归纳函数极限的计算方法

归纳函数极限的计算方法
归纳函数极限的计算方法

归纳函数极限的计算方法

1. 预备知识

1.1函数极限的εδ-定义]1[

设函数f 在点0x 的某个空心邻域'0(;)U x δ内有定义,A 为定数,若对任给的

0ε>,存在正数'()δδ<,使得当00||x x δ<-<时有|()|f x A ε-<,则称函数当趋于0

x 时以A 为极限,记作0

lim ()x x f x A →=或()f x A →0()x x →.

2.求函数极限的方法总结

极限是描述函数的变化趋势,以基于图形或直观结合定义可以求出一些简单的函数的极限;但是结构较为复杂的函数的图形不易画出,基于直观也就无法得出极限,本着化繁为简的思想,产生了极限的四则运算法则;由“数列的单调有界准则”和“迫敛准则”产生了两个重要极限和无穷小量的性质—有界函数与无穷小量的积仍是无穷小量;由中值定理得出了罗必达法则.以上也是我们求极限的理论依据,但在个依据下求极限又有各自的技巧.

2.1依据函数极限的迫敛性求极限

函数极限的迫敛性 设0

lim ()lim ()x x x x f x g x A →→==,且在某'0(;)U x δ内有

()()()f x h x g x ≤≤,则0

lim ()x x h x A →=.

例1求极限]1[lim 0x x x →

解:当0>x 时,有

1]1

[1≤<-x

x x

而1)1(lim 0

=-+→x x ,由函数迫敛性可得

1]1

[lim 0=+→x

x x 同理可得0

[lim 0=→x

x x

注:依据函数极限的迫敛性求极限时,需判断该函数的上下范围,这时通常用到以下不等式:1cos 1,1sin 1),0(1][),0(][1≤≤-≤≤->-≤<<≤<-x x x x x x x x x x

2.2 依据极限的四则运算求极限]2[

依据极限的四则运算法则求极限的题目,除了直接使用极限的四则运算法则外,往往还有以下几种类型:

分母极限为0:可先采用“约简分式”或“分子、分母有理化”进行恒等变形,将分母极限化为非零,然后再运用法则:

例2 求极限1

1

lim 1--→n m x x x (n 和m 都是正整数)

解:原式=)

1)(1()

1)(1(lim 21211+Λ++-+Λ++-----→n n m m x x x x x x x

=n

m

x x x x n n m m x =+Λ+++Λ++----→11lim 21

211 ∞

∞?∞±∞,

0,等未定型:因“∞”不是一个数,故该类型的题目不能直接使用运算法则,但可以利用“无穷大量的导数”、“分式有理化”或“通分”等方法,将其转化为极限存在后,再运用法则计算.

例3求极限)13

11(lim 21x

x x ---→ 解:原式=)

1)(1(31lim 221x x x x x x ++--++→ =13

3

)1)(1()2)(1(lim

21-=-=++-+--→x x x x x x

2.3 依据两个重要极限求极限

两个重要的极限:0sin lim

1x x x →=,1

lim(1)x x e x

→∞+=.

函数经过一定变形,若能出现以下情况:

))(())(1(),)(())

(11(),0)(()()(sin )(1

)

(∞→+∞→+→x h x h x g x g x f x f x f x h x g 时,也可采用重要极限来求.

例4 求极限

]

2[3

2

03sin sin 3lim x x x x x -+→

解:原式=10

1301333sin 3sin sin 3lim 2

0=-??+=-?+

→x x

x x

x x

x

例5 求极限1

2)1

323(lim -∞→-+x x x x

解:原式=2231

23

1

31)2

313(])1

331[(lim e e x x x x x =?=+--+

-∞→ 2.4依据等价无穷小替换求极限

求函数极限,若能恰当采用等价无穷小的代换,可以起到变难为易,化繁为简的作用.需要记住一些常见的等价无穷小, 如当0x →时:

.~1)1(,~)1ln(,~1,~arctan ,~arcsin ,~tan ,~sin x x x x x e x x x x x x x x x αα-++-

例6 求极限]2[30sin sin tan lim

x

x

x x -→ 解:原式3

0sin cos sin sin cos 1lim x x

x x x x -?=→

2

302sin sin 12lim cos sin x x

x x x

→=? 23011

2lim cos 2

x x x x x →?=?=

注:用等价无穷小替换求极限时,应注意只能用分子、分母整个部分去代换,或是把函数化成积的形式实行无穷小代换,对极限式的相加相减部分不能随意替代. 2.5 依据洛必达法则求极限

洛必达法则]1[:

型不定式极限 若函数f 和g 满足: (i)0

lim ()lim ()0x x x x f x g x →→==;

(ii)在点0x 的某空心邻域00()U x 内两者都可导, 且'()0g x ≠ (iii)0

'()

lim

'()

x x f x A g x →=(A 可为实数, 也可为±∞或∞), 则 0

0()'()

lim

lim ()'()

x x x x f x f x A g x g x →→==

型不定式极限 若函数f 和g 满足: (i)0

lim ()lim ()x x x x f x g x ++→→==∞;

(ii)在点0x 的某右邻域00()U x +内两者都可导, 且'()0g x ≠ (iii)0

'()

lim

'()

x x f x A g x →=(A 可为实数, 也可为±∞或∞), 则 0

()'()

lim lim ()'()x x x x f x f x A g x g x +

+→→== 因此函数为∞

,00型,通常可采用此法,如下:

例7计算极限)

cos 1(])1arctan([lim

00

2

x x du dt t x

x x -+??→

解:原式x x x dt

t x x sin )cos 1()1arctan(lim 2

0?+-+=?

20arctan(1)2lim 2sin sin x x x

x x x

→+?=+? 222

042arctan(1)1lim 3cos sin x x x x

x x x

→+++=-? 202arctan(1)lim 3cos 6

x x x π→+== 注:“洛必达法则”是求函数极限的有力工具,但在运用中,由于积、商、复合函数的求导会使分子、分母的项数增加, 导致求极限过程繁琐,因此用Hoshital L'法

则求∞

,00型的极限是不够的,需综合运用其它方法才能发挥作用.

2.6 依据麦克劳林展开式求极限

一般常见函数的麦克劳林公式]1[:

2

1()2!

!

n

x

n x x e x x n ο=+++

++ 35

21

1

2sin (1)

()3!5!

(21)!

m m m x x x x x x m ο--=-++

+-+-

24

221cos 1(1)()2!4!(2)!

m

m

m x x x x x m ο+=-++

+-+

23

1

ln(1)(1)

()23

n

n n x x x x x x n

ο-+=-++

+-+ 2(1)

(1)

(1)(1)1()2!

!

n

n n x x x x x n αααααααο---++=+++

+

+

21

1()1n n x x x x x

ο=+++++-

利用洛必达法则求∞

,00型极限时,其结果是化成某阶导数的比,而麦克劳林展

开式的各项系数正分别含着各阶导数的值,因此对∞

,00型函数极限也可采用此法.

例8 求极限4

02

cos lim x e x x

x -→-

解:24

5 cos 1()224

x x x x ο=-++

224

52

1()28

x x x e

x ο-=-++

原式=2

4

54

4001()

cos 1

12lim

lim 12

x

x x x x x e x x ο-→→-

+-==- 注:若本题采用洛必达法则去做,会导致计算过程繁杂. 2.7 运用函数的连续性求极限

函数的连续性定义]1[: 设函数f 在某0()U x 内有定义, 若

0lim ()()x x f x f x →=,

则称f 在点0x 连续.

若函数f 在区间I 上的每一点都连续, 则称f 为I 上的连续函数.

例9 计算极限3

5

lim 222-+→x x x

思路:)(x f 为连续函数, 0x 为)(x f 的定义区间上的一点,则)()(lim 00

x f x f x =→.

解:原式=93

25

22

2=-+

2.8 运用导数的定义求极限

导数的定义]1[: 设函数()y f x =在点0x 的某邻域内有定义, 若极限

00

()()

lim

x x f x f x x x →--

存在, 则称函数f 在点0x 处可导, 并称该极限值为函数f 在点0x 处的导数, 记作

0'()f x .

若函数f 在区间I 上的每一点都可导(对区间端点, 仅考虑相应的单侧导数), 则称f 为I 上的可导函数.

例10 计算)0(ln )ln(lim

0>-+→h x

h

x h x

思路:对具有000

)()(lim x x x f x f x --→或h

x f h x f h )

()(lim 000-+→形式的极限,可由导数的定义来进行计算.

解:原式=h

x h x 1

|)'(ln =

= 2.9运用定积分的定义求极限

定积分的定义]1[: 设f 是定义在[,]a b 上的一个函数, J 是一个确定的实数.若对任意给的正数ε, 总存在某一正数δ, 使得对[,]a b 的任何分割T , 以及在其上任意选取的点集{}i ξ, 只要T δ<, 就有

1

()n

i

i

i f x J

ξε=?-<∑

则称函数f 在区间[,]a b 上可积或黎曼可积;数J 称为f 在区间[,]a b 上的定积分或黎曼积分, 记作()b

a J f x dx =?

例11 计算]3

[01lim 1cos

n n →++ 思路:和式极限,利用定积分定义1001

1lim ()()n n i i

f f x n n →==∑?dx 求得极限.

解:原式01

1lim n n i n →==

0)d x =?

2

x

dx ππ

==

?

2.10 运用微分中值定理求极限

拉格朗日中值定理]1[: 若函数f 满足如下条件: (i )f 在闭区间[,]a b 上连续;

(ii )f 在开区间(,)a b 内可导,则在内至少存在一点ξ,使得

'()()

()f b f a f b a

ξ-=

-.

例12:计算

]

3[sin 0lim sin x x x e e x x

→-- 思路:对函数()f x 在区间[sin ,]x x 上运用拉格朗日中值定理,即可求得. 解:原式0

lim 1e αα→== (其中α在[sin ,]x x 区间内)

综上所述,求极限时,在不同的函数类型下,所采用的技巧是各不相同的,对同一题也可能有多种求法,有难有易,有时甚至需要结合上述各种方法,才能简单有效的求出,因此学会判断极限的类型和对以上的解法的灵活运用是必要的.

函数极限及运算法则

教学目标:掌握函数极限的运算法则,并会求简单的函数的极限 教学重点:运用函数极限的运算法则求极限 教学难点:函数极限法则的运用 教学过程: 一、引入: 一些简单函数可从变化趋势找出它们的极限,如o x x x x x x o ==→∞→lim ,01 lim .若求极限的函数比较复杂,就要分析已知函数是由哪些简单函数经过怎样的运算结合而成的,已知函数 的极限与这些简单函数的极限有什么关系,这样就能把复杂函数的极限计算转化为简单函数的极限的计算. 二 、新课讲授 对于函数极限有如下的运算法则: 限,分别等于这两个函数的极限的和、差、积、商(作为除数的函数的极限不能为0). 说明:当C 是常数,n 是正整数时,)(lim )]([lim x f C x Cf o o x x x x →→= n x x n x x x f x f o o )](lim [)]([lim →→= 这些法则对于∞→x 的情况仍然适用. 三 典例剖析 例1 求)3(lim 2 2 x x x +→ 例2 求1 1 2lim 231++-→x x x x 例3 求4 16 lim 24--→x x x 分析:当4→x 时,分母的极限是0,不能直接运用上面的极限运用法则.注意函数

4 162--=x x y 在定义域4≠x 内,可以将分子、分母约去公因式4-x 后变成4+x ,由此即 可求出函数的极限. 例4 求1 3 3lim 22++-∞→x x x x 分析:当∞→x 时,分子、分母都没有极限,不能直接运用上面的商的极限运算法则.如果分子、分母都除以2 x ,所得到的分子、分母都有极限,就可以用商的极限运用法则计算。 总结:),(lim ,lim * N k x x C C k o k x x x x o o ∈==→→ )(01lim ,lim * N k x C C k x x ∈==∞→∞ → 例5 求1 34 2lim 232+--+∞→x x x x x 分析:同例4一样,不能直接用法则求极限. 如果分子、分母都除以3 x ,就可以运用法则计算了。 四 课堂练习(利用函数的极限法则求下列函数极限) (1))32(lim 2 1-→ x x ; (2))132(lim 2 2 +-→x x x (3))]3)(12[(lim 4 +-→x x x ; (4)1431 2lim 221-++→x x x x (5)11lim 21+--→x x x (6)9 6 5lim 223-+-→x x x x (7)13322lim 232+--+∞→x x x x x (8)5 2lim 32--∞→y y y y 五 小结

高等数学极限计算方法总结

极限计算方法总结 《高等数学》是理工科院校最重要的基础课之一,极限是《高等数学》的重要组成部分。求极限方法众多,非常灵活,给函授学员的学习带来较大困难,而极限学的好坏直接关系到《高等数学》后面内容的学习。下面先对极限概念和一些结果进行总结,然后通过例题给出求极限的各种方法,以便学员更好地掌握这部分知识。 一、极限定义、运算法则和一些结果 1.定义:(各种类型的极限的严格定义参见《高等数学》函授教材,这里不一一叙述)。 说明:(1)一些最简单的数列或函数的极限(极限值可以观察得到)都可 以用上面的极限严格定义证明,例如: )0,(0lim ≠=∞→a b a an b n 为常数且; 5 )13(lim 2 =-→x x ; ???≥<=∞→时当不存在, 时 当,1||1||0lim q q q n n ;等等 (2)在后面求极限时,(1)中提到的简单极限作为已知结果直接运 用,而不需再用极限严格定义证明。 2.极限运算法则 定理1 已知 )(lim x f ,)(lim x g 都存在,极限值分别为A ,B ,则下面极限都存在,且有 (1)B A x g x f ±=±)]()(lim[ (2)B A x g x f ?=?)()(lim (3))0(,)()(lim 成立此时需≠=B B A x g x f 说明:极限号下面的极限过程是一致的;同时注意法则成立的条件,当条 件不满足时,不能用。 3.两个重要极限 (1) 1sin lim 0=→x x x

(2) e x x x =+→10 ) 1(lim ; e x x x =+∞ →)11(lim 说明:不仅要能够运用这两个重要极限本身,还应能够熟练运用它们的变形形式, 作者简介:靳一东,男,(1964—),副教授。 例如:133sin lim 0=→x x x ,e x x x =--→21 0) 21(lim ,e x x x =+ ∞ →3 )31(lim ;等等。 4.等价无穷小 定理2 无穷小与有界函数的乘积仍然是无穷小(即极限是0)。 定理3 当0→x 时,下列函数都是无穷小(即极限是0),且相互等价,即有: x ~x sin ~x tan ~x arcsin ~x arctan ~)1ln(x +~1-x e 。 说明:当上面每个函数中的自变量x 换成)(x g 时(0)(→x g ),仍有上面的 等价 关系成立,例如:当0→x 时, 13-x e ~ x 3 ;)1ln(2x - ~ 2x -。 定理4 如果函数)(),(),(),(11x g x f x g x f 都是0x x →时的无穷小,且 )(x f ~)(1x f ,)(x g ~)(1x g ,则当) ()(lim 110 x g x f x x →存在时,)() (lim 0x g x f x x →也存在且等于)(x f )()(lim 110 x g x f x x →,即)() (lim 0x g x f x x →=) ()(lim 110x g x f x x →。 5.洛比达法则 定理5 假设当自变量x 趋近于某一定值(或无穷大)时,函数)(x f 和)(x g 满 足:(1))(x f 和)(x g 的极限都是0或都是无穷大; (2))(x f 和)(x g 都可导,且)(x g 的导数不为0; (3)) () (lim x g x f ''存在(或是无穷大);

函数与极限习题与答案计算题(供参考)

高等数学 二、计算题(共 200 小题,) 1、设x x x f +=12)(,求)(x f 的定义域及值域。 2、设x x x f -+= 11)(,确定)(x f 的定义域及值域。 3、设)ln(2)(22x x x x x f -+-= ,求)(x f 的定义域。 4、的定义域,求设)(sin 51 2arcsin )(x f x x x f π+-=。 5、的定义域,求设??? ??++-=x f x f x x x f 1)(22ln )(。 6、的定义域求函数22112arccos )(x x x x x f --++=。 7、设)(x f 的定义域为[) )()()(m x f m x f x F b a ++-=,.,)0(++=。 19、及其定义域,求, 设)(02)(ln 2x f x x x x f +∞<<+-=。

归纳函数极限的计算方法

归纳函数极限的计算方法-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

归纳函数极限的计算方法 摘 要 :本文总结出了求极限的几种方法,比如用定义、公式、定理、性质求极限. 关键词 :函数极限;计算方法;洛必达法则; 四则运算 The sum of the Method of Computing Function Limit Abstract :The write sums up in this article several ways of extacting the limit by the means of definition, formula,nature, theorem and so on. Key Words :Function Limit ;Computing method ;L’Hospita l rules; Four fundamental rules 前言 极限的概念是高等数学中一个最基本、最重要的概念,极限理论是研究连续、导数、积分、级数等的基本工具,因此正确理解和运用极限的概念、掌握极限的求法,对学好数学分析是十分重要的.求极限的方法很多且非常灵活,本文归纳了函数极限计算的一些常见方法和技巧. 1. 预备知识 1.1函数极限的εδ-定义]1[ 设函数f 在点0x 的某个空心邻域'0(;)U x δ内有定义,A 为定数,若对任给的0ε>,存在正数'()δδ<,使得当00||x x δ<-<时有|()|f x A ε-<,则称函数当趋于0x 时以A 为极限,记作0 lim ()x x f x A →=或()f x A →0()x x →. 2.求函数极限的方法总结 极限是描述函数的变化趋势,以基于图形或直观结合定义可以求出一些简单的函数的极限;但是结构较为复杂的函数的图形不易画出,基于直观也就无法得出极

极限计算方法总结

极限计算方法总结 一、极限定义、运算法则和一些结果 1.定义:(各种类型的极限的严格定义参见《高等数学》函授教材,这里不一一叙述)。 说明:(1)一些最简单的数列或函数的极限(极限值可以观察得到)都可以用上面的 极限严格定义证明,例如:)0,(0lim ≠=∞→a b a an b n 为常数且; 5)13(lim 2=-→x x ;??? ≥<=∞→时当不存在,时当,1||1||0lim q q q n n ;等等 (2)在后面求极限时,(1)中提到的简单极限作为已知结果直接运用,而不需 再用极限严格定义证明。 2.极限运算法则 定理1 已知 )(lim x f ,)(lim x g 都存在,极限值分别为A ,B ,则下面极限都存在,且有 (1)B A x g x f ±=±)]()(lim[ (2)B A x g x f ?=?)()(lim (3))0(,)()(lim 成立此时需≠=B B A x g x f 说明:极限号下面的极限过程是一致的;同时注意法则成立的条件,当条件不满足时, 不能用。 3.两个重要极限 (1) 1sin lim 0=→x x x (2) e x x x =+→1 )1(lim ; e x x x =+∞→)11(l i m 说明:不仅要能够运用这两个重要极限本身,还应能够熟练运用它们的变形形式, 作者简介:靳一东,男,(1964—),副教授。 例如:133sin lim 0=→x x x ,e x x x =--→21 0) 21(lim ,e x x x =+∞ →3 )31(lim ;等等。 4.等价无穷小 定理2 无穷小与有界函数的乘积仍然是无穷小(即极限是0)。 定理3 当0→x 时,下列函数都是无穷小(即极限是0),且相互等价,即有: x ~x sin ~x tan ~x arcsin ~x arctan ~)1ln(x +~1-x e 。 说明:当上面每个函数中的自变量x 换成)(x g 时(0)(→x g ),仍有上面的等价 关系成立,例如:当0→x 时, 13-x e ~ x 3 ;)1ln(2 x - ~ 2x -。

高数求极限方法总结

第一章极限计算方法总结 一、极限定义、运算法则和一些结果 1.定义: 数列极限、函数极限, 说明:(1)一些最简单的数列或函数的极限(极限值可以观察得到)都可以用上面的极限严格定义证明,例如:0)1(1 lim 2=+-∞→n n ;5)13(lim 2=-→x x ;1,0lim <=∞ →q q n n 当等。 定义证明按着总结的四个步骤来,缺一不可!(2)在后面求极限时,(1)中提到的简单极限 作为已知结果直接运用,而不需再用极限严格定义证明。 2.极限运算法则 定理1 已知 )(lim x f ,)(lim x g 都存在,极限值分别为A ,B ,则下面极限都存在, 且(1)B A x g x f ±=±)]()(lim[(2)B A x g x f ?=?)()(lim (3))0(,)()(lim 成立此时需≠=B B A x g x f 说明:极限号下面的极限过程是一致的;同时注意法则成立的条件,当条件不满足时,不能用。 3.两个重要极限 (1) 1sin lim 0=→x x x (2) e x x x =+→1 0)1(lim ; e x x x =+∞→)11(lim 说明:(1)不仅要能够运用这两个重要极限本身,还应能够熟练运用它们的变形形式。 (2)一定注意两个重要极限成立的条件。 例如: 133sin lim 0=→x x x ,e x x x =--→210)21(lim ,e x x x =+∞→3)31(lim ;等等。 4.等价无穷小 定理2 无穷小与有界函数的乘积仍然是无穷小(即极限是0)。 定理3 当0→x 时,下列函数都是无穷小(即极限是0),且相互等价,即有: x ~x sin ~x tan ~x arcsin ~x arctan ~)1ln(x +~1-x e 。 说明:当上面每个函数中的自变量x 换成)(x g 时(0)(→x g ),仍有上面的等价 关系成立,例如:当0→x 时, 13-x e ~ x 3 ;)1ln(2x - ~ 2x -。 定理4 如果函数 )(),(),(),(11x g x f x g x f 都是0x x →时的无穷小,且)(x f ~)(1x f , )(x g ~)(1x g ,则当)()(lim 110 x g x f x x →存在时,)() (lim 0x g x f x x →也存在且等于)()(lim 1 10x g x f x x →。 5.连续性 定理5 一切连续函数在其定义去间内的点处都连续,即如果0x 是函数)(x f 的定义去间内

论文二重极限计算方法

包头师范学院 本科毕业论文 题目:二重极限的计算方法 学生姓名:王伟 学院:数学科学学院 专业:数学与应用数学 班级:应数一班 指导教师:李国明老师 二〇一四年四月

摘要 函数极限是高等数学中非常重要的内容。关于一元函数的极限及求法,各种高等数学教材中都有详细的例题和说明。二元函数极限是在一元函数极限的基础上发展起来的,二者之间既有联系又有区别。本文在二元函数定义基础上通过求对数,变量代换等方式总结了解决二重极限问题的几种方法,并给出相关例题及解题步骤,及二重极限不存在的几种证明方法。 关键词:二重极限变量代换等不存在的证明二元函数连续性

Abstract The limit function is a very important contents of advanced mathematics. The limit of a function and method, all kinds of advanced mathematics textbooks are detailed examples and explanation. The limit function of two variables is the basis for the development in the limit of one variable function on it, there are both connections and differences in the two yuan on the basis of the definition of the logarithm function between the two, variable substitution, summarizes several methods to solve the problem of double limit, and gives some examples and solving steps. Several proof method and double limit does not exist. keywords: Double limit variable substitution, etc. There is no proof Dual function of continuity

函数极限的十种求法

函数极限的十种求法 信科2班江星雨20140202250 函数极限可以分成而运用ε-δ定义更多的见诸于已知极限值的证明题中。掌握这类证明对初学者深刻理解运用极限定义大有裨益。以的极限为例,f(x) 在点以A为极限的定义是:对于任意给定的正数ε(无论它多么小),总存在正数,使得当x满足不等式时,对应的f(x)函数值都满足不等式:,那么常数A就叫做函数f(x)当x→x。时的极限。 1.利用极限的四则运算法则: 极限四则运算法则的条件是充分而非必要的,因此,利用极限四则运算法则求函数极限时,必须对所给的函数逐一进行验证它是否满足极限四则运算法则条件,满足条件者。方能利用极限四则运算法则进行求之。不满足条件者,不能直接利用极限四则运算法则求之。但是,井非不满足极限四则运算法则条件的函数就没有极限,而是需将函数进行恒等变形,使其符合条件后,再利用极限四则运算法则求之。而对函数进行恒等变形时,通常运用一些技巧如拆项、分子分母同时约去零因子、分子分母有理化、通分、变量替换等等。例 1 求lim( x 2 ? 3x + 5). x→ 2 解:lim( x 2 ? 3x + 5) = lim x 2 ? lim 3x + lim 5 = (lim x) 2 ? 3 lim x + lim 5 = 2 2 ? 3 ? 2 + 5 = 3. x→2 x →2 x →2 x →2 x →2 x →2 x →2 2.利用洛必达法则 洛必达(L 'Hopital)法则是在一定条件下通过分子分母分别求导再求极限来确定未定式值的方法.简单讲就是,在求一个含分式的函数的极限时,分别对分子和分母求导,在求极限,和原函数的极限是一样的。一般用在求导后为零比零或无穷比无穷的类型。 利用洛必达求极限应注意以下几点: 设函数f(x)和F(x)满足下列条件: (1)x→a时,lim f(x)=0,lim F(x)=0; (2)在点a的某去心邻域内f(x)与F(x)都可导,且F(x)的导数不等于0; (3)x→a时,lim(f'(x)/F'(x))存在或为无穷大 则x→a时,lim(f(x)/F(x))=lim(f'(x)/F'(x)) 例1: 1-cosx = 1-{1-2[sin(x/2)]^2} = 2[sin(x/2)]^2 xsinx = 2xsin(x/2)cos(x/2) 原式= lim 2[sin(x/2)]^2 / [2xsin(x/2)cos(x/2)] = tgx / x 对分子分母同时求导(洛必达法则) (tgx)' = 1 / (cosx)^2 (x)' = 1 原式= lim 1/(cosx)^2 当x --> 0 时,cosx ---> 1 原式= 1 3.利用两个重要极限: 应用第一重要极限时,必须同时满足两个条件: ①分子、分母为无穷小,即极限为0 ; ②分子上取正弦的角必须与分母一样。 应用第二重要极限时,必须同时满足四个条件:

考研数学极限计算方法:利用单侧极限

https://www.360docs.net/doc/839105362.html, 版权所有翻印必究 考研数学极限计算方法:利用单侧极限 今天给大家带来极限计算方法中的利用单侧极限来求极限。为什么会有单侧极限这种极限的计算方法呢,我们知道极限存在的充要条件要求函数左右两侧的极限同时存在且相等才表示函数极限存在,那么在极限计算中出现哪些“信号”是要分左右极限计算呢? 第一,当分段函数的分段点两侧表达式不同时,求分段点处的极限利用单侧极限。例如,讨论函数1,0arcsin(tan )()2,0ln(1arctan ),0121x e x x f x x x x x ?-+-?? 在0=x 处的极限。分析:在做这道题时我们发现0=x 处左右两侧的解析式是不同的,所以计算0=x 处的极限要分左右来求解,也即 1lim 22 1arctan lim 121)arctan 1ln(lim 000==?=-+++++→→→x x x x x x x x x ,1tan lim )arcsin(tan 1lim 00==---→→x x x e x x x ,左右两侧的极限同时存在且相等,所以1)(lim 0 =→x f x 。有一些特殊的分段函数,如,[],max{},min{},sgn x x x ,当题目中出现这几个函数时需要考虑单侧极限。 第二,如果出现(),arctan e a ∞∞∞,求极限是要分左右的,例如,???? ? ??+++→x x e e x x x sin 12lim 410分析:这道题让我们求解0=x 处的极限,我们发现它有x ,在脱绝对值时

版权所有翻印必究 https://www.360docs.net/doc/839105362.html, 2会出现负号,同时出现了e ∞,故分单侧计算极限, 11144400002sin 2sin 2sin lim lim lim lim 1111x x x x x x x x x x e x e x e x x x x e e e ++++→→→→????+++ ? ?+=+=+= ? ? ? ?+++????,11144400002sin 2sin 2sin lim lim lim lim 1111x x x x x x x x x x e x e x e x x x x e e e ----→→→→????+++ ? ?+=-=-= ? ? ? ?+++???? ,所以1sin 12lim 410=???? ? ??+++→x x e e x x x 。上述几种情况原理比较简单,但是需要同学们在做题目中多去总结,掌握其具体的解题思路,也要将知识点和不同类型的题目建立联系,提高自己的解题能力。

极限计算方法总结(简洁版)

极限计算方法总结(简洁版) 一、极限定义、运算法则和一些结果 1.定义:(各种类型的极限的严格定义参见《高等数学》函授教材,这里不一一叙述)。 说明:(1)一些最简单的数列或函数的极限(极限值可以观察得到)都可以用上面的极限严格定义证 明,例如:)0,(0lim ≠=∞→a b a an b n 为常数且;5)13(lim 2=-→x x ;???≥<=∞→时当不存在, 时当,1||1||0lim q q q n n ; 等等 (2)在后面求极限时,(1)中提到的简单极限作为已知结果直接运用,而不需再用极限严格定义证明。 2.极限运算法则 定理 1 已知 )(lim x f ,)(lim x g 都存在,极限值分别为A ,B ,则下面极限都存在,且有 (1) B A x g x f ±=±)]()(lim[ (2)B A x g x f ?=?)()(lim (3))0(,)()(lim 成立此时需≠=B B A x g x f 说明:极限号下面的极限过程是一致的;同时注意法则成立的条件,当条件不满足时,不能用。 3.两个重要极限 (1) 1sin lim 0=→x x x (2) e x x x =+ →1 )1(lim ; e x x x =+∞ →)11(lim 说明:不仅要能够运用这两个重要极限本身,还应能够熟练运用它们的变形形式, 作者简介:靳一东,男,(1964—),副教授。 例如: 133sin lim 0=→x x x ,e x x x =--→21 0)21(lim ,e x x x =+∞→3)3 1(lim ;等等。 4.等价无穷小 定理2 无穷小与有界函数的乘积仍然是无穷小(即极限是0)。 定理3 当0→x 时,下列函数都是无穷小(即极限是0),且相互等价,即有: x ~x sin ~x tan ~x arcsin ~x arctan ~)1ln(x +~1-x e 。 说明:当上面每个函数中的自变量x 换成)(x g 时(0)(→x g ),仍有上面的等价

高中数学教案:极限与导数函数极限的运算法则

函数极限的运算法则(4月30日) 教学目标:掌握函数极限的运算法则,并会求简单的函数的极限 教学重点:运用函数极限的运算法则求极限 教学难点:函数极限法则的运用 教学过程: 一、引入: 一些简单函数可从变化趋势找出它们的极限,如o x x x x x x o ==→∞→lim ,01lim .若求极限的函数比较复杂,就要分析已知函数是由哪些简单函数经过怎样的运算结合而成的,已知函数的极限与这些简单函数的极限有什么关系,这样就能把复杂函数的极限计算转化为简单函数的极限的计算. 二 、新课讲授 限,分别等于这两个函数的极限的和、差、积、商(作为除数的函数的极限不能为0). 说明:当C 是常数,n 是正整数时,)(lim )]([lim x f C x Cf o o x x x x →→= n x x n x x x f x f o o )](lim [)]([lim →→= 这些法则对于∞→x 的情况仍然适用. 三 典例剖析 例1 求)3(lim 2 2x x x +→

例2 求1 12lim 231++-→x x x x 例3 求4 16lim 24--→x x x 分析:当4→x 时,分母的极限是0,不能直接运用上面的极限运用法则.注意函数 4 162--=x x y 在定义域4≠x 内,可以将分子、分母约去公因式4-x 后变成4+x ,由此即可求出函数的极限. 例4 求1 33lim 22++-∞→x x x x 分析:当∞→x 时,分子、分母都没有极限,不能直接运用上面的商的极限运算法则.如果分子、分母都除以2 x ,所得到的分子、分母都有极限,就可以用商的极限运用法则计算。 总结:),(lim ,lim *N k x x C C k o k x x x x o o ∈==→→ )(01lim ,lim *N k x C C k x x ∈==∞→∞→

考研数学高数公式:函数与极限解读

考研数学高数公式:函数与极限 第一章:函数与极限 第一节:函数 函数属于初等数学的预备知识,在高数的学习中起到铺垫作用,直接考察的内容比较少,但是如果这章节有所缺陷对以后的学习都会有所影响。 基础阶段: 1.理解函数的概念,能在实际问题的背景下建立函数关系; 2.掌握并会计算函数的定义域、值域和解析式; 3.了解并会判断函数的有界性、单调性、周期性、奇偶性等性质; 4.理解复合函数和反函数的概念,并会应用它们解决相关的问题; 强化阶段: 1.了解函数的不同表现形式:显式表示,隐式表示,参数式,分段表示; 2.掌握基本初等函数的性质及其图形,了解初等函数的概念。 冲刺阶段: 1.综合应用函数解决相关的问题; 2.掌握特殊形式的函数(含极限的函数,导函数,变上限积分,并会讨论它们的相关性质。 第二节:极限

极限可以说是高等数学的基础,极限的计算也是高等数学中最基本的运算。在考试大纲中明确要求考生熟练掌握的基本技能之一。虽在考试中站的分值不大。但是在其他的试题中得到广泛应用。因此这部分学习直接营销到整个学科的复习结果 基础阶段 1.了解极限的概念及其主要的性质。 2.会计算一些简单的极限。 3.了解无穷大量与无穷小量的关系,了解无穷小量的比较方法,记住常见的等价无穷小量。 强化阶段: 1.理解极限的概念,理解函数左右极限的概念及其与极限的关系(数一数二/了解数列 极限和函数极限的概念(数三; ▲2.掌握计算极限的常用方法及理论(极限的性质,极限的四则运算法则,极限存在的两个准则,两个重要极限,等价无穷小替换,洛必达法则,泰勒公式; 3.会解决与极限的计算相关的问题(确定极限中的参数; 4.理解无穷大量和无穷小量的概念及相互关系,会进行无穷小量的比较,记住常见的等价无穷小量并能在计算极限时加以应用(数一数二/理解无穷小量的概念,会进行无穷小量的比较,记住常见的等价无穷小量并能在计算极限时加以应用,了解无穷大量的概念及其与无穷小量的关系(数三。 冲刺阶段: 深入理解极限理论在微积分中的中心地位,理解高等数学中其它运算(求导,求积分与极限之间的关系,建立完整的理论体系。

求极限的方法及例题总结

1.定义: 说明:(1)一些最简单的数列或函数的极限(极限值可以观察得到)都可以用上面的极限严格定义证明,例如:;5 )13(lim 2 =-→x x (2)在后面求极限时,(1)中提到的简单极限作为已知结果直接运用,而不需再用极限严格定义证明。 利用导数的定义求极限 这种方法要求熟练的掌握导数的定义。 2.极限运算法则 定理1 已知)(lim x f ,)(lim x g 都存在,极限值分别为A ,B ,则下面极限都存在,且有(1)B A x g x f ±=±)]()(lim[ (2)B A x g x f ?=?)()(lim (3) )0(,)()(lim 成立此时需≠=B B A x g x f 说明:极限号下面的极限过程是一致的;同时注意法则成立的条件,当条件不满足时,不能用。

. 利用极限的四则运算法求极限 这种方法主要应用于求一些简单函数的和、乘、积、商的极限。通常情况下,要使用这些法则,往往需要根据具体情况先对函数做某些恒等变形或化简。 8.用初等方法变形后,再利用极限运算法则求极限 例1 1213lim 1 --+→x x x 解:原式=4 3)213)(1(33lim )213)(1(2)13(lim 1221=++--=++--+→→x x x x x x x x 。 注:本题也可以用洛比达法则。 例2 ) 12(lim --+∞ →n n n n 解:原式= 2 3 11213lim 1 2)]1()2[(lim = -++ = -++--+∞ →∞ →n n n n n n n n n n 分子分母同除以 。 例3 n n n n n 323)1(lim ++-∞→

极限计算方法总结

极限计算方法总结 靳一东 《高等数学》是理工科院校最重要的基础课之一,极限是《高等数学》的重要组成部分。求极限方法众多,非常灵活,给函授学员的学习带来较大困难,而极限学的好坏直接关系到《高等数学》后面内容的学习。下面先对极限概念和一些结果进行总结,然后通过例题给出求极限的各种方法,以便学员更好地掌握这部分知识。 一、极限定义、运算法则和一些结果 1.定义:(各种类型的极限的严格定义参见《高等数学》函授教材,这里不一一叙述)。 说明:(1)一些最简单的数列或函数的极限(极限值可以观察得到)都可以用上面的 极限严格定义证明,例如:)0,(0lim ≠=∞→a b a an b n 为常数且;5)13(lim 2 =-→x x ;???≥<=∞→时当不存在,时当,1||1||0lim q q q n n ;等等 (2)在后面求极限时,(1)中提到的简单极限作为已知结果直接运用,而不需 再用极限严格定义证明。 2.极限运算法则 定理1 已知 )(lim x f ,)(lim x g 都存在,极限值分别为A ,B ,则下面极限都存在,且有 (1)B A x g x f ±=±)]()(lim[ (2)B A x g x f ?=?)()(lim (3))0(,) ()(lim 成立此时需≠= B B A x g x f 说明:极限号下面的极限过程是一致的;同时注意法则成立的条件,当条件不满足时, 不能用。 3.两个重要极限 (1) 1sin lim =→x x x (2) e x x x =+→1 )1(lim ; e x x x =+∞→)11(l i m 说明:不仅要能够运用这两个重要极限本身,还应能够熟练运用它们的变形形式, 作者简介:靳一东,男,(1964—),副教授。 例如:133sin lim =→x x x ,e x x x =--→21 ) 21(lim ,e x x x =+∞ →3)3 1(lim ;等等。 4.等价无穷小 定理2 无穷小与有界函数的乘积仍然是无穷小(即极限是0)。

归纳函数极限的计算方法

归纳函数极限的计算方法 1. 预备知识 1.1函数极限的εδ-定义]1[ 设函数f 在点0x 的某个空心邻域'0(;)U x δ内有定义,A 为定数,若对任给的 0ε>,存在正数'()δδ<,使得当00||x x δ<-<时有|()|f x A ε-<,则称函数当趋于0 x 时以A 为极限,记作0 lim ()x x f x A →=或()f x A →0()x x →. 2.求函数极限的方法总结 极限是描述函数的变化趋势,以基于图形或直观结合定义可以求出一些简单的函数的极限;但是结构较为复杂的函数的图形不易画出,基于直观也就无法得出极限,本着化繁为简的思想,产生了极限的四则运算法则;由“数列的单调有界准则”和“迫敛准则”产生了两个重要极限和无穷小量的性质—有界函数与无穷小量的积仍是无穷小量;由中值定理得出了罗必达法则.以上也是我们求极限的理论依据,但在个依据下求极限又有各自的技巧. 2.1依据函数极限的迫敛性求极限 函数极限的迫敛性 设0 lim ()lim ()x x x x f x g x A →→==,且在某'0(;)U x δ内有 ()()()f x h x g x ≤≤,则0 lim ()x x h x A →=. 例1求极限]1[lim 0x x x → 解:当0>x 时,有 1]1 [1≤<-x x x 而1)1(lim 0 =-+→x x ,由函数迫敛性可得 1]1 [lim 0=+→x x x 同理可得0-≤<<≤<-x x x x x x x x x x

《函数极限的运算法则》教案(优质课)

《函数极限的运算法则》教案 【教学目标】:掌握函数极限的运算法则,并会求简单的函数的极限 【教学重点】:运用函数极限的运算法则求极限 【教学难点】:函数极限法则的运用 【教学过程】: 一、引入: 一些简单函数可从变化趋势找出它们的极限,如o x x x x x x o ==→∞→lim ,01 lim .若求极限的函数比较复杂,就要分析已知函数是由哪些简单函数经过怎样的运算结合而成的,已知函数的极限与这些简单函数的极限有什么关系,这样就能把复杂函数的极限计算转化为简单函数的极限的计算. 二 、新课讲授 对于函数极限有如下的运算法则: 也就是说,如果两个函数都有极限,那么这两个函数的和、差、积、商组

成的函数极限,分别等于这两个函数的极限的和、差、积、商(作为除数的函数的极限不能为0). 说明:当C 是常数,n 是正整数时,)(lim )]([lim x f C x Cf o o x x x x →→= n x x n x x x f x f o o )](lim [)]([lim →→= 这些法则对于∞→x 的情况仍然适用. 三 典例剖析 例1 求)3(lim 22 x x x +→ 例2 求1 1 2lim 231++-→x x x x 例3 求4 16 lim 24--→x x x 分析:当4→x 时,分母的极限是0,不能直接运用上面的极限运用法则.

注意函数4 16 2--=x x y 在定义域4≠x 内,可以将分子、分母约去公因式4-x 后变 成4+x ,由此即可求出函数的极限. 例4 求1 3 3lim 22++-∞→x x x x 分析:当∞→x 时,分子、分母都没有极限,不能直接运用上面的商的极限运算法则.如果分子、分母都除以2x ,所得到的分子、分母都有极限,就可以用商的极限运用法则计算。 总结:),(lim ,lim *N k x x C C k o k x x x x o o ∈==→→ )(01lim ,lim * N k x C C k x x ∈==∞→∞ →

§1-2 函数极限的运算规则

第1章 函数的极限和连续函数 8 §1-2 函数极限的运算规则·单调有界原理 1.极限的运算规则 记号“(,)x c c c -+→”和“(,)x →∞+∞-∞”都称为极限过程.若把它们统一地表示成“x →?”,则各种形式的函数极限,都具有像数列极限那样的运算 规则.要证明它们,也属于高等微积分(证明在第二篇中). 设在同一个极限过程中,有极限)(lim x f x ? →和)(lim x g x ? →. ⑴ lim[()]lim ()x x c f x c f x →? →? =(c 为常数); (齐次性) ⑵ lim[()()]lim ()lim ()x x x f x g x f x g x →? →? →? ±=±; (可加性) ⑶ lim[()()]lim ()lim ()x x x f x g x f x g x →? →? →? =?; (乘积的极限等于极限的乘积) ⑷ lim ()()lim lim ()0()lim () x x x x f x f x g x g x g x →? →?→?→? ??=≠???? ; (商的极限等于极限的商) ⑸ 若()()f x g x ≤,则lim ()lim ()x x f x g x →? →? ≤; (极限运算的单调性) ⑹ 若()()()f x h x g x ≤≤,且lim ()lim ()x x f x g x C →? →? ==,则也有极限lim ()x h x C →? =. (夹挤规则) 根据夹挤规则,若lim ()0x f x →? =,且)(x g 在极限过程?→x 中是有界变量(())g x B ≤, 则应直接写成 lim[()()]0x f x g x →? = 因为 0()()()0()f x g x B f x x ≤≤→→?且lim ()()0lim[()()]0x x f x g x f x g x →? →? =??= 而不能写成 []lim ()()lim ()lim ()0x x x f x g x f x g x →? →? →? =?=[逻辑错误!] 例如函数1sin y x x =(图1-15),应当直接写成 01 lim sin 0x x x →=(因为1sin 1x ≤) 而不能写成 00011 lim sin lim limsin 0x x x x x x x →→→=?= 因为不存在极限01 limsin x x →(图1-10). 例3 设有多项式 2012()(0)n n n P x a a x a x a x a =+++ +≠ 则 2012lim ()lim lim()lim()lim()n n x c x c x c x c x c P x a a x a x a x →→→→→=+++ + 2012(lim )(lim )(lim )n n x c x c x c a a x a x a x →→→=+++ +

计算极限的常用方法

计算极限的常用方法 作者:伏玲娇, 孟凤娟 作者单位:南京师范大学泰州学院数学系,江苏,泰州,225300 刊名: 科技信息 英文刊名:SCIENCE & TECHNOLOGY INFORMATION 年,卷(期):2010,""(7) 被引用次数:0次 参考文献(3条) 1.同济大学数学教研室高等数学 2003 2.西北工业大学高等数学教研室高等效学中的典型问题与解法 2001 3.裴礼文数学分析中的典型问题与方法 1993 相似文献(10条) 1.期刊论文郑文杰用极限定义证明极限的几种方法-湖北农学院学报2002,22(2) 在微积分中,极限是最重要的概念之一,而且微分、积分、级数等概念都是由极限来定义的.因此,掌握好用极限定义证明部分极限问题的方法大有必要,从极限定义证明极限的方法的特点加以分析,可归纳总结出放大法、乘方法、取点法、夹逼法和反证法等5种方法. 2.期刊论文王培颖高职高专几种求极限方法的常见问题分析-佳木斯教育学院学报2010,""(3) 极限的概念以及极限的求法贯穿高等数学的始终,所以掌握极限的求法是该门课程的基本要求,求极限的方法有多种,本文主要针对利用极限的四则运算求极限,利用两个重要极限求极限,利用等价无穷小求极限以及利用洛比达法则求极限中经常遇到的问题进行分析,通过对典型题的分析加强对这几种方法的掌握. 3.期刊论文叶忠国求极限常用的方法-襄樊职业技术学院学报2007,6(4) 极限问题已被人们逐步认识和运用,掌握求极限的方法更加重要.结合具体例子,介绍了求极限的方法与技巧. 4.期刊论文陈元千用水驱曲线确定经济极限含水率的方法及其应用-新疆石油地质2010,31(2) 在我国,对于注水开发油田,水驱曲线法是预测油田可采储量的重要方法.该方法的有效应用,有赖于直线段选取的可靠性和极限含水率确定的合理性.然而,对于不同流度注水开发油田,由行业标准统一规定,一律选用98%的含水率作为预测可采储量的作法,不但是不恰当的,也是缺乏理论依据的.对于业已进入中高含水期产量递减的油田,基于以往笔者的研究成果,依据不同的技术经济条件,应用确定经济极限产量的概算法,提出了确定经济极限含水率的方法,并用于水驱曲线法,预测油田的经济可采储量.通过实例的应用表明,该方法是实用有效的. 5.期刊论文张燕.朱兰芝.林海霞.刘翠焕探讨求极限的方法-硅谷2008,""(12) 高职院校高等数学教学中极限的求解方法是学生学习中的难点之一,掌握极限的思想与方法是学好微积分学的前提条件,结合教学实际,对高等数学中极限的求解方法进行了探讨和归纳. 6.期刊论文乌力吉.WU Li-ji极限理论在数学分析中的地位与作用及求极限的方法-安徽冶金科技职业学院学报2010,20(1) 极限的思想是近代数学的一种重要思想,数学分析就是以极限概念为基础、极限理论(包括级数)为主要工具来研究函数的一门学科.所谓极限的思想,是指用极限概念分析问题和解决问题的一种数学思想.用极限思想解决问题的一般步骤可概括为:对于被考察的未知量,先设法构思一个与它有关的变量,确认这变量通过无限过程的结果就是所求的未知量;最后用极限计算来得到这结果. 7.期刊论文豆俊梅高等数学中几种求极限的方法-中国科技信息2006,""(15) 文章对贯穿于整个高等数学教材中的极限、求极限的方法做了一定的概括与总结. 8.期刊论文杨春艳浅谈高职高专数学中几种求极限的方法-黑龙江科技信息2010,""(3) 极限是高等数学中最基本的、也是最重要的概念之一.函数极限的类型较为广泛、复杂.在高职课本学习中,我们讲解了许多求极限的方法,由于方法太多,而且一题又有很多种解法,使得学生面对一道题无从下手.结合教学实践,总结和归纳适合高职高专院校学生求极限的方法,希望读者能够通过阅读熟练掌握极限的计算. 9.期刊论文戴剑萍微积分中求极限的方法归叙-黄山学院学报2005,7(3) 极限是微积分中的一条基本线索.本文主要列举五种常用的求极限方法:1、利用单调有界原理求极限;2、利用两边夹定理求极限;3、利用两个重要极限求极限;4、利用洛必达法则求极限;5、利用定积分求极限.以此就微积分中的求极限方法进行归纳叙述. 10.学位论文李山IGBT无破坏测试机理及方法的研究1998 该文通过大量常规及破坏性的实验,研究了无破坏测取IGBT极限能耗、通态极限功耗和结温的方法,并对这些参数与IGBT失效机理的内在联系进行了初步探索.IGBT在过流状态下,由于能耗超过极限能耗或功耗超过极限功耗都会引起温度过高,进而使IGBT的结温超过允许的最高结温,导致IGBT因热击穿而损坏.文中详细阐述了极限能耗与极限电流、最大允许导通时间t<,max>的关系以及通态极限功耗与栅压大小、脉宽和IGBT结温的关系,并应用IGBT导通模型及热阻方程对其进行了理论分析.在此基础上,提出了极限能耗参数S<,M>及通态极限功耗参数P<,M>.在破坏性实验的基础上,论证了S<,M>及输出特性曲线上通态极限功耗点作为判别IGBT性能优劣的特片量.IGBT的热损坏其最终原因都是由于其结温超过了最大允许结温所致.该文在实验研究和理论分析的基础上,研究了利用IGBT关断时阳极电流最大下降率测取结温的方法.此外,作者对阳极电流最大下降率产生的时刻和位置进行了详细的理论分析,首先提出了利用阳极电流最大下降率的产生时刻的不同来判别IGBT的过流状态,并定义了参数△t作为判别IGBT过流状态的特征量. 本文链接:https://www.360docs.net/doc/839105362.html,/Periodical_kjxx201007430.aspx

相关文档
最新文档