12x+35600,
∵12>0,
∴y随x的增大而增大,
∴当x=1200时,y最大值=5000,
综上所述,50000>48800
∴购买甲种树苗1200棵,一种树苗4800棵,可获得最大利润,最大利润是50000元.
………………………………………………………………………………………10分
(1)做一个这样的正六棱柱所需最小的矩形纸片的长与宽的比为多少?
(2)在(1)的条件下,当矩形的长为2a时,要使无盖正六棱柱侧面积最大,正六棱柱的高为多少?并求此时矩形纸片的利用率为多少?
(矩形纸片的利用率= .)
参考评分标准
一、选择题(每小题3分)
1
2
3
4
5
6
7
8
9
10
C
B
D
A
A
D
C
C
B
B
二、填空题(每小题2分)
∵E为CD的中点,∴CE=DE,
∴△ECF≌△DEA(AAS),
∴CF=AD,………………………………………4分
(2)四边形CDBF为正方形,理由为:………………………………………5分
∵AD=BD,
∴CF=BD;
∵CF=BD,CF∥BD,
∴四边形CDBF为平行四边形,………………………………………………6分
(1)求证:CF=AD;
(2)若CA=CB,∠ACB=90°,试判断四边形CDBF的形状,并说明理由.
22.(本题满分6分)小明参加“一站到底”节目,答对最后两道单选题就通关:第一道单选题有3个选项,第二道单选题有4个选项,这两道题小明都不会,不过小明还有一个“求助”没有用(使用“求助”可以让主持人去掉其中一题的一个错误选项).