废水厌氧处理工艺分析比较

合集下载

污水处理工艺比选

污水处理工艺比选

污水处理工艺比选引言随着城市化进程的加速,污水处理已成为环境保护领域的重要课题。

选择合适的污水处理工艺,直接关系到水资源的可持续利用和生态环境的改善。

本文将通过七个部分,详细比较各种污水处理工艺的特点,以期为实际工程提供参考。

一、活性污泥法原理:利用活性污泥去除污水中的有机物。

优点:处理效率高,技术成熟。

缺点:能耗高,易产生污泥膨胀。

应用场景:适用于大型污水处理厂。

案例:某市污水处理厂采用活性污泥法,取得了良好的处理效果。

二、生物膜法原理:通过生物膜吸附污水中的有机物。

优点:节能,操作简便。

缺点:易堵塞,需要定期反冲洗。

应用场景:适用于小型污水处理设施。

案例:某乡村采用生物膜法处理生活污水,有效降低了污染。

三、自然生物处理法原理:利用自然界的微生物去除污水中的有机物。

优点:成本低,维护简便。

缺点:处理效率不稳定。

应用场景:适用于农村地区或小型分散式污水处理。

案例:某农村地区利用自然生物处理法处理生活污水,取得了良好的环境效益。

四、化学处理法原理:通过化学反应去除污水中的有害物质。

优点:处理效率高,适应性强。

缺点:成本高,可能产生二次污染。

应用场景:适用于特定行业的污水处理。

案例:某化工厂采用化学处理法处理高浓度废水,有效降低了污染物排放。

五、厌氧生物处理法原理:利用厌氧微生物去除污水中的有机物。

优点:能耗低,可回收沼气。

缺点:处理效率慢,臭味大。

应用场景:适用于高浓度有机废水的处理。

案例:某造纸厂采用厌氧生物处理法处理制浆废水,实现了能源回收与环境改善双重目标。

污水厌氧处理与好氧处理特点比较

污水厌氧处理与好氧处理特点比较

污水厌氧处理与好氧处理特点比较污水处理是一种将生活污水、工业废水等经过处理后无害化排放的技术。

在污水处理过程中,常用的处理方法包括厌氧处理和好氧处理。

下面将对这两种处理方法的特点进行比较。

1.处理原理:-厌氧处理:厌氧处理是指在没有氧气的情况下进行处理。

污水中的有机物质通过厌氧发酵分解,产生甲烷、二氧化碳等气体。

-好氧处理:好氧处理是指在有氧气的情况下进行处理。

污水中的有机物质在好氧条件下被细菌降解,产生水和二氧化碳等物质。

2.适用范围:-厌氧处理:厌氧处理适用于高浓度、高有机负荷、低COD/COD比等特点的废水,如厨房废水、餐饮污水等。

-好氧处理:好氧处理适用于低浓度、低有机负荷、高COD/COD比等特点的废水,如生活污水、化工废水等。

3.处理效果:-厌氧处理:厌氧处理可有效去除废水中的悬浮物、沉淀物和有机物质,但对氮、磷等营养物质的去除效果较差。

-好氧处理:好氧处理能够更全面地去除废水中的有机物质、氮、磷等营养物质,并且产生的排泄物较少。

4.能耗和运营成本:-厌氧处理:厌氧处理相对于好氧处理来说,能耗和运营成本较低。

由于不需要供氧设备,不需要额外的能源投入。

-好氧处理:好氧处理相对于厌氧处理来说,需要较多的能耗和运营成本。

供氧设备的运行和氧气的投入成本较高。

5.产物利用:-厌氧处理:厌氧处理过程中产生的甲烷气可以用作能源利用,如燃烧产热或发电。

-好氧处理:好氧处理过程中产生的水可以直接回用,二氧化碳可以用于植物的光合作用。

6.操作要求:-厌氧处理:由于厌氧条件下对环境要求不高,操作比较简单,不存在氧化反应,适用于处理难降解有机物质。

-好氧处理:好氧条件下对环境要求较高,需要供氧设备,操作较为复杂,适用于一般生活污水和工业废水的处理。

总之,厌氧处理和好氧处理都有各自的适用范围和优势。

在具体的污水处理中,应根据废水的特点和处理要求来选择合适的处理方法,以达到高效、经济、环保的处理效果。

废水处理厌氧和好氧生物处理技术

废水处理厌氧和好氧生物处理技术

废水处理厌氧和好氧生物处理技术废水处理是当今社会中非常重要的环境保护工作之一。

废水处理的目的是将含有有害物质的废水转化为对环境无害的水体,以保护水资源和维护生态平衡。

废水处理技术主要分为物理处理、化学处理和生物处理三种。

其中,生物处理技术是一种常用且有效的废水处理方法。

废水处理中的生物处理技术主要包括厌氧生物处理和好氧生物处理。

两种技术各有特点,可以根据废水的特性和处理要求来选择合适的方法。

1. 厌氧生物处理技术厌氧生物处理是一种在缺氧条件下进行的废水处理方法。

它利用厌氧菌群将有机物质转化为沼气和沉淀物。

厌氧生物处理技术适用于高浓度有机废水的处理,如食品加工废水、酿造废水等。

其主要过程包括厌氧消化、甲烷发酵和沉淀。

厌氧消化是指将废水中的有机物质通过厌氧菌的代谢作用转化为有机酸和气体。

在这个过程中,厌氧菌分解有机物质,产生醋酸、丙酸等有机酸,同时产生沼气。

沼气可以作为能源利用,而有机酸则会进一步发酵产生甲烷。

甲烷发酵是指在厌氧条件下,通过甲烷菌的作用将有机酸转化为甲烷。

甲烷是一种无色、无味的气体,具有高热值和可燃性,可以用作燃料或发电。

沉淀是指将废水中的悬浮物和沉淀物沉淀下来,以净化废水。

在厌氧生物处理中,沉淀物主要是厌氧菌和产生的沉淀物质。

2. 好氧生物处理技术好氧生物处理是一种在充氧条件下进行的废水处理方法。

它利用好氧菌群将有机物质转化为二氧化碳、水和生物体。

好氧生物处理技术适用于低浓度有机废水的处理,如生活污水、轻工业废水等。

其主要过程包括生物降解、曝气和沉淀。

生物降解是指将废水中的有机物质通过好氧菌的代谢作用转化为二氧化碳、水和生物体。

在这个过程中,好氧菌分解有机物质,产生二氧化碳和水。

生物体则是好氧菌的生长产物,可以通过沉淀去除。

曝气是指通过给废水供氧来提供好氧菌群所需的氧气。

曝气可以通过机械曝气、曝气池或曝气塔等方式实现。

氧气的供应可以促进好氧菌的生长和代谢活动,加快废水的降解速度。

沉淀是指将废水中的悬浮物和沉淀物沉淀下来,以净化废水。

污水厌氧处理与好氧处理特点比较

污水厌氧处理与好氧处理特点比较

污水厌氧处理与好氧处理特点比较标题:污水厌氧处理与好氧处理特点比较引言概述:污水处理是一项重要的环境保护工作,而污水处理的主要方法包括厌氧处理和好氧处理。

两种方法各有优劣,本文将比较污水厌氧处理与好氧处理的特点,以便更好地了解它们的区别和适合场景。

一、污水厌氧处理的特点:1.1 较低的能耗:厌氧处理过程中不需要供氧,能耗较低。

1.2 适合于高浓度有机废水:厌氧菌在缺氧环境下能够有效降解高浓度有机废水。

1.3 产生少量污泥:厌氧处理过程中产生的污泥量相对较少,减少后续处理成本。

二、好氧处理的特点:2.1 高效处理有机废水:好氧菌在氧气充足的环境下能够高效降解有机废水。

2.2 除臭效果好:好氧处理过程中氧气的作用可以有效降解有机废水中的异味物质。

2.3 适合于低浓度有机废水:好氧处理适合于低浓度有机废水的处理,效果较好。

三、厌氧处理与好氧处理的比较:3.1 处理效率:好氧处理在处理有机废水时效率较高,而厌氧处理对高浓度有机废水效果更好。

3.2 能耗:好氧处理需要供氧,能耗较高,而厌氧处理不需要供氧,能耗较低。

3.3 污泥产生:好氧处理过程中产生的污泥量较多,而厌氧处理产生的污泥量相对较少。

四、适合场景的选择:4.1 高浓度有机废水处理:对于高浓度有机废水的处理,厌氧处理效果更好。

4.2 低浓度有机废水处理:对于低浓度有机废水的处理,好氧处理效果更好。

4.3 能耗考虑:若要考虑能耗问题,可以选择厌氧处理方法。

五、结论:综上所述,污水厌氧处理与好氧处理各有其特点和适合场景,选择合适的处理方法可以更有效地处理污水,降低处理成本,保护环境。

在实际应用中,需要根据具体情况选择合适的处理方法,以达到最佳的处理效果。

污水处理工艺:A2O工艺优缺点及改进工艺总结解析

污水处理工艺:A2O工艺优缺点及改进工艺总结解析

污水处理工艺A2O工艺优缺点及改进工艺总结解析A2O法又称AAO法,即厌氧-缺氧-好氧法,是一种常用的污水处理工艺,可用于二级污水处理或三级污水处理,以及中水回用,具有良好的脱氮除磷效果。

在传统A²/O 工艺的单泥系统中高效地完成脱氮和除磷两个过程,就会发生各种矛盾冲突,比如泥龄的矛盾、碳源竞争、硝酸盐及溶解氧(DO)残余干扰等。

一、传统A²O工艺存在的矛盾:1、污泥龄矛盾:传统A²/O 工艺属于单泥系统,聚磷菌(PAOs)、反硝化菌和硝化菌等功能微生物混合生长于同一系统中,而各类微生物实现其功能最大化所需的泥龄不同:1)自养硝化菌与普通异养好氧菌和反硝化菌相比,硝化菌的世代周期较长,欲使其成为优势菌群,需控制系统在长泥龄状态下运行。

冬季系统具有良好硝化效果时的污泥龄(SRT)需控制在 30d 以上;即使夏季,若 SRT<5 d,系统的硝化效果将显得极其微弱。

2)PAOs 属短周期微生物,甚至其最大周期(Gmax)都小于硝化菌的最小世代周期(Gmin)。

从生物除磷角度分析富磷污泥的排放是实现系统磷减量化的唯一渠道。

若排泥不及时,一方面会因 PAOs 的内源呼吸使胞内糖原消耗殆尽,进而影响厌氧区乙酸盐的吸收及聚 -β- 羟基烷酸(PHAs)的贮存,系统除磷率下降,严重时甚至造成富磷污泥磷的二次释放;另一方面,SRT 也影响到系统内 PAOs 和聚糖菌(GAOs)的优势生长。

在 30 ℃的长泥龄(SRT≈ 10 d)厌氧环境中,GAOs 对乙酸盐的吸收速率高于PAOs,使其在系统中占主导地位,影响 PAOs 释磷行为的充分发挥。

2、碳源竞争及硝酸盐和DO残余干扰:在传统A²/O脱氮除磷系统中,碳源主要消耗于释磷、反硝化和异养菌的正常代谢等方面,其中释磷和反硝化速率与进水碳源中易降解部分的含量有很大关系。

一般而言,要同时完成脱氮和除磷两个过程,进水的碳氮比(BOD5 /ρ(TN))>4~5,碳磷比(BOD5 /ρ(TP))>20~30。

污水厌氧处理与好氧处理特点比较

污水厌氧处理与好氧处理特点比较

污水厌氧处理与好氧处理特点比较标题:污水厌氧处理与好氧处理特点比较引言概述:污水处理是保护环境和人类健康的重要任务。

在污水处理过程中,厌氧处理和好氧处理是两种常见的方法。

本文将对这两种处理方式的特点进行比较,以帮助读者更好地了解它们的优缺点。

一、厌氧处理的特点:1.1 适应性强:厌氧处理可以处理各种类型的污水,包括高浓度有机废水和含有难降解有机物的废水。

1.2 能量消耗低:厌氧处理过程中,微生物在缺氧环境下进行代谢,产生的能量可以用于微生物自身的生长和维持系统运行,因此能量消耗相对较低。

1.3 产生的污泥少:厌氧处理过程中,产生的污泥量较少,减少了后续处理和处置的成本。

二、好氧处理的特点:2.1 除臭效果好:好氧处理过程中,氧气的存在可以有效降解有机物,并产生二氧化碳和水,从而显著减少污水的臭味。

2.2 处理效果稳定:好氧处理过程中,微生物代谢活跃,能够迅速降解有机物,处理效果相对稳定,适用于对出水水质有较高要求的场合。

2.3 减少氮磷含量:好氧处理过程中,氧气的存在促进了氮和磷的氧化和硝化作用,从而减少了出水中的氮磷含量,达到更好的处理效果。

三、厌氧处理与好氧处理的比较:3.1 处理效率:好氧处理相对于厌氧处理,处理效率更高,能够更彻底地降解有机物,减少水体污染。

3.2 能耗:厌氧处理相对于好氧处理,能耗较低,适用于处理高浓度有机废水。

3.3 操作难度:好氧处理相对于厌氧处理,操作难度较低,不需要维持缺氧环境,更容易控制和管理。

四、结论:综上所述,厌氧处理和好氧处理都有各自的特点和适用场合。

厌氧处理适用于处理高浓度有机废水,能耗低且产生的污泥少;好氧处理适用于要求处理效果稳定、除臭效果好以及减少氮磷含量的场合。

在实际应用中,可以根据污水的特性和处理要求选择合适的处理方式,以实现高效、经济和环保的污水处理。

污水处理工艺比选

污水处理工艺比选

污水处理工艺比选一、引言污水处理是保护环境和人类健康的重要环节。

在污水处理过程中,选择合适的处理工艺是至关重要的。

本文将对污水处理工艺进行比选,并详细介绍每种工艺的原理、优缺点以及适合范围,以便于选择最适合的处理工艺。

二、传统工艺1. 活性污泥法活性污泥法是一种常见的传统工艺,通过将污水与含有微生物的活性污泥接触,使污水中的有机物被微生物降解,达到净化水质的目的。

该工艺具有处理效果好、运行稳定等优点,但对氮、磷等营养物质的去除效果较差。

2. 厌氧消化厌氧消化是一种将有机废水通过厌氧发酵降解的工艺。

该工艺适合于高浓度有机废水的处理,能够有效去除COD,同时产生沼气。

然而,厌氧消化工艺对氮、磷等营养物质的去除效果较差。

三、新型工艺1. 膜生物反应器(MBR)膜生物反应器是一种将活性污泥法与膜分离技术相结合的工艺。

该工艺通过膜的过滤作用,能够有效去除悬浮物、细菌等污染物,同时提高出水的水质稳定性。

MBR工艺具有占地面积小、出水水质稳定等优点,但投资和运营成本较高。

2. 生物膜反应器(MBBR)生物膜反应器是一种将活性污泥法与生物膜技术相结合的工艺。

该工艺通过生物膜的附着作用,能够增加微生物的附着面积,提高有机物的降解效率。

MBBR工艺具有处理效果好、运行稳定等优点,但对氮、磷等营养物质的去除效果较差。

3. 厌氧氨氧化(Anammox)厌氧氨氧化是一种通过厌氧微生物将氨氮直接转化为氮气的工艺。

该工艺具有能耗低、操作简单等优点,能够实现氮的高效去除。

然而,厌氧氨氧化工艺对COD的去除效果较差。

四、工艺比选根据实际情况,我们需要综合考虑以下几个方面来进行工艺比选:1. 污水水质特征:包括COD、氨氮、总磷等指标的浓度和变化范围。

2. 处理要求:根据排放标准和处理效果要求,确定对污水中各种污染物的去除率要求。

3. 运行成本:包括投资成本、运营成本和维护成本等。

4. 占地面积:根据实际场地条件,确定所需处理工艺的占地面积。

污水处理之缺氧、厌氧、好氧的工艺流程分析

污水处理之缺氧、厌氧、好氧的工艺流程分析

污水处理之缺氧、厌氧、好氧的工艺流程分析北极星水处理网讯:厌氧生物处理是在厌氧条件下,形成了厌氧微生物所需要的营养条件和环境条件,利用这类微生物分解废水中的有机物并产生甲烷和二氧化碳的过程。

高分子有机物的厌氧降解过程可以被分为四个阶段:水解阶段、发酵(或酸化)阶段、产乙酸阶段和产甲烷阶段。

(1)水解阶段水解可定义为复杂的非溶解性的聚合物被转化为简单的溶解性单体或二聚体的过程。

(2)发酵(或酸化)阶段发酵可定义为有机物化合物既作为电子受体也是电子供体的生物降解过程,在此过程中溶解性有机物被转化为以挥发性脂肪酸为主的末端产物,因此这一过程也称为酸化。

(3)产乙酸阶段在产氢产乙酸菌的作用下,上一阶段的产物被进一步转化为乙酸、氢气、碳酸以及新的细胞物质。

(4)甲烷阶段这一阶段,乙酸、氢气、碳酸、甲酸和甲醇被转化为甲烷、二氧化碳和新的细胞物质。

酸化池中的反应是厌氧反应中的一段。

厌氧池是指没有溶解氧,也没有硝酸盐的反应池。

缺氧池是指没有溶解氧但有硝酸盐的反应池。

酸化池——水解、酸化、产乙酸,限制甲烷化,有pH值降低现象。

工艺简单,易控制操作,可去除部分COD。

目的提高可生化性;厌氧池——水解、酸化、产乙酸、甲烷化同步进行。

需要调节pH,不易操作控制,去除大部分COD。

目的是去除COD。

缺氧池——有水解反应,在脱氮工艺中,其pH值升高。

在脱氮工艺中,主要起反硝化去除硝态氮的作用,同时去除部分BOD。

也有水解反应提高可生化性的作用。

水解酸化池内部可以不设曝气装置,控制停留时间再水解、酸化阶段,不出现厌氧产气阶段,前两个阶段的COD去除率不是很高,因为他的目的只是将大分子的变成小分子有机物,一般去除率在20%左右,产气阶段的COD去除率一般在40%左右,但这是产生的硫化氢气体要进行除臭处理,且达到产气阶段的停留时间要较前两阶段长,也就是要出现厌氧状态。

缺缺氧池内要设置曝气装置,控制溶解氧在0.3-0.8mg/l,利用兼氧微生物及生物膜来降解废水中的有机物,接触氧化池内的曝气器要慎重选择,既要保证供氧量,又要确保有利于生物膜的脱落、更新。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

废水厌氧处理工艺分析比较一、废水厌氧处理原理一般来说,废水中复杂有机物物料比较多,通过厌氧分解分四个阶段加以降解:(1)水解阶段:高分子有机物由于其大分子体积,不能直接通过厌氧菌的细胞壁,需要在微生物体外通过胞外酶加以分解成小分子。

废水中典型的有机物质比如纤维素被纤维素酶分解成纤维二糖和葡萄糖,淀粉被分解成麦芽糖和葡萄糖,蛋白质被分解成短肽和氨基酸。

分解后的这些小分子能够通过细胞壁进入到细胞的体内进行下一步的分解。

(2)酸化阶段:上述的小分子有机物进入到细胞体内转化成更为简单的化合物并被分配到细胞外,这一阶段的主要产物为挥发性脂肪酸(VFA),同时还有部分的醇类、乳酸、二氧化碳、氢气、氨、硫化氢等产物产生。

(3)产乙酸阶段:在此阶段,上一步的产物进一步被转化成乙酸、碳酸、氢气以及新的细胞物质。

(4)产甲烷阶段:在这一阶段,乙酸、氢气、碳酸、甲酸和甲醇都被转化成甲烷、二氧化碳和新的细胞物质。

这一阶段也是整个厌氧过程最为重要的阶段和整个厌氧反应过程的限速阶段。

在上述四个阶段中,有人认为第二个阶段和第三个阶段可以分为一个阶段,在这两个阶段的反应是在同一类细菌体类完成的。

前三个阶段的反应速度很快,如果用莫诺方程来模拟前三个阶段的反应速率的话,Ks(半速率常数)可以在50mg/l以下,μ可以达到5KgCOD/KgMLSS.d。

而第四个反应阶段通常很慢,同时也是最为重要的反应过程,在前面几个阶段中,废水的中污染物质只是形态上发生变化,COD几乎没有什么去除,只是在第四个阶段中污染物质变成甲烷等气体,使废水中COD大幅度下降。

同时在第四个阶段产生大量的碱度这与前三个阶段产生的有机酸相平衡,维持废水中的PH稳定,保证反应的连续进行。

二、废水厌氧工艺的发展厌氧生物过程一直广泛地存在于自然界中,但人类第一次有意识地利用厌氧生物过程来处理废弃物,则是在1881年由法国的Louis Mouras所发明的“自动净化器”开始的,随后人类开始较大规模地应用厌氧消化过程来处理城市污水(如化粪池、双层沉淀池等)和剩余污泥(如各种厌氧消化池等)。

这些厌氧反应器现在通称为“第一代厌氧生物反应器”,它们的共同特点是:①水力停留时间(HRT)很长,有时在污泥处理时,污泥消化池的HRT会长达90天,即使是目前在很多现代化城市污水处理厂内所采用的污泥消化池的HRT也还长达20~30天;②虽然HRT相当长,但处理效率仍十分低,处理效果还很不好;③具有浓臭的气味,因为在厌氧消化过程中原污泥中含有的有机氮或硫酸盐等会在厌氧条件下分别转化为氨氮或硫化氢,而它们都具有十分特别的臭味。

以上这些特点使得人们对于进一步开发和利用厌氧生物过程的兴趣大大降低,而且此时利用活性污泥法或生物膜法处理城市污水已经十分成功。

但是,当进入上世纪50、60年代,特别是70年代的中后期,随着世界范围的能源危机的加剧,人们对利用厌氧消化过程处理有机废水的研究得以强化,相继出现了一批被称为现代高速厌氧消化反应器的处理工艺,从此厌氧消化工艺开始大规模地应用于废水处理,真正成为一种可以与好氧生物处理工艺相提并论的废水生物处理工艺。

这些被称为现代高速厌氧消化反应器的厌氧生物处理工艺又被统一称为“第二代厌氧生物反应器”,它们的主要特点有:① HRT大大缩短,有机负荷大大提高,处理效率大大提高;②主要包括:厌氧接触法、厌氧滤池(AF)、上流式厌氧污泥床(UASB)反应器、厌氧流化床(AFB)、AAFEB、厌氧生物转盘(ARBC)和挡板式厌氧反应器等;③ HRT与SRT分离,SRT相对很长,HRT则可以较短,反应器内生物量很高。

以上这些特点彻底改变了原来人们对厌氧生物过程的认识,因此其实际应用也越来越广泛。

进入20世纪90年代以后,随着以颗粒污泥为主要特点的UASB反应器的广泛应用,在其基础上又发展起来了同样以颗粒污泥为根本的颗粒污泥膨胀床(EGSB)反应器和厌氧内循环(IC)反应器。

其中EGSB反应器利用外加的出水循可以使反应器内部形成很高的上升流速,提高反应器内的基质与微生物之间的接触和反应,可以在较低温度下处理较低浓度的有机废水,如城市废水等;而IC 反应器则主要应用于处理高浓度有机废水,依靠厌氧生物过程本身所产生的大量沼气形成内部混合液的充分循环与混合,可以达到更高的有机负荷。

这些反应器又被统一称为“第三代厌氧生物反应器”。

三、厌氧处理常见工艺(运行方式、构筑物结构、优缺点、适合水质、主要工艺控制参数等)3.1普通厌氧消化池普通厌氧硝化池又称传统或常规硝化池,已有百余年历史。

硝化池常用密闭的圆柱形池。

废水定期或者连续进入池中,经消化的污泥和废水分别从消化池底和上部排出,所产生的沼气出顶部排除。

池径由几米到几十米,柱体部分的高度一般约为直径的1/2,池底未圆锥形,便于污泥排出。

一般池体加盖,以保证良好的厌氧条件,收集沼气和保温,并减少池面的蒸发。

为了使进料和厌氧污泥充分接触、使产生的沼气及时溢出而设有搅拌装置。

此外,进行中温和高温消化时,常需要对消化液进行加热。

常用的搅拌方式:(1)池内机械搅拌;(2)沼气搅拌;(3)循环消化液搅拌。

一般情况下,2--4小时搅拌一次。

在排放消化液时,通常停止搅拌,经沉淀分离后排出上清液。

常用加热方式:1、废水在消化池外先经过热交换器预热到定温再进入消化池;2、热蒸汽直接再消化池内加热;3、在消化池内安装热交换器。

普通消化池一般的负荷,中温为2--3kgCOD/(m3/d),高温为5--6kgCOD/(m3/d)。

普通消化池优点:①工艺可以进入高悬浮固体含量的原料;②消化器内物料分布均匀,避免了分层状态,增加了底物和微生物接触的机会;③消化器内温度分布均匀;④进入消化器内任何一点的抑制物质,能够迅速分散保持在最低浓度水平;⑤避免了浮渣结壳、堵塞、气体逸出不畅和沟流现象;⑥易于建立数学模型。

普通消化池缺点:①由于该消化器无法做到使SRT和MRT在大于HRT的情况下运行,所以需要消化器体积较大;②要有足够的搅拌,所以能量消耗较高;③生产用大型消化器难以做到完全混合;④底物流出该系统时未完全消化,微生物随出料而流失。

3.2厌氧接触法为了克服普通消化池不能按需要保留或补充厌氧活性污泥的缺点,在消化池后设沉淀池,将沉淀污泥回流到消化池,这样就形成了厌氧接触氧化法。

厌氧接触氧化法使污泥不流失、出水水质稳定,可提高消化池内的污泥浓度,缩短污水在消化池内的水力停留时间,从而提高厌氧反应的有机容积负荷和处理效率。

其工艺流程见图厌氧接触法的特点是:(1)由于设置了专门的污泥截留设施,能够回流污泥,通过污泥回流,使厌氧接触法的固体停留时间较长。

可保持消化池内10~15g/L的较高污泥浓度,提高了耐冲击能力,使系统运行比较稳定;(2)容积负荷大大超过普通消化池,中温消化时一般为2~10kgCODcr/(m3·d),水力停留时问比普通消化池大大缩短,比如常温下普通消化池的水力停留时间为20~30d,而接触法小于10d:(3)不存在堵塞问题,可以处理悬浮固体含量较高或颗粒较大的污泥或废水;(4)混合液经沉淀后,出水水质好,但需要配置沉淀池、污泥回流和脱气等设备,流程较复杂;(5)厌氧接触法的最大问题是混合液难于在普通沉淀池中进行固液分离,需要设置专门的脱气设施。

提高厌氧消化污泥沉淀效果的措施:(1)真空脱气:将从消化池排出的混合液进人真空度为一5kPa的真空脱气器,将污泥絮体上的沼气泡除去,改善混合液的沉淀性能。

(2)急冷脱气:将从消化池排出的混合液进行急速冷却,比如将35℃的中温消化液冷却到15~25℃,可以防止污泥继续产气,使厌氧污泥有效地沉淀分离。

(3)混凝沉淀:向混合液中投加絮凝剂,使细小的厌氧污泥凝聚成大颗粒,在沉淀池中容易沉淀下去,提高固液分离效果。

(4)过滤分离:用过滤器代替沉淀池,提高固液分离效果。

(5)降低沉淀负荷:为保证沉淀池分离效果,厌氧消化液的沉淀池表面水力负荷要比一般废水沉淀池小一些,混合液在沉淀池内的停留时间比一般废水沉淀时间要长一些,一般不小于4h。

3.3UASB(Up Flow Anaerobic Sludge Blanket Expended Granular Sludge Bed)3.3.1UASB的基本工作原理UASB反应器废水由反应器底部进入,污水向上通过包含颗粒污泥或絮状污泥的污泥床。

厌氧反应发生在废水和污泥颗粒接触的过程。

在厌氧状态下产生的沼气(主要是甲烷和二氧化碳)引起了内部的循环,这对于颗粒污泥的形成和维持有利。

在污泥层形成的一些气体附着在污泥颗粒上,附着和没有附着的气体向反应器顶部上升。

上升到表面的污泥撞击三相反应器气体发射器的底部,引起附着气泡的污泥絮体脱气。

气泡释放后污泥颗粒将沉淀到污泥床的表面,附着和没有附着的气体被收集到反应器顶部的三相分离器的集气室。

置于集气室单元缝隙之下的挡板的作用为气体发射器和防止沼气气泡进入沉淀区,否则将引起沉淀区的絮动,会阻碍颗粒沉淀。

包含一些剩余固体和污泥颗粒的液体经过分离器缝隙进入沉淀区。

由于分离器的斜壁沉淀区的过流面积在接近水面时增加,因此上升流速在接近排放点降低。

由于流速降低污泥絮体在沉淀区可以絮凝和沉淀。

累积在三相分离器上的污泥絮体在一定程度上将超过其保持在斜壁上的摩擦力,其将滑回反应区,这部分污泥又将与进水有机物发生反应。

3.3.2UASB的组成系统(一)进水配水系统进水配水系统的功能主要是将废水均匀分配到整个反应器,并进行水力搅拌,是反应器高效运行的关键之一。

从水泵来的废水通过配水设备流入布水管。

配水设备是由一根可旋转的配水管与配水槽构成,配水槽为圆环形,被分隔成若干单元,每个单元与一根通进反应器的布水管相连。

从水泵来的水管与可旋转的配水管相连接。

工作时配水管旋转,在一定的时间间隔内,废水流进配水槽的一个单元,由此流进一根布水管进入反应器。

布水点设在反应器的底平面上,为使基质与污泥接触充分,应进行合理设置。

布水点均匀分布在池底上,且高度不同。

根据有关资料与研究实践,认为布水的不均匀系数为0.95时,可达到布水均匀的目的。

荷兰研究者提出,在装置放大时应按比例增加布水点的数量,使每5m2底面积有一个布水点。

这种布水方式对于整个反应器来说是连续进水,而对于每个布水点而言,则是间断进水,布水管的瞬时流量与整个反应器的流量相等。

在生产运行装置中所采用的进水方式大致可分为间歇式、脉冲式、连续均匀流、连续与间歇回流相结合等几种。

(二)UASB的反应区反应区是反应器的主要部分,包括污泥床区和污泥悬浮层区,废水中有机物主要在此处被厌氧菌分解。

(三)三项分离器三相分离器的作用是把沼气、污泥和液体分开。

UASB反应器所具有的这种分离器是考虑到厌氧工艺细菌生长速率很慢这一特点而设计的,由沉淀区、回流缝和气封组成。

相关文档
最新文档