两个常用绝对值不等式的应用
绝对值不等式的证明及应用

绝对值不等式的证明及应用一、绝对值有关性质回顾:①(0)0(0)(0)a a a a a a >⎧⎪==⎨⎪-<⎩②ab a b =,aa b b= (0)b ≠ ③22a a =④0a ≥ ⑤a a a -≤≤⑥x a a x a ≤⇔-≤≤ x a x a a ≥⇔≥≤-或 二、绝对值不等式:定理:绝对值三角不等式:a b a b a b-≤±≤+.(代数形式)a b a b a b -≤±≤+(向量形式)几何解释:三角形两边之和大于第三边,两边之差小于第三边.(0b a b ab +≤+≥取等号) 证明:方法一:()22+a b a b +≤, 2222+22a ab b a ab b +≤++, 22ab ab ≤,而22ab ab ≤显然成立,∴(0a b a b ab +≤+≥取等号)||||||a b a b +=====+||||||a b a b +===<==+方法二:(选修4-5证法) 当ab ≥0时, ||,ab ab =||,ab ab =-当ab <0时综上,a b a b +≤+ 0ab ≥当时,取等号, 方法三:(原人教版教材证法) ∵a a a -≤≤ ① b b b -≤≤ ②①+②:()a b a b a b -+≤+≤+, 逆用性质x a ≤得:a b a b +≤+推论1:123123.......n a a a a a a a +++≤++ ,当123,,,......n a a a a 都非正或都非负时。
a b a b -≤+.证明:方法一:当0a b -<时显然成立,当0a b -≥时,两边平方,()22a b a b-≤+, 222222a ab b a ab b -+≤++, 22ab ab -≤,而22ab ab -≤显然成立,∴a b a b -≤+,(当0ab <时取等号). 方法二:直接利用定理1a ab b a b b a b b =+-≤++-=++.当()()0a b b +-≥时,取等号.即()00a b b ab +≤⇒≤,取等号. 合在一起得:a b a b a b -≤+≤+.(当0ab ≤时左边取等号,当0ab ≥时右边取等号)(当0ab ≥时左边取等号, 当0ab ≤时左边取等号)证明:只需利用已有结论把a b a b a b -≤+≤+中的b 用b -代替即得到定理3.b ac b c -≤-+-证明:a b a c c b a c c b a c b c-=-+-≤-+-=-+-,(当()()0a c c b --≥时,取等号)几何解释:设A ,B ,C 为数轴上的3个点,分别表示数a ,b ,c ,则线段.CB AC AB +≤当且仅当C 在A ,B 之间时,等号成立。
绝对值的不等式

绝对值的不等式绝对值的不等式是数学中的一种重要概念,它在日常生活中也有着广泛的应用。
在不等式中,绝对值表示一个数与0的距离,因此它的结果始终为正数。
绝对值的不等式可以用来描述两个数之间的关系,掌握它的原理和应用对于我们做好数学和生活中的问题都非常有帮助。
首先,我们要了解绝对值的符号,用两条竖线括起来,例如|3|表示3的绝对值,也就是3与0的距离,即3。
如果一个数的绝对值大于另一个数的绝对值,那么这个数的大小也一定更大。
然后,要理解绝对值的不等式。
绝对值不等式的一般形式为|a|<b或|a|>b,其中a和b均为实数。
这意味着,如果|a|<b,那么a必须是一个离0足够近的实数,距离0小于b。
如果|a|>b,那么距离0更远,a的值越大或越小,a绝对值的结果越大。
接着,我们来看绝对值的不等式的应用。
在数学中,绝对值的不等式通常可用于解决不等式问题,如|x+2|<5,就可以用对称的形式把不等式拆分成两个绝对值不等式:-(x+2)<5和x+2<5。
这样,我们就可以得到-x<7和x<3两个解,取它们的交集,就得到了最终的解:-7<x<3。
在生活中,绝对值的不等式也有着广泛的应用。
例如,在购买商品时,我们需要对价格进行比较,绝对值的不等式可以帮助我们快速地比较两个价格的大小。
又如,在交通中,车速的不等式就是一种绝对值不等式,我们需要根据车速限制和实际行驶速度来调整车速,以保证自己和他人的安全。
总之,绝对值的不等式是数学中一个非常重要的概念,它在日常生活中也有着广泛的应用。
通过掌握绝对值的符号、原理和应用,我们可以更好地理解和解决数学问题,也可以更好地应对生活中的各种挑战,成为一个更加全面发展的人。
绝对值不等式的解法

含有两个绝对值的不等式的解法及应用西一中张权华摘要:解含有绝对值符号的不等式的基本思想是去掉绝对值符号,使不等式变为不含绝对值符号的一般不等式,而后,其解法就与一般不等式相同.因此,掌握去掉绝对值符号的方法和途径是解含绝对值不等式的关键.去掉绝对值符号的方法有很多,其中常用的方法有等价转化法、平方法、零点分段法、利用绝对值的几何意义等去掉绝对值符号和构造函数的方法。
但不是这些所有的方法都适用于每一道题,对于含有两个绝对值的不等式是高考的一个重点然且又是学生学习的一个难点,针对这一题型我用了不同的方法去绝对值符号来解不等式,为大家在解题的过程中快速准确地选择适当的方法提供帮助.关键词:两个; 绝对值;不等式含两个绝对值符号的不等式,我们常见的形式为:1122a x b a x b c +±+> 或1122a x b a x b c +±+<()0c >,解这种不等式我们应该怎样去其绝对值呢?题型的不同选取的方法对解题的难易程度固然不同。
对于解法一,要孰记︱x -a ︱+ ︱x -b ︱<c 或 ︱x -a ︱+ ︱x -b ︱>c (c>0) 两种类型的解法,关键是正确分类并转化为不含绝对值的不等式;对于解法二,要搞清它的几何意义是什么,并注意结论是否包括端点; 对于解法三,关键是正确画出两个函数的图象,并准确写出它们交点的坐标. 解不等式 1+x -2-x解法一利用绝对值的几何意义(体现了数形结合的思想).不等式127x x ++-≥的几何意义是表示数轴上与()1A -、()2B 两点距离之和大于等于7的点,而A 、B 的距离之和为3,因此线段AB 上每一点到A 、B 的距离之和都等于3,A 左侧的点到A 、B 的距离之和等于这点到A 点距离的2倍加3,B 右侧的点到A 、B 的距离之和等于这点到B 点距离的2倍加3.图1由图1可知:原不等式的解集为{}34x x x ≤-≥或.解法二 利用1020x x +=-=,的零点,把数轴分为三段,然后分段考虑.把原不等式化为不含绝对值符号的不等式求解(零点分段讨论法).(1)当1x <-时,原不等式同解于13127x x x x <-⎧⇒≤-⎨---+≥⎩,,; (2)当12x -≤≤时,原不等式同解于12127x x x -≤≤⎧⇒⎨+-+≥⎩,, 无解; (3)当2x >时,原不等式同解于24127x x x x >⎧⇒≥⎨++-≥⎩,,.综上知,原不等式的解集为{}34x x x ≤-≥或.解法三 通过构造函数,利用函数图像(体现了函数与方程的思想). 原不等式可化为1270x x ++--≥.令()127f x x x =++--,则(1)(2)7(1)()(1)(2)7(12)(1)(2)7(2)x x x f x x x x x x x -+---<-⎧⎪=+----≤≤⎨⎪++-->⎩,,,于是, 26(1)()4(12)28(2)x x f x x x x --<-⎧⎪=--≤≤⎨⎪->⎩,,,由图2知,原不等式的解集为{}34x x x≤-≥或解不等式2122x x+--<.解(零点分段法)如图3图3当12x≤-时,原不等式可变形为()()2122x x-++-<,解得5x>-,∴152x-<≤;当122x-<≤时,原不等式可变形为()()2122x x++-<,解得1x<,∴112x-<<;当2x>时,原不等式可变形为()()2122x x+--<,解得1x<-,∴无解.综上所述,原不等式的解集为()51-,.那么,例4是否可以利用绝对值的几何意义求解?答案是否定的,只有当121a a==时才可以采用这种方法,而且解答起来比较简单.另外,上面例3和例4也可以利用平方法解,但是比较麻烦.在例3中,移项后为172x x+≥--,因不知72x--的正负情况,所以要分情况进行讨论.而在例4中虽然不存在例3中的情况,但移项再平方后为242387x x x-<+-,有2x项,再次平方后就会出现高次项,所以不容易解出.那么是不是含两个绝对值符号的不等式用平方法求解都比较麻烦呢?其实,形如()12ax b ax b c c+-+>>和()12ax b ax b c c+++<>的含两个绝对值符号的不等式用平方法并不是很麻烦,可以通过两次平方去掉绝对值化为一般的不等式,所以我们在解题的过程中要选择一个合适的方法进行求解.4 小结以上就是我对中学数学中含绝对值不等式的一些常见形式的解法以及含绝对值不等式应用的一个归纳总结,希望能够帮助大家在解题过程中遇到具体的某种含绝对值符号形式的不等式能够快速准确的选取一个适当的方法进行求解.另外,我们常见的有关含绝对值不等式的形式还有含绝对值的不等式组,它的求解方法与解含绝对值不等式的方法基本相似,但也有它独特的解法,本文由于时间和篇幅问题就不做探讨.含绝对值的不等式的另一方面就是有关它的证明,这也是高中数学的一个重点和难点,它的应用也十分广泛,非常值得大家去研究.参考文献[1] 赵春祥.含绝对值不等式解法要点归纳.http://,2005.[2] 聂文喜.避开分类讨论解答不等式问题的常用策略[J].中学数学研究,2005,7.[3] 李长明,周焕山.初等数学研究[M].北京:高等教育出版社,1995.[4] 薛金星.中学教材全解[M].西安:陕西人民教育出版社,2009.[5] 蒋会乾.高中习题化知识清单[M].北京:首都师范大学出版,2009.[6] 吴杨华.高效复习法[M].北京:北京教育出版社,2007.[7] 王心升.中国高考揭秘[M].北京:北京教育出版社,2004.[8] 全国高考命题研究组.高考热点题库[M].北京:北京教育出版社,2005.[9] 齐如意.巧用数学思想解不等式[J].中学数学研究,2005,1.[10]温振辉.例谈“数形结合法”的运用[J].中学数学研究,2003,3.谢辞经过一个多月的努力,我的论文终于完成,在我写论文的过程中得到了许多人的支持和帮助,尤其是我的指导老师赵西卿副教授,从论文开始的选题、构思到论文的完成,每一个环节赵老师都给予了精心的指导,而且还对我的论文进行了多次细心的修改,在这里,我对赵老师表示衷心的感谢.另外,我还要感谢其他对我论文提供帮助的老师和同学.然后,我还要感谢大学四年所有给我传授知识的老师们,是你们为我打下坚实的专业知识的基础,才能使我的毕业论文得以顺利完成.最后,我要向在百忙之中抽时间对本文进行审阅、评议和参加本人论文答辩的各位老师表示感谢!(全文共8800个字)。
绝对值不等式的解法及应用

绝对值不等式的解法及应用绝对值不等式在数学中具有重要的应用价值,在各个领域中都有广泛的运用。
本文将对绝对值不等式的解法进行简要说明,并介绍其在实际问题中的应用。
一、绝对值不等式的解法1. 求解一元绝对值不等式对于形如 |x|<a 的不等式,其中 a>0 ,我们可以将其分解为两个简单的不等式,即 x<a 和-x<a ,然后再根据这两个不等式得到解的范围。
例如,对于 |x|<3 这个不等式,我们可以拆分为 x<3 和 -x<3 ,再分别求解这两个不等式,得到解的范围为 -3<x<3 。
2. 求解含有绝对值不等式的方程对于形如 |f(x)|=g(x) 的方程,可以通过以下步骤求解:Step 1: 根据绝对值的定义,将绝对值拆解为两个条件,即 f(x)=g(x) 和 f(x)=-g(x) 。
Step 2: 分别求解这两个条件对应的方程,得到解的范围。
Step 3: 将 Step 2 中得到的解进行合并,得到最终的解集。
例如,对于 |x-2|=3 这个方程,我们可以拆解为 x-2=3 和 x-2=-3 ,然后求解这两个方程得到 x=5 和 x=-1 ,最终的解集为 {5, -1} 。
二、绝对值不等式的应用绝对值不等式在实际问题中有广泛的应用,下面将介绍其中两个常见的应用领域。
1. 绝对值不等式在不等式求解中的应用在不等式求解中,绝对值不等式是一种常见的工具。
通过合理地运用绝对值不等式,可以简化不等式的求解过程,提高解题效率。
下面通过一个例子来说明。
例题:求解不等式 |2x-1|<5 。
解:根据绝对值的定义,将不等式拆分为两个条件,即 2x-1<5 和2x-1>-5 。
然后分别求解这两个条件对应的方程,得到 x<3 和 x>-2 。
最后将这两个解的范围进行合并,得到最终的解集为 -2<x<3 。
2. 绝对值不等式在数列问题中的应用在数列问题中,绝对值不等式可以用来求解数列的范围,帮助我们找到数列的性质和规律。
三个绝对值不等式

三个绝对值不等式介绍绝对值不等式是数学中常见的一类不等式,常用于解决实际问题中的约束条件。
本文将讨论三个不同的绝对值不等式,并详细说明它们的特点和解题方法。
绝对值不等式的定义绝对值是数的非负实数表示,与数的距离有关。
对于实数x,其绝对值|x|定义如下:•当x大于等于0时,|x|等于x本身。
•当x小于0时,|x|等于-x。
绝对值不等式则是指形如|f(x)|<g(x),|f(x)|>g(x)或|f(x)|≤g(x)等形式的不等式,其中f(x)和g(x)是关于变量x的函数。
绝对值不等式类型一:单个绝对值不等式当一个绝对值不等式只涉及一个绝对值时,可以分为以下三种情况进行讨论:情况一:|f(x)|<c当绝对值小于一个正常数c时,可将不等式分解为两个条件:f(x)>-c和f(x)<c。
例如,对于不等式|2x-3|<5,可以分别求解得到2x-3>-5和2x-3<5,进而解得-1<x<4。
情况二:|f(x)|>c当绝对值大于一个正常数c时,可以将不等式分为两个条件:f(x)<-c或f(x)>c。
例如,对于不等式|2x-3|>5,可以分别求解得到2x-3<-5或2x-3>5,进而解得x<-1或x>4。
情况三:|f(x)|≤c当绝对值小于等于一个正常数c时,可将不等式分为两个条件:f(x)≥-c和f(x)≤c。
例如,对于不等式|2x-3|≤5,可以分别求解得到2x-3≥-5和2x-3≤5,进而解得-4≤x≤4。
绝对值不等式类型二:两个绝对值不等式当一个绝对值不等式涉及两个绝对值时,可以将其转化为两个分离的不等式进行求解。
例如,对于不等式|2x-3|<|x+2|,可以分为两个情况进行讨论:情况一:2x-3<x+2和2x-3>-(x+2)将两个不等式分别求解得到x>-1/3和x>5/3。
含绝对值的不等式课件

在物理中的应用
描述物理量的大小
在物理学中,许多物理量的大小受到绝对值的影响,例如速度、加速度、力等。通过绝 对值不等式,可以描述这些物理量的变化范对值不等式常被用于判断物理量的符号和大小,例如在解决力学 、电磁学和热力学问题时。
预测物理现象
通过建立绝对值不等式,可以预测某些物理现象的发生,例如在研究波动现象、流体动 力学和量子力学时。
绝对值不等式的定义
含绝对值符号的不等式,表示一个数 距离0的大小关系。
绝对值的定义
对于任意实数x,其绝对值表示为|x|, 若x≥0,则|x|=x;若x<0,则|x|=-x 。
绝对值不等式的解法
零点分段法
将数轴分为若干区间,分别去掉绝对值符号 ,转化为若干个不带绝对值符号的一元一次 不等式组进行求解。
$
f(x)| geq g(x)$:表示函数$f(x)$的绝对值大于或等于函 数$g(x)$,其中$f(x)$和$g(x)$是两个函数。
01
$
f(x)| < g(x)$:表示函数$f(x)$的绝对值 小于函数$g(x)$,其中$f(x)$和$g(x)$ 是两个函数。
02
03
$
f(x)| leq g(x)$:表示函数$f(x)$的绝 对值小于或等于函数$g(x)$,其中 $f(x)$和$g(x)$是两个函数。
05
含绝对值不等式的变种与 推广
变种形式的不等式
$
01
x| geq a$:表示$x$的绝对值大于或等于$a$,其中$a$是一个
常数。
$
02
x| < a$:表示$x$的绝对值小于$a$,其中$a$是一个常数。
$
03
x| leq a$:表示$x$的绝对值小于或等于$a$,其中$a$是一个
绝对值不等式性质及公式

|a|-|b|小于等于|a+b|小于等于|a|+|b|
2.|a|<|b|可逆a&sup2;<b&sup2;
另外
|a|-|b|小于等于|a+b|小于等于|a|+|b|,当且仅当ab小于等于0时左边等
号成立,ab≥0时右边等号成立。
|a|-|b|小于等于|a-b|小于等于|a|+|b|,当且仅当ab≥0时左边等号成
立,ab小于等于0时右边等号成立。
几何意义
1.当a,b同号时它们位于原点的同一边,此时a与﹙b的距离等于它
们到原点的距离之和。2.当a,b异号时它们பைடு நூலகம்别位于原点的两边,此时a
与﹙b的距离小于它们到原点的距离之和。
(|a+b|表示a-b与原点的距离,也表示a与b之间的距离)
绝对值重要不等式
我们知道
|a|={a,(a>0),a,(a=0),﹙a,(a<0),}
因此,有
﹙|a|小于等于a小于等于|a|
﹙|b|小于等于b小于等于|b|
同样地
①,②相加得
﹙﹙|a|+|b|)小于等于a+b小于等于|a|+|b|
即|a+b|小于等于|a|+|b|
显而易见,a,b同号或有一个为0时,③式等号成立。
由③可得
|a|=|(a+b)-b|小于等于|a+b|+|-b|,
即|a|-|b|小于等于|a+b|
绝对值不等式性质及公式
绝对值不等式
简介
在不等式应用中,经常涉及重量、面积、体积等,也涉及某些数学对
绝对值不等式

绝对值不等式1、平均值不等式定理1:如果a,b∈R,那么a²+b²≥= 当且仅当当时,等号成立定理2:(基本不等式)如果a,b>0,那么2ba+≥,当且仅当当时,等号成立,即两个正数的算术平方根不小于(即大于或等于)它们的几何平均数。
定理3:如果a,b,c大于0,那么3cba++≥,当且仅当当时,等号成立,2、绝对值三角不等式:定理1:如果a,b是实数,则|a+b|≤ ,当且仅当当时,等号成立定理2:如果a,b,c是实数,那么 ,当且仅当当时,等号成立3.绝对值不等式的解法(2)|ax+b|≤c、|ax+b|≥c(c>0)型不等式的解法:①|ax+b|≤c⇔②|ax+b|≥c⇔(3)|x-a|+|x-b|≥c、|x-a|+|x-b|≤c(c>0)型不等式的解法:三种解法:思考感悟:1.|a-b|与|a|-|b|及|a|+|b|分别具有什么关系?【提示】||a|-|b||≤|a-b|≤|a|+|b|.2.|x-a|±|x-b|表示的几何意义是什么?【提示】|x-a|±|x-b|表示数轴上的点x到点a、b的距离之和(差).学情自测:1.(教材改编题)设ab>0,下面四个不等式中,正确的是()C①|a+b|>|a|;②|a+b|<|b|;③|a+b|<|a-b|;④|a+b|>|a|-|b|.A.①和②B.①和③C.①和④D.②和④∵ab>0,即a,b同号,则|a+b|=|a|+|b|,∴①④正确,②③错误.2.(2012·韶关质检)不等式|x-2|>x-2的解集是()AA.(-∞,2) B.(-∞,+∞) C.(2,+∞) D.(-∞,2)∪(2,+∞)【解析】|x-2|>x-2同解于x-2<0,∴x<2.3.(2011·陕西高考)若关于x的不等式|a|≥|x+1|+|x-2|存在实数解,则实数a的取值范围是________.【解析】因为|x+1|+|x-2|≥|x+1-x+2|=3,∴|x+1|+|x-2|的最小值为3,因此要使原不等式存在实数解,只需|a|≥3,∴a≥3或a≤-3.【答案】(-∞,-3]∪[3,+∞)4、(2012广州调研)不等式:|2||1|++x x ≥1的实数解为 |2||1|++x x ≥1⇔|x+1|≥|x+2|且x+2≠0,∴x ≤-23且x ≠-2 绝对值不等式性质的应用 :例题1:(2011·江西高考)对于实数x ,y ,若|x -1|≤1,|y -2|≤1,则|x -2y +1|的最大值为.【思路点拨】思路一: 将|x -2y +1|变形,设法用x -1与y -2表示,利用绝对值不等式的性质求最值; 思路二: 由|x -1|≤1,|y -2|≤1分别求x 、y 的范围,然后运用不等式的性质和绝对值的意义求解.【尝试解答】法一 |x -2y +1|=|(x -1)-2(y -2)-2|≤|x -1|+2|y -2|+2≤1+2+2=5,当且仅当x =0,y =3时,|x -2y +1|取最大值5.法二 ∵|x -1|≤1,∴-1≤x -1≤1,∴0≤x ≤2.又∵|y -2|≤1,∴-1≤y -2≤1,∴1≤y ≤3,从而-6≤-2y ≤-2. 由同向不等式的可加性可得-6≤x -2y ≤0,∴-5≤x -2y +1≤1,∴|x -2y +1|的最大值为5.规律与方法:1.(1)法一的关键是把|x -2y +1|变形为|(x -1)-2(y -2)-2|,进而利用绝对值不等式性质;(2)法二把求|x -2y +1|的最大值问题,转化为求x -2y +1的取值范围问题.2.(1)利用绝对值不等式性质定理求最值时,要指明取到等号的条件.(2)注意绝对值不等式性质在不等式证明中的放缩应用.变式训练:若f (x )=x 2-x +c (c 为常数),|x -a |<1,求证:|f (x )-f (a )|<2(1+|a |).【证明】 |f (x )-f (a )|=|(x 2-x +c )-(a 2-a +c )|=|x 2-x -a 2+a |=|(x -a )(x +a -1)|=|x -a ||x +a -1|=|x -a ||(x -a )+(2a -1)|,∵|x -a |<1.∴|x -a ||(x -a )+(2a -1)|<|(x -a )+(2a -1)|≤|x -a |+|2a -1|<1+|2a |+1=2(1+|a |). ∴不等式|f (x )-f (a )|<2(1+|a |)成立含绝对值不等式的解法 :例题2:(1)(2011·江苏高考)解不等式:x +|2x -1|<3.(2)不等式|x +3|-|x -2|≥3的解集为________.【思路点拨】 (1)将不等式x +|2x -1|<3化成|2x -1|<3-x 的形式,然后用公式求解.(2)去|x +3|与|x -2|的绝对值,按零点分区间讨论.【尝试解答】1) 由x+|2x-1|<3,得|2x-1|<3-x,∴原不等式化为:⎩⎨⎧-<-≥-x x x 312012或⎩⎨⎧-<-<-x x x 321012, 解得:21≤x<34或-2<x<21,∴原不等式的解集是:{x|-2<x<34} 2) ①当x ≥2时,原不等式化为:x+3-(x-2)≥3,此时恒成立,∴x ≥2,②当x ≤-3时,原不等式化为-x-3-(2-x)≥3,无解,③当-3<x<2时,原不等式化为x+3-(2-x)≥3,解得:x ≥1,因此1≤x<2综合①②③可知,原不等式的解集为:{x|x ≥1}1.第(1)问利用绝对值定义,将其转化为与之等价的不等式组是求解的关键;也可利用|f (x )|<g (x )⇔-g (x )<f (x )<g (x )进行转化;第(2)问易错点:(1)分区间去绝对值时忽视零点的值;(2)误求不等式的解集为交集.2.含有两个或两个以上绝对值号的不等式,常用零点分段法脱去绝对值号,将其转化为与之等价的不含绝对值符号的不等式(组).但一定注意,最终的不等式的解集是各类情形的并集.其操作程序是:找零点、分区间、分段讨论.变式训练:(2011·山东高考)求不等式|x -5|+|x +3|≥10的解集.【解】法一:当x ≥5时,原不等式为x -5+x +3≥10,∴x ≥6.不等式的解集为{x |x ≥6}. 当-3<x <5时,原不等式化为-x +5+x +3≥10,8≥10,此时原不等式无解;当x ≤-3时,原不等式化为-x +5-x -3≥10,x ≤-4.∴原不等式的解集为{x |x ≤-4}. 综上所述,原不等式的解集为(-∞,-4]∪[6,+∞).法二 由绝对值的几何意义,|x -5|+|x +3|≥10表示数轴上的点到两点-3,5的距离之和大于等于10的所有的点集.易知点-4和6到两点-3,5的距离之和都等于10,结合数轴知原不等式的解集为{x |x ≥6或x ≤-4}.利用平均值不等式求最值 :1)若x>0,求函数f(x)=x+24x的最小值; 2)已知x>0,y>0,且x+y=1,求x 4+y 9的最小值 【思路点拨】:1)将f(x)变形为2x +2x +24x,然后用定理3求解 2)注意x+y=1的应用,运用a+b ≥2ab 求最小值【尝试解答】1)∵x>0,∴f(x)= x+24x =2x +2x +24x ≥332422x x x ∙∙=3,当且仅当2x =24x ,即x=2时取等号,∴x=2时,f(x)min =32)∵x>0,y>0,x+y=1,∴x 4+y 9= (x+y)( x 4+y 9)=13+x y 4+y x 9≥13+2yx x y 94∙=25 当且仅当x y 4=yx 9时等号成立 由⎪⎩⎪⎨⎧==+y x x y y x 941且x>0,y>0,得⎪⎩⎪⎨⎧==5352y x ∴当x=52,y=53时取等号,所以x 4+y 9的最小值为25.1.利用平均值不等式求最值,应明确基本不等式成立的条件,“一正、二定、三相等”缺一不可.2.利用不等式求最值时,常利用添项、拆项、配系数,并注意“1”的代换,创造使用均值不等式的条件.变式训练:若0<x <1,则函数f (x )=x 2(1-x )的最大值是________.【解】∵0<x<1,∴0<1-x<1,f(x)=x ²(1-x)=4•2x •2x •(1-x)≤4•[3)1(22x x x -++]³=274 当且仅当2x =1-x,即x=32时,等号成立,因此f(x)的最大值f(x)max = 274绝对值不等式的综合问题 :例题4:(2012·佛山质检)已知函数f (x )=|x -a |.(1)若不等式f (x )≤3的解集为{x |-1≤x ≤5},求实数a 的值;(2)在(1)的条件下,若f (x )+f (x +5)≥m 对一切实数x 恒成立,求实数m 的取值范围.【思路点拨】 (1)由|x -a |≤3求不等式的解集,与已知比较,求参数a 的值;(2)利用绝对值不等式的性质或函数的单调性,求y =f (x )+f (x +5)的最小值,得参数不等式求解.1)由f(x)≤3,得|x-a|≤3,解得a-3≤x ≤a+3,又已知不等式f(x)≤3的解集为{x|-1≤x ≤5} 所以5313=+-=-⎩⎨⎧a a 解得a=2.2)法一:由1)知a=2,此时f(x)=|x-2|,设g(x)=f(x)+f(x+5)=|x-2|+|x+3|,于是g(x)=⎪⎩⎪⎨⎧>+≤≤--<-2,1223,53,12-x x x x x 利用g (x )的单调性,易知g (x )的最小值为5.因此g (x )=f (x )+f (x +5)≥m 对x ∈R 恒成立, 知实数m 的取值范围是(-∞,5].法二 当a =2时,f (x )=|x -2|. 设g (x )=f (x )+f (x +5)=|x -2|+|x +3|.由|x -2|+|x +3|≥|(x -2)-(x +3)|=5(当且仅当-3≤x ≤2时等号成立)得,g (x )的最小值为5. 因此,若g (x )=f (x )+f (x +5)≥m 恒成立, 应有实数m 的取值范围是(-∞,5]., 规律方法4:1.第(2)问求解的关键是转化为求f (x )+f (x +5)的最小值,法1是运用分类讨论思想,利用函数的单调性;法2是利用绝对值不等式的性质(应注意等号成立的条件).2.将绝对值不等式与函数以及不等式恒成立交汇、渗透,这是命题的新动向,解题时强化函数、数形结合与转化化归思想方法的灵活应用.变式训练:已知函数f (x )=|x -3|-2,g (x )=-|x +1|+4.(1)若函数f (x )的值不大于1,求x 的取值范围;(2)若不等式f (x )-g (x )≥m +1的解集为R ,求m 的取值范围.【解】 (1)依题意,f (x )≤1,即|x -3|≤3.∴-3≤x -3≤3,∴0≤x ≤6,因此实数x 的取值范围是[0,6].(2)f (x )-g (x )=|x -3|+|x +1|-6≥|(x -3)-(x +1)|-6=-2,∴f (x )-g (x )的最小值为-2, 要使f (x )-g (x )≥m +1的解集为R. 应有m +1≤-2,∴m ≤-3,故实数m 的取值范围是(-∞,-3].命题透视:从近两年新课标命题看,含绝对值不等式的解法是选考内容4-5考查的热点,难度为中等,2011年高考命题的突出特点是以函数为载体考查绝对值不等式的解法与证明,预计2013年高考将延续这一命题方向.规范解答之二十二 绝对值不等式中逆向问题的正向求解策略例题:(10分)(2011·新课标卷)设函数f (x )=|x -a |+3x ,其中a >0.(1)当a =1时,求不等式f (x )≥3x +2的解集.(2)若不等式f (x )≤0的解集为{x |x ≤-1},求a 的值.规范解答:1) 当a=1时,f(x)≥3x+2,可化为|x-1|≥2,由此可得x ≥3或x ≤-1,故不等式f(x)≥3x+2的解集为{x|x ≥3或x ≤-1}因为a>0,所以不等式组的解集为{x|x ≤-2a },由题设可得-2a =-1,故a=2 【解题程序】 第一步:代入a ,求绝对值不等式|x -1|≥2的解集;第二步:化|x -a |+3x ≤0为不含绝对值的不等式组,并求解集;第三步:与题设比较,得含a 的方程,求出a 值;第四步:检验,查易错点,规范结论.阅卷心悟:易错提示:(1)不知逆向问题求解方法是思维受阻的主要原因.(2)未注意条件a >0,造成两解.防范措施:(1)逆向问题可正向求解,以本题为例,求出不等式的解集后.与已知不等式的解集作比较,便可建立关于a 的方程;(2)本题不等式f (x )≤0解集的端点-1是方程f (x )=0的解,利用这一点可得一种巧妙解法. 自主体验:1.(2011·广东高考)不等式|x +1|-|x -3|≥0的解集是________.【解析】 由|x +1|-|x -3|≥0,得|x +1|≥|x -3|,平方得(x +1)2≥(x -3)2,解之得x ≥1, ∴不等式的解集为{x |x ≥1}.2.(2011·辽宁高考)已知函数f (x )=|x -2|-|x -5|.(1)证明:-3≤f (x )≤3;(2)求不等式f (x )≥x 2-8x +15的解集.1)证明:f(x)=|x-2|-|x-5|=⎪⎩⎪⎨⎧≥<<-≤5352722,3-x x x x ,当2<x<5时,-3<2x-7<3,所以-3≤f(x)≤3 2)由1)可知:当x ≤2时,f(x)≥x ²-8x+15的解集为空集;当2<x<5时,f(x)≥x ²-8x+15的解集为{x|5-3≤x<5}当X ≥5时,f(x)≥x ²-8x+15的解集为{x|5≤x ≤6}综上所述:不等式f(x)≥x ²-8x+15的解集为{x|5-3≤x ≤6}。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
两个常用绝对值不等式的应用
教学目标
理解及其两个推论,并能应用它证明简单含有绝
对值不等式的证明问题。
教学重点难点
重点是理解掌握定理及等号成立的条件,绝对值不等式的证明。
难点是定理的推导过程的探索,摆脱绝对值的符号,通过定理或放缩不等式。
教学过程
一、复习引入
我们在初中学过绝对值的有关概念,请一位同学说说绝对值的定义。
当时,则有:
那么与及的大小关系怎样?
这需要讨论当
当
当
综上可知:
我们已学过积商绝对值的性质,哪位同学回答一下?
.
当时,有:或.
二、引入新课
由上可知,积的绝对值等于绝对值的积;商的绝对值等于绝对值的商。
那么和差的绝对值等于绝对值的和差吗?
1.定理探索
和差的绝对值不一定等于绝对值的和差,我们猜想
.
怎么证明你的结论呢?
用分析法,要证.
只要证
即证
即证,
而显然成立,
故
那么怎么证?
同样可用分析法
当时,显然成立,
当时,要证
只要证,
即证
而显然成立。
从而证得.
还有别的证法吗?(学生讨论,教师提示)
由与得.
当我们把看作一个整体时,上式逆用可得什么结
论?。
能用已学过得的证明吗?
可以表示为.
即(教师有计划地板书学生分析证明的过程)
就是含有绝对值不等式的重要定理,即.
由于定理中对两个实数的绝对值,那么三个实数和的绝对值呢?
个实数和的绝对值呢?
亦成立
这就是定理的一个推论,由于定理中对没有特殊要求,如果用代换会
有什么结果?(请一名学生到黑板演)
,
用代得,
即。
这就是定理的推论成立的充要条件是什么?
那么成立的充要条件是什么?
.
例1求证.
证法:(直接利用性质定理)在时,显然成立.
当时,左边
.
三、随堂练习
1.求证.
答案:
与同号
四、小结
1.定理. 把、、看作是三角形三边,很象
三角形两边之和大于第三边,两边之差小于第三边,这样理解便于记忆,此定理在后面学习复数时,可以推广到比较复数的模长,并有其几何意义,有时也称其为“三角形不等式”.
2.平方法能把绝对值不等式转化为不含绝对值符号的不等式,但应注意两边非负时才可平方,有些证明并不容易去掉绝对值符号,需用定理及其
推论。
3.对要特别重视.。