中考数学一轮复习 第12讲 一次函数的应用教案
中考一轮复习教案:一次函数的应用

一次函数的应用辅导教案课前热身1.如图,直线y=ax+b过点A(0,3)和点B(﹣5,0),则方程ax+b=0的解是()A.x=3 B.x=0 C.x=﹣1 D.x=﹣5 2. 如图,函数y=2x和y=ax+5的图象相交于A(m,3),则不等式2x≥ax+5的解集为3. 一次越野跑中,当小明跑了1600米时,小刚跑了1400米,小明、小刚在此后所跑的路程y(米)与时间t(秒)之间的函数关系如图所示,则这次越野跑的全程为米4. 黔东南州某超市计划购进一批甲、乙两种玩具,已知5件甲种玩具的进价与3件乙种玩具的进价的和为231元,2件甲种玩具的进价与3件乙种玩具的进价的和为141元.(1)求每件甲种、乙种玩具的进价分别是多少元?(2)如果购进甲种玩具有优惠,优惠方法是:购进甲种玩具超过20件,超出部分可以享受7折优惠,若购进x(x>0)件甲种玩具需要花费y元,请你求出y与x的函数关系式;(3)在(2)的条件下,超市决定在甲、乙两种玩具中选购其中一种,且数量超过20件,请你帮助超市判断购进哪种玩具省钱.遗漏分析知识精讲【基础知识重温】一、一次函数和一元一次方程的关系一次函数y =kx +b 的函数值为0时,相应的自变量的值即为方程kx +b =0的 ;若从图象上来看,则可看做函数y =kx +b 的图象与x 轴的交点的 ,即为方程kx +b =0的解.二、一次函数和一元一次不等式的关系任何一元一次不等式都可以转化为类似ax +b >0或ax +b <0的形式,所以解一元一次不等式可以看做:当一次函数y =ax +b 的值大(小)于0时,求自变量相应的取值范围;反之,求一次函数y =ax +b 的值何时大(小)于0时,只要求出不等式ax +b >0或ax +b <0的解集即可.①如图1,一次函数b kx y +=的图象与x 轴交于点(x 0,0).当它在x 轴上方的部分时,对应不等式为 ,其解为 ;当它在x 轴下方的部分时,对应不等式为 ,其解为 .② 如图2,一次函数111b x k y +=与222b x k y +=的图象交点的横坐标为x 0.当222b x k y +=的图象在111b x k y +=上方的部分时,对应不等式图1x 0y=kx+b y x y 2=k 2x+b 2图2x 0y 1=k 1x+b 1y x为 ,其解为 ;当222b x k y +=的图象在111b x k y +=下方的部分时,对应不等式为 ,其解为 .二、一次函数的实际应用(1)通过图象获取信息通过观察一次函数的图象获取有用的信息是我们在日常生活中经常遇到的问题,要掌握这个重点在于对函数图象的观察和分析,观察函数图象时,首先要看 分别代表的是什么,也就是观察图象反映的是哪两个变量之间的关系.观察图象获取信息时,一定要注意图象上的特殊点,这些特殊点对我们解决问题有很大的帮助.(2)一次函数图象的应用一次函数和正比例函数是我们接触到的最简单的函数,它们的图象和性质在现实生活中有着广泛的应用.在实际问题中,当自变量的取值范围受到一定的限制时,函数y =kx +b(k≠0)的图象就不再是一条直线.要根据实际情况进行分析,其图象可能是 等等.四、例题分析题型一、两条直线平行或相交【例1】(2016湖南株洲)已知A 、B 、C 、D 是平面坐标系中坐标轴上的点,且△AOB ≌△COD .设直线AB 的表达式为y 1=k 1x+b 1,直线CD 的表达式为y 2=k 2x+b 2,则k 1k 2= .【趁热打铁】1.直线y=-2x+m 与直线y=2x-1的交点在第四象限,则m 的取值范围是( )A .m >-1B .m <1C .-1<m <1D .-1≤m≤12. 如图,已知一次函数y=kx+3和y=﹣x+b 的图象交于点P (2,4),则关于x 的方程kx+3=﹣x+b 的解是 .题型二、一次函数与一元一次不等式【例2】(2016山东东营)如图,直线y=x+b与直线y=kx+6交于点P(3,5),则关于x的不等式x+b>kx+6的解集是_____________.【趁热打铁】1. 如图,函数y=3x和y=ax+5的图象相交于A(m,3),则不等式2x<ax+5的解集为.2. 如上题图,函数y=kx(k≠0)和y=ax+4(a≠0)的图象相交于点A(2,3),则不等式kx>ax+4的解集为.题型三、方案设计【例3】(2016山东临沂)现代互联网技术的广泛应用,催生了快递行业的高速发展.小明计划给朋友快递一部分物品,经了解有甲、乙两家快递公司比较合适.甲公司表示:快递物品不超过1千克的,按每千克22元收费;超过1千克,超过的部分按每千克15元收费.乙公司表示:按每千克16元收费,另加包装费3元.设小明快递物品x千克.(1)请分别写出甲、乙两家快递公司快递该物品的费用y(元)与x(千克)之间的函数关系式;(2)小明选择哪家快递公司更省钱?【趁热打铁】黔东南州某超市计划购进一批甲、乙两种玩具,已知5件甲种玩具的进价与3件乙种玩具的进价的和为231元,2件甲种玩具的进价与3件乙种玩具的进价的和为141元.(1)求每件甲种、乙种玩具的进价分别是多少元?(2)如果购进甲种玩具有优惠,优惠方法是:购进甲种玩具超过20件,超出部分可以享受7折优惠,若购进x(x>0)件甲种玩具需要花费y元,请你求出y与x的函数关系式;(3)在(2)的条件下,超市决定在甲、乙两种玩具中选购其中一种,且数量超过20件,请你帮助超市判断购进哪种玩具省钱.题型四、分段函数【例4】(2016新疆生产建设兵团)暑假期间,小刚一家乘车去离家380公里的某景区旅游,他们离家的距离y(km)与汽车行驶时间x(h)之间的函数图象如图所示.(1)从小刚家到该景区乘车一共用了多少时间?(2)求线段AB对应的函数解析式;(3)小刚一家出发2.5小时时离目的地多远?【趁热打铁】一辆慢车与一辆快车分别从甲、乙两地同时出发,匀速相向而行,两车在途中相遇后都停留一段时间,然后分别按原速一同驶往甲地后停车.设慢车行驶的时间为x小时,两车之间的距离为y千米,图中折线表示y与x之间的函数图象,请根据图象解决下列问题:(1)甲乙两地之间的距离为千米;(2)求快车和慢车的速度;(3)求线段DE所表示的y与x之间的函数关系式,并写出自变量x的取值范围.【趁热打铁】我市为创建“国家级森林城市”政府将对江边一处废弃荒地进行绿化,要求栽植甲、乙两种不同的树苗共6000棵,且甲种树苗不得多于乙种树苗,.某承包商以26万元的报价中标承包了这项工程.根据调查及相关资料表明:移栽一棵树苗的平均费用为8元,甲、乙两种树苗的购买价及成活率如表:品种购买价(元/棵)成活率甲20 90%乙32 95%设购买甲种树苗x棵,承包商获得的利润为y元.请根据以上信息解答下列问题:(1)求y与x之间的函数关系式,并写出自变量取值范围;(2)承包商要获得不低于中标价16%的利润,应如何选购树苗?(3)政府与承包商的合同要求,栽植这批树苗的成活率必须不低于93%,否则承包商出资补载;若成活率达到94%以上(含94%),则城府另给予工程款总额6%的奖励,该承包商应如何选购树苗才能获得最大利润?最大利润是多少?五、牛刀小试1、直线y=kx+3经过点A (2,1),则不等式kx+3≥0的解集是( )A .x≤3B .x≥3C .x≥﹣3D .x≤02、明君社区有一块空地需要绿化,某绿化组承担了此项任务,绿化组工作一段时间后,提高了工作效率.该绿化组完成的绿化面积S (单位:m 2)与工作时间t (单位:h )之间的函数关系如图所示,则该绿化组提高工作效率前每小时完成的绿化面积是( )A .300m 2B .150m 2C .330m 2D .450m 23、已知直线l 1:y=﹣3x+b 与直线l 2:y=﹣kx+1在同一坐标系中的图象交于点(1,﹣2),那么方程组的解是( ) A . B . C . D . 4、周末,小芳骑自行车从家出发到野外郊游,从家出发0.5小时到达甲地,游玩一段时间后按原速前往乙地,小芳离家1小时20分钟后,妈妈驾车沿相同路线前往乙地,行驶10分钟时,恰好经过甲地,如图是她们距乙地的路程y(km )与小芳离家时间x (h )的函数图象.(1)小芳骑车的速度为 km/h ,H 点坐标 .(2)小芳从家出发多少小时后被妈妈追上?此时距家的路程多远?(3)相遇后,妈妈载上小芳和自行车同时到达乙地(彼此交流时间忽略不计),求小芳比预计时间早几分钟到达乙地?31x y b kx y +=⎧⎨+=⎩12x y =⎧⎨=-⎩12x y =⎧⎨=⎩12x y =-⎧⎨=-⎩12x y =-⎧⎨=⎩5、随着某市养老机构(养老机构指社会福利院、养老院、社区养老中心等)建设稳步推进,拥有的养老床位不断增加.(1)该市的养老床位数从2013年底的2万个增长到2015年底的2.88万个,求该市这两年(从2013年度到2015年底)拥有的养老床位数的平均年增长率;(2)若该市某社区今年准备新建一养老中心,其中规划建造三类养老专用房间共100间,这三类养老专用房间分别为单人间(1个养老床位),双人间(2个养老床位),三人间(3个养老床位),因实际需要,单人间房间数在10至30之间(包括10和30),且双人间的房间数是单人间的2倍,设规划建造单人间的房间数为t.①若该养老中心建成后可提供养老床位200个,求t的值;②求该养老中心建成后最多提供养老床位多少个?最少提供养老床位多少个?6、为更新果树品种,某果园计划新购进A、B两个品种的果树苗栽植培育,若计划购进这两种果树苗共45棵,其中A种苗的单价为7元/棵,购买B种苗所需费用y(元)与购买数量x(棵)之间存在如图所示的函数关系.(1)求y与x的函数关系式;(2)若在购买计划中,B种苗的数量不超过35棵,但不少于A种苗的数量,请设计购买方案,使总费用最低,并求出最低费用.巩固练习1. 如图,直线y=ax+b过点A(0,2)和点B(﹣3,0),则方程ax+b=0的解是()A.x=2 B.x=0 C.x=﹣1 D.x=﹣32. 甲、乙两车从A城出发前往B城,在整个行驶过程中,汽车离开A城的距离y(km)与行驶时间t(h)的函数图象如图所示,下列说法正确的有()①甲车的速度为50km/h②乙车用了3h到达B城③甲车出发4h时,乙车追上甲车④乙车出发后经过1h或3h两车相距50km.A.1个B.2个C.3个D.4个3.两直线l1:y=2x-1,l2:y=x+1的交点坐标为()A.(-2,3)B.(2,-3)C.(-2,-3)D.(2,3)4. 若直线x+2y=2m与直线2x+y=2m+3(m为常数)的交点在第四象限,则整数m的值为()A.-3,-2,-1,0 B.-2,-1,0,1 C.-1,0,1,2 D.0,1,2,3 5.一家电信公司提供两种手机的月通话收费方式供用户选择,其中一种有月租费,另一种无月租费.这两种收费方式的通话费用y(元)与通话时间x(分钟)之间的函数关系如图所示.小红根据图象得出下列结论:①l1描述的是无月租费的收费方式;②l2描述的是有月租费的收费方式;③当每月的通话时间为500分钟时,选择有月租费的收费方式省钱.其中,正确结论的个数是()A.0 B.1 C.2 D.36.如图,一次函数y=kx+b的图象经过A、B两点,则kx+b>0解集是()A.x>0 B.x>-3 C.x>2 D.-3<x<2课堂小结强化提升1. 一次函数y=kx+b(k、b为常数,且k≠0)的图象如图所示.根据图象信息可求得关于x的方程kx+b=6的解为.2. 如图,函数y=kx(k≠0)和y=ax+4(a≠0)的图象相交于点A(1,3),则不等式kx>ax+4的解集为.3.一辆货车从甲地匀速驶往乙地,到达后用了半小时卸货,随即匀速返回,已知货车返回的速度是它从甲地驶往乙地的速度的1.5倍.货车离甲地的距离y(千米)关于时间x(小时)的函数图象如图所示.则a= (小时).4.一次函数y=ax+b (a ,b 都是常数)的图象过点P (-2,1),与x 轴相交于A(-3,0),则根据图象可得关于x 的不等式组0≤ax+b <-12x 的解集为 .课后作业1.(本题满分10分)某校准备组织师生共60人,从南靖乘动车前往厦门参加夏令营活动,动车票价格如下表所示:(教师按成人票价购买,学生按学生票价购买)若师生均购买二等座票,则共需1020元.(1)参加活动的教师有_________人,学生有___________人;(2)由于部分教师需提早前往做准备工作,这部分教师均购买一等座票,而后续前往的教师和学生均购买二等座票.设提早前往的教师有人,购买一、二等座票全部费用为元.①求关于的函数关系式;②若购买一、二等座票全部费用不多于1032元,则提早前往的教师最多只能多少人?运行区间成人票价(元/张) 学生票价(元/张) 出发站终点站 一等座 二等座 二等座 南靖 厦门 26 22 16 x y y x2. 如图,过点A (2,0)的两条直线, 分别交 y 轴于B ,C ,其中点B 在原点上方,点C 在原点下方,已知AB=.(1)求点B 的坐标;(2)若△ABC 的面积为4,求的解析式.3. (本题满分10分)某公司今年如果用原线下销售方式销售一产品,每月的销售额可达100万元.由于该产品供不应求,公司计划于3月份开始全部改为线上销售,这样,预计今年每月的销售额y (万元)与月份x (月)之间的函数关系的图象如图1中的点状图所示(5月及以后每月的销售额都相同),而经销成本p (万元)与销售额y (万元)之间函数关系的图象图2中线段AB 所示.1l 2l 132l(1)求经销成本p (万元)与销售额y (万元)之间的函数关系式;(2)分别求该公司3月,4月的利润;(3)问:把3月作为第一个月开始往后算,最早到第几个月止,该公司改用线上销售后所获得利润总额比同期用线下方式销售所能获得的利润总额至少多出200万元?(利润=销售额﹣经销成本)4.(本题满分10分)小李是某服装厂的一名工人,负责加工A ,B 两种型号服装,他每月的工作时间为22天,月收入由底薪和计件工资两部分组成,其中底薪900元,加工A 型服装1件可得20元,加工B 型服装1件可得12元.已知小李每天可加工A 型服装4件或B 型服装8件,设他每月加工A 型服装的时间为x 天,月收入为y 元.(1) 求y 与x 的函数关系式;(2) 根据服装厂要求,小李每月加工A 型服装数量应不少于B 型服装数量的,那么他的月收入最高能达到多少元?355. (本题满分10分)有一科技小组进行了机器人行走性能试验,在试验场地有A、B、C三点顺次在同一笔直的赛道上,甲、乙两机器人分别从A、B两点同时同向出发,历时7分钟同时到达C点,乙机器人始终以60米/分的速度行走,如图是甲、乙两机器人之间的距离y(米)与他们的行走时间x(分钟)之间的函数图象,请结合图象,回答下列问题:(1)A、B两点之间的距离是米,甲机器人前2分钟的速度为米/分;(2)若前3分钟甲机器人的速度不变,求线段EF所在直线的函数解析式;(3)若线段FG∥x轴,则此段时间,甲机器人的速度为米/分;(4)求A、C两点之间的距离;(5)直接写出两机器人出发多长时间相距28米.。
初中数学八年级下册《一次函数的应用》优秀教学设计

二、制作一张手机月通话费用的函数图象
(1)刚才的问题我们是通过函数的图象很直观的解决了,那么这个问题怎么办呢?
(3)现在我提出这样两个问题,你应该如何回答?
一、提出问题,导入新课
问题1:(1)假如你是单位领导,你的单位急需用车,但又不准备买车,你们准备和一个个体车主或一国营出租车公司中的一家签订月租合同,设汽车每月行驶x千米,应付给出租车公司的月租费是y1元,y1= (X≥0),应付给个体车主的月租费是y2元,y2 (X≥0)。请你作出决定租哪家的车合算。
2.区里练习册P28第1、2、3题选作
多媒体展示
展示问题3
鼓励学生进行回顾与反思
引导学生进行归纳总结
四、课堂小结
1.利用一次函数解决实际问题的步骤是什么?
列解析式并确定函数的定义域。
根据解析式画图象
通过图象准确地读取信息作出判断
2.我们应用了那些数学思想方法
转化与数形结合的思想方法
展示内容
五、反馈练习,分层作业
1.区里练习册P27,P28第4题书P38 9
1.列解析式并确定函数的定义域。
2.根据解析式画图象。
3.通过图象准确地读取信息作出判断。
多媒体展示
使学生巩固知识,并能灵活运用。
现在我们知道了如何利用一次函数的有关知识解决实际问题的方法。
好!这样一个租碟的问题应该如何解决?比比哪组最快,哪组制作的函数图像最好。
三、赛一赛
问题3:某影碟出租店开设两种租碟方式:一种是零星租碟,每张收费1元;另一种是会员卡租碟,办卡费每月12元,租碟费每张0.4元,若每月租碟数量为x张.设零星租碟方式应付金额y1(元),会员卡租碟方式应付金额y2(元)。请你制作一张“月租碟费用”的函数图象,帮助来这家店租碟的人判断选取那种租碟方式更合算。学生分组合作完成此题。
第12讲一次函数复习PPT课件

当b=0 时,y=kx+b 即为 y=kx,
所以正比例函数,是一次函数的特例.
(1)若y=5x3m-2是正比例函数,m= 1 。 (2)若 y (m 2)xm23 是正比例函数,m= -2 。
考点2、正比例函数与一次函数的图象与性质
正比例函数y=kx的图象与性质
(1)图象:正比例函数y= kx (k 是常 数,k≠0)) 的图象是经过原点的一条直线, 我们称它为直线y= kx 。
1、通过近三年潍坊中考考点的展示及连接中考环节,体验潍坊中考对一次函 数的考查。 2、通过一次函数知识网络的整理,整体把握本讲的知识构成。 3、通过考点精讲及例习题,进一步加深以下知识点的认知及应用:
(1)一次函数及正比例函数的概念。 (2)一次函数的图象及性质。 (3)用待定系数法求一次函数的解析式。 (4)一次函数的实际应用。 4、通过检测过关环节反馈本讲知识的达标情况,及时查缺补漏。
4.函数y=ax+b与y=bx+a的图象在同一坐标系内的大致位 置正确的是 ( C)
A
B
C
D
5.(202X·安徽第20题)如图,一次函数y=kx+b的图象分别与反比例函数y= a x
的图象在第一象限交于点A(4,3),与y轴的负半轴交于点B,且OA=OB.
(1)求函数y=kx+b和y= a 的表达式; x
【答案】 (1)由图象可知,当x=4 h时,y=380 km,故从小刚家到该景区乘车一共用了 4小时. (2)设直线AB的函数关系式为y=kx+b, 由题意可知:A(1,80),B(3,320),
∴
∴线段AB的解析式为y=120x-40(1≤x≤3). (3)小刚一家出发2.5小时时处于AB段,把x=2.5代入y=120x-40,得y=120×2.540=260(km), 380-260=120(km). 所以小刚一家出发2.5小时时离目的地120 km.
中考数学一轮复习 函数及其应用教案

函数及其应用教案【课标要求】1.探索具体问题中的数量关系和变化规律.2.函数(1)通过简单实例,了解常量、变量的意义.(2)能结合实例,了解函数的概念和三种表示方法,能举出函数的实例.(3)能结合图象对简单实际问题中的函数关系进行分析.(4)能确定简单的整式、分式和简单实际问题中的函数的自变量取值范围,并会求出函数值.(5)能用适当的函数表示法刻画某些实际问题中变量之间的关系.(6)结合对函数关系的分析,尝试对变量的变化规律进行初步预测.3.一次函数(1)结合具体情境体会一次函数的意义,根据已知条件确定一次函数表达式.(2)会画一次函数的图象,根据一次函数的图象和解析表达式y=kx+b(k≠0)探索并理解其性质(k>0或k<0时,图象的变化情况).(3)理解正比例函数.(4)能根据一次函数的图象求二元一次方程组的近似解.(5)能用一次函数解决实际问题.4.反比例函数(1)结合具体情境体会反比例函数的意义,能根据已知条件确定反比例函数表达式.(2)能画出反比例函数的图象,根据图象和解析表达式 (k≠0)探索并理解其性质(k >0或k<0时,图象的变化情况).(3)能用反比例函数解决某些实际问题.5.二次函数(1)通过对实际问题情境的分析确定二次函数的表达式,并体会二次函数的意义.(2)会用描点法画出二次函数的图象,能从图象上认识二次函数的性质.(3)会根据公式确定图象的顶点、开口方向和对称轴(公式不要求记忆和推导),并能解决简单的实际问题.(4)会利用二次函数的图象求一元二次方程的近似解.【课时分布】函数部分在第一轮复习时大约需要8个课时,其中包括单元测试.下表为内容及课时安排(仅供参考).【知识回顾】1.知识脉络2.基础知识(1)一次函数的图象:函数y=kx b(k、b是常数,k≠0)的图象是过点(0,b)且与直线y=kx平行的一条直线.一次函数的性质:设y=kx b(k≠0),则当k>0时,y随x的增大而增大;当k<0,y随x的增大而减小.正比例函数的图象:函数y=kx(k是常数,k≠0)的图象是过原点及点(1,k)的一条直线.当k>0时,图象过原点及第一、第三象限;当k<0时,图象过原点及第二、第四象限.正比例函数的性质:设y=kx(k≠0),则当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.(2)反比例函数的图象:函数 (k≠0)是双曲线.当k>0时,图象在第一、第三象限;当k<0时,图象在第二、第四象限.反比例函数的性质:设 (k≠0),则当k>0时,在每个象限中,y随x的增大而减小;当k<0时,在每个象限中,y随x的增大而增大.(3)二次函数一般式:.图象:函数的图象是对称轴平行于y轴的抛物线.性质:设①开口方向:当a>0时,抛物线开口向上,当a<0时,抛物线开口向下;②对称轴:直线;③顶点坐标(;④增减性:当a>0时,如果,那么y随x的增大而减小,如果,那么y随x的增大而增大;当a<0时,如果,那么y随x的增大而增大,如果,那么y随x的增大而减小.顶点式.图象:函数的图象是对称轴平行于y轴的抛物线.性质:设①开口方向:当a>0时,抛物线开口向上,当a<0时,抛物线开口向下;②对称轴:直线;③顶点坐标;④增减性:当a>0时,如果,那么y随x的增大而减小,如果,那么y随x的增大而增大;当a<0时,如果,那么y随x的增大而增大,如果,那么y随x的增大而减小.3.能力要求例1如图,二次函数的图象开口向上,图象经过点(-1,2)和(1,0),且与轴相交于负半轴.给出四个结论:①;②;③;④.其中正确结论的序号是.【分析】利用图象的位置可判断a、b、c的符号,结合图象对称轴的位置,经过的点可推断出正确结论.【解】由图象可知:a>0,b<0,c<0,∴abc>0;∵对称轴x=在(1,0)的左侧,∴<1,∴;∵图象过点(-1,2)和(1,0),∴,∴,b=-1;∴a=1-c>1.∴正确的序号为:②③④.【说明】函数图象是研究函数性质的有力工具,是数形结合思想方法的重要运用.本题通过形(图象及其位置)的条件得出数(相等和不等关系)的结论.教师在复习总要加强这种思想方法的渗透.例2 设直线与抛物线的交点为A(3,5)和B.⑴求出b、c和点B的坐标;⑵画出草图,根据图像回答:当x在什么范围时.【分析】与一次函数、二次函数的图象交点有关的问题,可通过转化为方程(组)的思路解决.借助于函数图象可直观地解决函数值的大小比较.【解】(1)∵直线与抛物线的交于点A(3,5),∴,∴,∴,.由得∴B(-2,0).(2)图象如图所示,由图象可知:当或时,.【说明】本题着重考查与函数图象交点有关的问题及函数值的大小比较问题,要求学生能够利用数形结合思想,沟通函数和方程(组)、不等式的联系和相互转化.例3 已知抛物线y=ax2+bx+c的顶点为(1,-4),且抛物线在x轴上截得的线段长为4,求抛物线的解析式.【分析】由于抛物线是轴对称图形,因此抛物线在x轴上截得的线段被抛物线的对称轴垂直平分,从而可求得抛物线与x轴的两个交点坐标.【解】∵抛物线的顶点为(1,,∴设抛物线的解析式为,∴抛物线的对称轴为直线x=1,又∵抛物线在x轴上截得的线段长为4,∴抛物线与x轴的交点为(,0),(3,0),∴0=4a,∴a=1,∴抛物线的解析式为,即.【说明】抛物线的对称性常常是解题的切入口,本题也可以通过设抛物线与x轴的交点为,则,利用根与系数的关系来求解,但这样显然比较繁琐.例4 利达经销店为某工厂代销一种建筑材料(这里的代销是指厂家先免费提供货源,待货物售出后再进行结算,未售出的由厂家负责处理).当每吨售价为260元时,月销售量为45吨.该经销店为提高经营利润,准备采取降价的方式进行促销.经市场调查发现:当每吨售价每下降10元时,月销售量就会增加7. 5吨.综合考虑各种因素,每售出一吨建筑材料共需支付厂家及其它费用100元.设每吨材料售价为x(元),该经销店的月销售量为p(吨),月利润为y(元),月销售额为w(元),.(1)当每吨售价是240元时,计算此时的月销售量;求出p与x的函数关系式(不要求写出x的取值范围);(2)求出y与x的函数关系式(不要求写出x的取值范围);(3)该经销店要获得最大月利润,售价应定为每吨多少元?(4)小静说:“当月利润最大时,月销售额也最大.”你认为对吗?请说明理由.【分析】根据题意,月销售量p是每吨售价x的一次函数,月利润y是每吨售价x的二次函数,月销售额w也是每吨售价x的二次函数,通过配方可解决(3)、(4)问题. 【解】(1)当每吨售价是240元时,此时的月销售量p=吨;由题意得:p=,即p=.(2)y=,即y=.(3)配方得:y=,∴当x=210时,y max=9075(元).(4)w=,即w=,∴当x=160时w max=19200.∴y与w不是同时取得最大值,小静说法不对.【说明】本题是一次函数和二次函数在实际生活中的综合运用,学生关键要理解商品经济中的进价(成本价),售价,单位利润(每件商品的利润),销售数量,总利润,销售额的概念及其关系.单位利润=售价-进价,总利润=单位利润×销售数量,销售额=售价×销售数量.例5如图,平面直角坐标系中,四边形为矩形,点的坐标分别为,动点分别从同时出发,以每秒1个单位的速度运动.其中,点沿向终点运动,点沿向终点运动,过点作,交于,连结,已知动点运动了秒.(1)点的坐标为( ,)(用含的代数式表示);(2)试求面积的表达式,并求出面积的最大值及相应的值;(3)当为何值时,是一个等腰三角形?简要说明理由.【分析】求P点坐标,由图可知,就是要求线段OM,PM,由△APM∽△ACO可得;求△NPC的面积的关键是用x的代数式表示边CN上的高PQ;△NPC是等腰三角形有三种情形,不能遗漏.【解】(1)由题意可知,,,点坐标为.(2)设的面积为,在中,,边上的高为,其中..的最大值为,此时.(3)延长交于,则有.①若,.,.②若,则,.③若,则.,在中,.,.综上所述,,或,或.【说明】本题为双动点综合题,是中考的压轴题,有较大的难度.(1)(2)两小题与函数有关,解题的关键在于把握动点的运动规律,用x的代数式表示出动点的路程,从而结合相似形的知识把其它有关线段也用x的代数式表示出来为解题服务.(3)要用到分类讨论的思想方法.【复习建议】1.立足教材,打好基础,学生通过复习,应熟练掌握函数的基本知识、基本方法和基本技能.2.重视问题情境的创设和实际问题的解决,强化函数思想和方法的渗透、总结和升华.增强学生自觉运用函数模型解决现实生活中的数学问题的意识和能力.3.加强函数知识与方程(组),不等式(组)知识、相似三角形知识等的联系,提高学生综合运用数学知识的水平,促进学生更快、更好地构建数学知识网络.4.重视学科间知识、方法的渗透,复习中可综合物理、化学等学科相关知识及其特点,用数学的视角来加强相关知识的学习与巩固。
2021年中考数学一轮复习课件:第12课时-一次函数的应用

(2)由y1<y2,得30x+200<40x,解得x>20,所以当x>20时,选择方式一比方式二省
钱.
2.[2016·山西20题]我省某苹果基地销售优质苹果,该基地对需要送货且购买量
在2000 kg~5000 kg(含2000 kg和5000 kg)的客户有两种销售方案(客户只能选
1.[2019·山西19题]某游泳馆推出了两种收费方式.
方式一:顾客先购买会员卡,每张会员卡200元,仅限本人一年使用,凭卡游泳,每次
游泳再付费30元.
方式二:顾客不购买会员卡,每次游泳付费40元.
设小亮在一年内来此游泳馆游泳的次数为x次,选择方式一的总费用为y1(元),选择
方式二的总费用为y2(元).
间,设他从山脚出发后所用的时间为t(分),所走的路程为s(米),s与t之间的函数关
系如图12-1,下列说法中错误的是( C )
A.小明中途休息用了20分钟
B.小明休息前爬山的速度为每分钟70米
C.小明在爬山过程中所走的路程为6600米
D.小明休息前爬山的平均速度大于休息后爬山的平均速度
图12-1
3.放学后,小明骑车回家,他经过的路程s(千米)与所用时间t(分)的函数关系如图
择其中一种方案):
方案A:每千克5.8元,由基地免费送货.
方案B:每千克5元,客户需支付运费2000元.
(1)请分别写出按方案A,方案B购买这种苹果的应付款y(元)与购买量x(kg)之间的
函数表达式;
(2)求购买量x在什么范围时,选择方案A比方案B付款少;
(3)某水果批发商计划用20000元购买尽可能多的这种苹果,请直接写出他应选择
九年级数学总复习课件:第12课时一次函数的应用

类型二 一次函数结合图象的应用 例2(’14 长春)甲、乙两支清雪队同时
开始清算某路段积雪,一段时间后,乙队被 调往别处,甲队又用了3小时完成了剩余的清 雪任务,已知甲队每小时的清雪量保持不变, 乙队每小时清雪50吨,甲、乙两队在此路段 的清雪总量y(吨)与清雪时间x(时)之间的函 数图象如图所示.
解:(1)设y与x之间的函数关系式为y=kx+b,
直线过(0,24),(2,12)两点.
∴ 24=b
解得 k=-6
12=2k+b,
b=24,
∴y与x之间的函数关系式为y=-6x+24;
(2)求蜡烛燃尽所用时间也就是求当y=0时x 的值, 即-6x+24=0解得x=4, 答:蜡烛从点燃到燃尽所用时间为4小时.
在南昌的外婆寄一盒樱桃,快递时,他了 解到这个公司除收取每次6元的包装费外, 樱桃不超过1 kg收费22元,超过1 kg,则超 出部分按每千克10元加收费用.设该公司 从西安到南昌快寄樱桃的费用为y(元),所 寄樱桃为x(kg). (1)求y与x之间的函数关系式; (2)已知小李给外婆快寄了2.5 kg樱桃, 请你求出这次快递的费用是多少元?
(2)【思路分析】在不确定最节省费用的购 票方案时应分y1=y2,y1<y2,y1>y2三种情况讨论, 通过比较,确定最优惠的方案.
解:∵y1-y2=0.5x-12(x≥4), ①当y1-y2=0,得0.5x-12=0,解得x=24, ∴当购买24张学生票时,两种优惠方案一样 省钱;
②当y1-y2<0时,得0.5x-12<0,解得4≤x<24, 此时y1<y2,当购买学生票大于等于4张,小于24 张时,优惠方案1更省钱; ③当y1-y2>0时,得0.5x-12>0,解得x>24, 此时y1>y2,当购买学生票大于24张时,优惠方 案2更省钱.
《 一次函数的应用》教案

《一次函数的应用》教案教学目标1.巩固一次函数知识,灵活运用变量关系解决相关实际问题.2.有机地把各种数学模型通过函数统一起来使用,提高解决实际问题的能力.3.让学生认识数学在现实生活中的意义,发展学生运用数学知识解决实际问题的能力.教学重点1.建立函数模型.2.灵活运用数学模型解决实际问题.教学难点灵活运用数学模型解决实际问题.教学过程一.创设情境复习导入做一件事情,有时有不同的实施方案,比较这些方案,从中选择最佳方案作为行动计划,是非常必要的.方案选择的问题对于我们来说并不陌生,但是书写起来比较麻烦,事实上这类问题用一次函数来解决会更好理解,书写起来也更加简捷,这节课我们就来体会一下如何运用一次函数选择最佳方案问题.二.尝试活动探索新知1.我们平时所说的鞋子大小是以“码”为单位的,而厂商对鞋子大小编号却是以“cm”为单位的,这二者有什么关系呢?下面就以我们收集到的一些数据来研究这个问题..(2)若要买39㎝的鞋子,则对应的尺码应为多少?三.动手操作,一起探究某公司与营销人员签订了这样的工资合同:工资由两部分组成,一部分是基本工资,每人每月300元;另一部分是按月销售量确定的奖励工资,每销售一件产品奖励工资4元.1.设某销售员月销售产品x件,他应得的工资为y元.求y与x的函数关系式.2.用求出的函数关系式,尝试解决以下问题:(1)该营销员某月的工资为1220元,他这个月销售了多少件产品?(2)要想使月工资超过1500元,当月的销售量应当超过多少件?结合生活情境使学生明白用一次函数解决问题的一般步骤:(1)认真分析实际问题中变量之间的关系;(2)若具有一次函数关系,则建立一次函数的关系式;(3)利用一次函数的有关知识解题.在实际生活问题中,如何应用一次函数知识解题,关键是建立一次函数模型.一种节能灯的功率为10瓦(即0.01千瓦),售价为60元;一种白炽灯的功率为60瓦(即0.06千瓦),售价为3元.两种灯的照明效果一样,使用寿命也相同(3000小时以上).如果电费价格为0.5元/(千瓦×时),消费者选用哪种灯可以节省费用?分析:1.指出问题中的常量、变量?2.变量之间存在着怎样的关系?总结:要考虑如何节省费用,必须既考虑灯的售价又考虑电费.不同灯的售价分别是不同的常数,而电费与照明时间成正比例,因此,总费用与灯的售价.功率这些常数有关,而且与照明时间有关,写出函数解析式是分析问题的关键.解:设照明时间为x 小时,则:节能灯的总费用为1y =60+0.01×0.5x ;即:1y =60+0.005x白炽灯的总费用为2y =3+0.06×0.5x即:2y =3+0.03x讨论:根据以上两个函数,思考解决问题方法:方法1:利用不等式的分类讨论解决问题(1)x 为何值时1y =2y ?(2)x 为何值时1y >2y ?(3)x 为何值时1y <2y ?如果用不等式来解决会比较麻烦,试着利用函数解析式及图象的性质来解决,感受一下. 方法2:画出两个函数的图象.通过函数图形,我们可以很容易求出交点的横坐标为2280,即当使用电量为2280小时时,二者的总费用相同;同时也可以看出2280是一个分界点,低于2280时,1y >2y ,使用白炽灯更省钱;高于2280时,1y <2y .使用节能灯更省钱.方法3:将两个解析式合并成一个解析式.相比较1y 和2y 的大小,可以通过作差比较法,由此想到通过作差将两个函数解析式合并成一个解析式,y =1y -y 2=57-0.025x 的值表示节能灯比白炽灯总费用高多少.观察函数y =57-0.025x 为减函数,图象经过点(2280,0),所以当x >2280时,y <0,此时选择节能灯更省钱;当x <2280时,y >0,此时选择白炽灯更省钱.四.例题解析例1:某生产资料部门出售化肥,每袋售价80元.为了促进销售,规定了优惠办法:买3袋按售价计算,从第4袋开始每袋优惠5%.(1)写出购买这种化肥的总金额M(元)与购买袋数n的函数表达式,并指出它的自变量的取值范围;(2)为了快速得到购买这种化肥的总金额,请你利用这个函数的表达式制作一个购买1 ~10袋化肥的总金额的对照表.例2:甲.乙两个通信公司分别制定了一种移动电话的收费办法.甲公司规定:每月收取月租费50元,每通话1分钟再收费0.4元;乙公司规定:不收取月租费,每通话1分钟收费0.6元.那么,应当怎样选择通信公司才能节省电话费?(通话不到1分钟按1分钟收费)师:每个二元一次方程都对应一个一次函数,且以它的每一个解为坐标的点均在相应的一次函数图象上;反之,任意一个一次函数图象上的每一个点的坐标均是相应的二元一次方程的解.课堂总结:本节课你学会了什么?。
一次函数的应用优秀教案

一次函数的应用【课时安排】2课时【第一课时】【教学目标】1.能通过函数图象获取信息,发展形象思维。
2.能利用函数图象解决简单的实际问题。
3.初步体会方程与函数的关系。
【教学重点】一次函数图象的应用。
【教学难点】正确地根据图象获取信息。
【教学过程】一、导入新课。
在前几节课里,我们分别学习了一次函数,一次函数的图象,一次函数图象的特征,并且了解到一次函数的应用十分广泛,和我们日常生活密切相关,因此本节课我们一起来学习一次函数的应用。
二、讲授新课。
(一)做一做。
1.由于持续高温和连日无雨,某水库的蓄水量随着时间的增加而减少。
干旱持续时间t (天)与蓄水量V(万立方米)的关系如下图所示,回答下列问题:(1)水库干旱前的蓄水量是多少?(2)干旱持续10天,蓄水量为多少?连续干旱23天呢?(3)蓄水量小于400万立方米时,将发生严重干旱警报。
干旱多少天后将发出严重干旱警报?(4)按照这个规律,预计持续干旱多少天水库将干涸?[师]请大家根据图象回答问题,有困难的请大家互相交流。
[生甲]答:(1)水库干旱前即t=0时,也就是1200万立方米。
(2)求干旱持续10天时的蓄水量,也就是求t等于10时所对应的V的值。
当t=10时,V约为1000万立方米。
同理可知当t为23天时,V约为750万立方米。
[生乙](3)当蓄水量小于400万立方米时,将发出严重干旱警报,也就是当V等于400万立方米时,求所对应t的值。
当V等于400万立方米时,所对应的t的值约为40天。
[生丙]水库干涸也就是V为0,所以求函数图象与横轴交点的横坐标即为所求。
当V为0时,所对应的t的值约为60天。
(二)练一练。
1.某种摩托车的油箱最多可储油10升,加满油后,油箱中的剩余油量y(升)与摩托车行驶路程x(千米)之间的关系如图所示。
根据图象回答下列问题:(1)一箱汽油可供摩托车行驶多少千米?(2)摩托车每行驶100千米消耗多少升汽油?(3)油箱中的剩余油量小于1升时,摩托车将自动报警,行驶多少千米后,摩托车将自动报警?分析:(1)函数图象与x轴交点的横坐标即为摩托车行驶的最长路程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第12讲: 一次函数的应用
一、复习目标
1. 复习一次函数的基本性质。
2. 利用数形结合探究一次函数图象与实际意义的对应,体会函数图象所反映出的函数性质。
二、课时安排
1课时
三、复习重难点
1、探究一次函数图象在实际中的应用。
2、一次函数图象的辨析。
四、教学过程
(一)知识梳理
一次函数的应用
建模思想
一次函数在现实生活中有着广泛的应用,在解答一次函数的应用题时,应从给定的信息中抽象出一次函数关系,理清哪个是自变量,哪个是自变量的函数,确定出一次函数,再利用一次函数的图象与性质求解,同时要注意自变量的取值范围
实际问题中一
次函数的最大(小)值
在实际问题中,自变量的取值范围一般受到限制,一次函数的图象就由直线变成线段或射线,根据函数图象的性质,函数就存在最大值或最小值
常见类型
(1)求一次函数的解析式(2)利用一次函数的图象与性质解决某些问
题,如最值等
(二)题型、技巧归纳
考点一:利用一次函数进行方案选择
技巧归纳:一次函数的方案决策题,一般都是利用自变量的取值不同,得出不同方案,并根据自变量的取值范围确定出最佳方案.
考点二:利用一次函数解决资源收费问题
技巧归纳:此类问题多以分段函数的形式出现,正确理解分段函数是解决问题的关键,一般应从如下几方面入手:(1)寻找分段函数的分段点;(2)针对每一段函数关系,求解相应的函数解析式;
(3)利用条件求未知问题.
考点三:利用一次函数解决其他生活实际问题
技巧归纳:结合函数图象及性质,弄清图象上的一些特殊点的实际意义及作用,寻找解决问题的突破口,这是解决一次函数应用题常见的思路.“图形信息”题是近几年的中考热点考题,解此类问题应做到三个方面:(1)看图找点,(2)见形想式,(3)建模求解.
(三)典例精讲
例1 我市某医药公司把一批药品运往外地,现有两种运输方式可供选择.
方式一:使用快递公司的邮车运输,装卸收费400元,另外每公里再加收4元;
方式二:使用快递公司的火车运输,装卸收费820元,另外每公里再加收2元;
(1)请分别写出邮车、火车运输的总费用y1(元)、y2(元)与运输路程x(公里)之间的函数关系式;
(2)你认为选用哪种运输方式较好,为什么?
[解析] (1)根据方式一、二的收费标准即可得出y1(元)、y2(元)与运输路程x(公里)之间的函数关系式.
(2)比较两种方式的收费多少与x的变化之间的关系,从而根据x的不同选择合适的运输方式.
解:(1)由题意得,y1=4x+400, y2=2x+820.
(2)令4x+400=2x+820,解之得x=210,
所以当运输路程小于210 km时,y1<y2,选择邮车运输较好;
当运输路程等于210 km时,y1=y2,选择两种方式一样;
当运输路程大于210 km时,y1>y2,选择火车运输较好
例2 为促进节能减排,倡导节约用电,某市将实行居民生活用电阶梯电价方案,图12-1中折线反映了每户居民每月用电电费y(元)与用电量x(度)间的函数关系.
(1)根据图象,阶梯电价方案分为三个档次,请填写下表:
档次第一档第二档第三档
每月用电量x度0<x≤140 _____ ______
(2)小明家某月用电120度,需要交电费________元;
(3)求第二档每月电费y(元)与用电量x(度)之间的函数关系式;
(4)在每月用电量超过230度时,每多用1度电要比第二档多付电费m元,小刚家某月用电290
度交纳电费153元,求m 的值.
[解析] (1)利用函数图象可以得出,阶梯电价方案分为三个档次,利用横坐标可得出:第二档,第三档中x 的取值范围;
(2)根据第一档范围是:0<x≤140,利用图象上点的坐标得出解析式,进而得出x =120时y 的值;
(3)设第二档每月电费y(元)与用电量x(度)之间的函数关系式为:y =kx +b ,将(140,63),(230,108)代入求出k ,b 的值即可;
(4)分别求出第二、三档每度电的费用,进而得出m 的值即可. 解:(1)填表如下: 档次
第一档 第二档 第三档 每月用电量x 度 0<x≤140
140<x≤230
x>230
(2)54
(3)设y 与x 的关系式为y =kx +b ,
∵点(140,63)和(230,108)在y =kx +b 的图象上,
∴⎩⎪⎨⎪⎧63=140k +b ,108=230k +b , 解得⎩
⎪⎨⎪⎧k =0.5,b =-7.
∴y 与x 的关系式为y =0.5x -7.
(4)方法一:第三档中1度电交电费(153-108)÷(290-230)=0.75(元); 第二档1度电交电费(108-63)÷(230-140)=0.5(元), 所以m =0.75-0.5=0.25. 方法二:根据题意得,
⎝ ⎛⎭
⎪⎫108-63230-140+m ×(290-230)+108=153,解得m =0.25. 例3 周末,小明骑自行车从家里出发到野外郊游.从家出发0.5小时后到达甲地,游玩一段时间后按原速前往乙地.小明离家1小时20分钟后,妈妈驾车沿相同路线前往乙地,如图12-2是他们离家的路程y (km)与小明离家时间x (h)的函数图象.已知妈妈驾车的速度是小明骑车速度的3倍.
(1)求小明骑车的速度和在甲地游玩的时间;
(2)小明从家出发多少小时后被妈妈追上?此时离家多远? (3)若妈妈比小明早10分钟到达乙地,求从家到乙地的路程.
[解析] (1)用路程除以时间即可得到速度;在甲地游玩的时间是1-0.5=0.5 (h). (2)如图,求得线段BC 所在直线的解析式和DE 所在直线的解析式后求得交点坐标即可求得被妈妈追上的时间.
(3)可以设从妈妈追上小明的地点到乙地的路程为n km ,根据妈妈比小明早到10分钟列出有关
n 的方程,求得n 值即可
解:(1)小明骑车速度:10÷0.5=20(km/h); 在甲地游玩的时间是1-0.5=0.5(h).
(2)设各交点字母如图所标.妈妈驾车速度:20×3=60(km/h). 设直线BC 解析式为y =20x +b 1, 把点B (1,10)的坐标代入,得b 1=-10, ∴y =20x -10.
设直线DE 解析式为y =60x +b 2,把点D ⎝ ⎛⎭
⎪⎫43,0的坐标代入,得b 2=-80,∴y =60x -80.
两解析式联立得⎩⎪⎨⎪⎧y =20x -10,
y =60x -80,
解得⎩
⎪⎨⎪⎧x =1.75,
y =25.
∴交点F (1.75,25).
答:小明出发1.75 h 后被妈妈追上,此时离家25 km. (3)方法一:设从家到乙地的路程为m km ,
则将点E (x 1,m ),点C (x 2,m )的坐标分别代入y =60x -80,y =20x -10,得x 1=m +80
60
,x 2=
m +10
20
.
∵x 2-x 1=1060=16,∴m +1020-m +8060=16,∴m =30.
∴从家到乙地的路程为30 km.
方法二:设从妈妈追上小明的地点到乙地的路程为n km ,
由题意得n
20-
n
60
=
10
60
,
∴n=5,∴从家到乙地的路程为5+25=30(km).
(四)归纳小结
本部分内容要求熟练掌握数形结合探究一次函数图象与实际意义的对应,体会函数图象所反映出的函数性质。
(五)随堂检测
1、某公司准备与汽车租赁公司签订租车合同.以每月用车路程x km计算,甲汽车租赁公司的月租费是y1元,乙汽车租赁公司的月租费是y2元.如果y1、y2与x之间的关系如图,那么:
(1)每月用车路程多少时,租用两家汽车租赁公司的车所需费用相同?
(2)每月用车路程在什么范围内,租用甲汽车租赁公司的车所需费用较少?
(3)如果每月用车的路程约为2300 km,那么租用哪家的车所需费用较少?
2、某通讯公司推出①、②两种通讯收费方式供用户选择,其中一种有月租费,另一种无月租费,且两种收费方式的通讯时间x(分钟)与收费y(元)之间的函数关系如图所示.
(1)有月租费的收费方式是________(填①或②),月租费是________元;
(2)分别求出①、②两种收费方式中y与自变量x之间的函数关系式;
(3)请你根据用户通讯时间的多少,给出经济实惠的选择建议.
五、板书设计
一次函数应用
六、作业布置
完成一次函数的应用课时作业
七、教学反思
借助多媒体形式,使同学们能直观感受本模块内容,以促进学生对所学知识的充分理解与掌握。
采用启发、诱思、讲解和讨论相结合的方法使学生充分掌握知识。
进行多种题型的训练,使同学们能灵活运用本节重点知识。