第2讲_物联网感知层技术

合集下载

物联网感知层设计的主要技术要点研究

物联网感知层设计的主要技术要点研究

物联网感知层设计的主要技术要点研究物联网感知层是物联网中连接物理世界和虚拟世界的重要组成部分,它是实现物联网服务的基础,也是实现物联网智能服务的重要支撑。

它以传感器、无线识别技术、Wi-Fi、RFID等设备为代表,主要用于获取物联网接入的实时物理信息,这些信息可以集中处理,然后传输和存储,以便物联网用户做出决策或进一步操作。

一、传感器技术。

传感器技术是物联网中最基本的技术,它使物联网能够实现对实时物理信息的采集和传输。

包括温度传感器、光传感器、声音传感器等,他们可以根据需求探测周围环境的温度、光的强度和声音的幅度。

二、无线识别技术。

这种技术主要用于实现物联网设备间无线通信,它可以更方便地实现物理信息的采集和传输。

主要由Wi-Fi、RFID、NFC等技术组成,他们可以实现不同类型和功能的物联网设备之间的数据传输和控制。

三、存储技术。

这类技术主要用于处理物联网感知层中采集到的实时物理信息,并将其存储起来以便进行决策或进一步操作。

主要技术有系统存储技术、阵列存储技术等。

四、传输技术。

这项技术是实现物联网服务的重要部分。

它可以将不同类型和功能的物理信息从感知层传输到其他层,从而实现远程控制和管理,进而为物联网服务提供支持。

五、标准技术。

标准技术主要是指物联网感知层设计中所使用的相关标准体系,他们包括视频压缩标准、无线传输标准、安全体系等,旨在为物联网服务提供安全和可靠的基础。

以上就是物联网感知层设计的主要技术要点,他们是实现物联网服务和物联网智能服务的基础,也是实现物联网服务过程中的重要组成部分。

通过不断创新和开发,物联网感知层的技术将不断提高,促进物联网的发展,最终实现物联网的智能化服务。

物联网的感知层主要包括什么

物联网的感知层主要包括什么

物联网感知层的关键技术包括传感器技术、射频识别技术、二维码技术、蓝牙技术以及ZigBee技术等。

物联网感知层的主要功能是采集和捕获外界环境或物品的状态信息,在采集和捕获相应信息时,会利用射频识别技术先识别物品,然后通过安装在物品上的高度集成化微型传感器来感知物品所处环境信息以及物品本身状态信息等,实现对物品的实时监控和自动管理。

而这种功能得以实现,离不开各种技术的协调合作。

传感器技术物联网实现感知功能离不开传感器,传感器的最大作用是帮助人们完成对物品的自动检测和自动控制。

目前,传感器的相关技术已经相对成熟,被应用于多个领域,比如地质勘探、航天探索、医疗诊断、商品质检、交通安全、文物保护、机械工程等。

作为一种检测装置,传感器会先感知外界信息,然后将这些信息通过特定规则转换为电信号,最后由传感网传输到计算机上,供人们或人工智能分析和利用。

传感器的物理组成包括敏感元件、转换元件以及电子线路三部分。

敏感元件可以直接感受对应的物品,转换元件也叫传感元件,主要作用是将其他形式的数据信号转换为电信号;电子线路作为转换电路可以调节信号,将电信号转换为可供人和计算机处理、管理的有用电信号。

射频识别技术射频识别的简称为RFID,该技术是无线自动识别技术之一,人们又将其称为电子标签技术。

利用该技术,无需接触物体就能通过电磁耦合原理获取物品的相关信息。

物联网中的感知层通常都要建立一个射频识别系统,该识别系统由电子标签、读写器以及中间信息系统三部分组成。

其中,电子标签一般安装在物品的表面或者内嵌在物品内层,标签内存储着物品的基本信息,以便于被物联网设备识别;读写器有三个作用,一是读取电子标签中有关待识别物品的信息,二是修改电子标签中待识别物品的信息,三是将所获取的物品信息传输到中央信息系统中进行处理;中央信息系统的作用是分析和管理读写器从电子标签中读取的数据信息。

二维码技术二维码(2-dimensional bar code)又称二维条码、二维条形码,是一种信息识别技术。

物联网感知层技术

物联网感知层技术

2009年12月10日,我国铁道部对火车票进行了升级改版。新版火车票明显的 变化是车票下方的一维条码编程二维防伪条码,火车票的防伪能力增强。进 站口检票时,检票人员通过二维条码识读设备对车票上的二维条形码进行识 读,系统自动辨别车票的真伪并将相应信息存入系统中。下面给出了我国使 用的一维条形码与二维条形码火车票的比较。
2.2.1 微机电压力传感器
某轮胎压力传感器的内部结构以及外观如下图所示。该压力传感器利用 了传感器中的硅应变电阻在压力作用下发生形变而改变了电阻来测量压力; 测试时使用了传感器内部集成的测量电桥。
MEMS压力传感器结构
传感器中集成的测量电桥 传感器外形
2.2.2 微机电加速度传感器 微机电加速度传感器主要通过半导体工艺在硅片中加工出可以在加速运
CPU
2.3.2 智能温湿度传感器
下面显示的是 Sensirion公司推出的SHT11/15温湿度智能传感器的外形, 引脚,以及内部框图。
2.3.3 智能液体浑浊度传感器
下面显示的是Honeywell公司推出的AMPS-10G型智能液体浑浊度传感器 的外形,测量原理,以及内部框图。
数据采集方式的发展过程
• ISO 14443-3规定了TYPE A和TYPE B的防冲撞机制。
• ISO 15693采用轮寻机制、分时查询的方式完成防冲撞机制。 • • ISO技术委员会及联合工作组TC104/SC4主要处理有关ISO/IEC贸易应用方面,
光传感器的不同种类可以覆盖可见光,红外线(热辐射),以及紫外线等波 长范围的传感应用。
光敏电阻结构图与实物
光敏三极管
集成光传感器
2.1.5 霍尔(磁性)传感器
霍尔传感器是利用霍尔效应制成的一种磁性传感器。霍尔效应是指:把一 个金属或者半导体材料薄片置于磁场中,当有电流流过时,由于形成电流的 电子在磁场中运动而收到磁场的作用力,会使得材料中产生与电流方向垂直 的电压差。可以通过测量霍尔传感器所产生的电压的大小来计算磁场的强度。

物联网之感知层和传输层

物联网之感知层和传输层

物联网之感知层和传输层物联网(Internet of Things)是指通过各种传感器、识别技术和网络通信技术,将各种物体与互联网连接起来,实现设备之间的信息交互和智能化管理的网络系统。

在物联网系统中,感知层和传输层起着至关重要的作用。

本文将深入探讨物联网中的感知层和传输层,并分析其在物联网系统中的功能和作用。

一、感知层感知层是物联网系统中最底层的部分,负责采集和感知现实世界中的信息。

感知层通过各类传感器和探测设备,将物体的状态和环境信息转化为数字信号,以便于后续处理和传输。

常见的感知设备包括温度传感器、湿度传感器、压力传感器、光线传感器等。

这些设备能够实时监测和收集各类物体的信息,为物联网系统提供数据基础。

感知层的主要功能包括数据采集、数据处理和信号转换。

首先,感知层通过传感器对物体的各种参数进行采集,并将采集到的数据传输到上层。

其次,感知层对采集到的数据进行初步处理,如滤波、去噪等,确保数据的准确性和可靠性。

最后,感知层将处理后的数据转化为数字信号,并传送至传输层。

二、传输层传输层是物联网系统中的中间层,负责将感知层采集到的数据传输至应用层。

传输层是实现设备之间通信的桥梁,其主要功能是将感知层采集到的数据进行处理、封装和传输。

传输层可以使用多种通信协议和技术,如Wi-Fi、蓝牙、LoRa等,实现设备之间的数据传输。

传输层的主要作用是数据传递和通信管理。

首先,传输层负责将感知层采集到的数据传送至应用层,以满足不同应用的需求。

其次,传输层需要对数据进行可靠的传输,保证数据的完整性和安全性。

此外,传输层还需要管理设备之间的通信连接,确保设备的稳定运行和互联互通。

三、感知层和传输层的关系感知层和传输层在物联网系统中密切相关,两者共同协作,实现设备之间的信息交互和数据传输。

首先,感知层通过采集和感知设备,将物体的信息转化为数字信号,并传输至传输层。

感知层将物理世界的信息进行转换和处理,为传输层提供数据源。

物联网感知层设计的主要技术要点研究

物联网感知层设计的主要技术要点研究

物联网感知层设计的主要技术要点研究1. 引言1.1 物联网感知层设计的主要技术要点研究物联网感知层是物联网架构中的一个重要组成部分,负责感知周围环境的信息,并将这些信息传输给上层的处理和控制系统。

感知层的设计关乎整个物联网系统的性能和稳定性,因此研究物联网感知层设计的主要技术要点具有重要意义。

在物联网感知层设计中,首先需要明确感知层的定义和作用。

感知层主要负责采集各种传感器获取的数据,将这些数据进行整合和处理,然后传输给网络层。

传感器选择和部署是感知层设计的关键步骤,不同的应用场景需要不同类型的传感器,并且传感器的部署位置也会影响数据采集的质量和效率。

通信协议和网络架构是物联网感知层设计中的另一个重要方面。

选择合适的通信协议和构建稳定可靠的网络架构是保证感知层数据正常传输的关键。

同时,数据处理和分析技术也是感知层设计中不可忽视的一部分,通过对感知数据进行分析和处理,可以为上层系统提供更准确、更及时的信息。

最后,安全和隐私保护措施是物联网感知层设计中必不可少的部分。

随着物联网的发展,感知层数据的安全性和隐私性越来越受到重视,必须采取一系列措施来保护感知数据的安全和隐私。

综上所述,物联网感知层设计的主要技术要点包括感知层的定义和作用、传感器选择和部署、通信协议和网络架构、数据处理和分析技术、以及安全和隐私保护措施。

研究这些技术要点对于提升物联网系统的性能和可靠性具有重要意义。

2. 正文2.1 感知层的定义和作用感知层是物联网系统中的核心部分,其作用是通过传感器和设备将现实世界中的信息转化为数字信号,并传输至网络中进行处理和分析。

感知层的设计要点包括传感器选择和部署、通信协议和网络架构、数据处理和分析技术以及安全和隐私保护措施。

在感知层的设计中,传感器的选择和部署是至关重要的。

不同类型的传感器能够感知不同的信息,因此需要根据具体应用场景来选择合适的传感器。

在部署传感器时需要考虑其位置、数量以及通信范围,以保证数据采集的准确性和效率。

物联网感知层设计的主要技术要点研究

物联网感知层设计的主要技术要点研究

物联网感知层设计的主要技术要点研究随着物联网技术的快速发展和普及,物联网的感知层设计显得越来越重要。

感知层是物联网的基础,能够实现对环境的实时感知和数据收集。

因此,设计物联网感知层需要掌握一些关键技术要点,本文将从传感器技术、网络传输和数据处理等方面进行分析。

一、传感器技术传感器是感知层的重要组成部分,能够将物理和化学量转化为电学信号,并将其传输到物联网系统。

因此,正确选择和使用传感器是感知层设计的重要前提。

1.1 传感器选择首先,必须选择适合特定应用的传感器类型和参数。

物联网应用的传感器类型繁多,如温度传感器、湿度传感器、气压传感器、光传感器等。

不同的传感器对应不同的应用场景,例如,在环境监测中,需要使用多种传感器来实现气体、声音、光、温度和湿度等方面的监测。

因此,选择合适的传感器对于提高数据质量和系统性能非常重要。

1.2 传感器接口和通信协议传感器需要与物联网系统进行通信,因此需要一个标准的接口和协议。

一些传感器提供了标准的接口和通信协议,如I2C、SPI、UART以及HTTP、MQTT等。

因此,在选择传感器时,需要考虑其接口和通信协议是否符合系统需求。

1.3 传感器功耗和寿命传感器的功耗和寿命也是设计感知层的关键因素。

低功耗传感器可以延长设备电池寿命,因为传感器通常是连接到远程节点或云端服务器,远程数据传输和处理可以极大地消耗电池能量。

此外,长寿命传感器可以保证设备运行的可靠性和稳定性。

二、网络传输网络传输是感知层设计的另一个重要方面。

感知层的数据必须传输到平台或设备的后端;因此,需要建立一个可靠且高效的数据传输网络。

2.1 无线网络大多数物联网应用需要使用无线网络传输数据。

Wi-Fi、蓝牙、Zigbee、LoRa、NB-IoT等都是常见的无线传感网络技术。

在选择特定技术时,需要考虑传输距离、数据吞吐量、能耗和部署成本等因素。

2.2 安全性物联网是一个开放的网络,很容易遭到网络攻击或数据泄露。

物联网感知层技术PPT课件

物联网感知层技术PPT课件
它的工作原理是在代码编制上利用构成计算机内部逻辑基础的“0”、“1” 比特流的概念,使用若干个与二进制相对应的黑白相间几何形体来表示数值 信息,通过图象输入设备或光电扫描设备自动识读出数值信息,然后在已经 存在的数据库中找到该数值及该数值代表的信息,达到身份识别或者相关操 作的目的。
精选PPT课件
8
器等基本标识和精选传PPT课感件 器件组成)以
2
检测技术
•传感器技术 • RFID(射频识别技术) •二维码技术
精选PPT课件
3
传感器技术
传感器能感受规定的被测量并按照一定的规律转换成可用电信号的器件 或装置
通常根据其基本感知功能分为热敏元件、光敏元件、气敏元件、力敏元 件、磁敏元件、湿敏元件、声敏元件、放射线敏感元件、色敏元件和味敏元 件等十大类。
物联网感知层技术介绍
精选PPT课件
1
物联网感知层简介
感知层是物联网的核心,是信 息采集的关键部分。感知层位于物 联网三层结构中的最底层,其功能 为“感知”,即通过传感网络获取 环境信息。感知层是物联网的核心, 是信息采集的关键部分。
感知层由基本的感应器件(例
如RFID标签和读写器、各类传感器、
摄像头、GPS、二维码标签和识读
精选PPT课件
13
应用事例
各种电器遥控器
精选PPT课件
14
支付宝扫码支付
应用事例
精选PPT课件
9
短距离无线通信技术
• 蓝牙技术 •红外技术
精选PPT课件
10
蓝牙技术
蓝牙是一种多装置之间通信的标准,它支持话音和数据通信。蓝牙无线 传输的主要特点有传输距离短(10米),支持话音和数据通信,价廉易用(所有 蓝牙设备之间可直接通信)等。蓝牙的标准是IEEE802.15,工作在2.4GHz 频带, 带宽为1Mb/s。

物联网感知层技术

物联网感知层技术
物联网感知层技术
汇报人:
目录
添加目录标题
01
物联网感知层概述
02
物联网感知层技术架 构
03
物联网感知层关键技 术
04
物联网感知层应用场 景
05
物联网感知层面临的 挑战与未来发展趋势
06
添加章节标题
物联网感知层概 述
定义与作用
物联网感知层定义:感知层是物联网三层架构中的最底层,主要负责数据的采集和传输
传感器技术
传感器类型:包括温度、湿度、压力、光照等多种类型 传感器工作原理:基于物理或化学效应,将待测量转换为电信号 传感器应用:在物联网中,传感器用于数据采集、环境监测、智能控制等领域 传感器技术发展趋势:高精度、高可靠性、低功耗、微型化等
无线传感器网络技术
定义:由一组能够自组织形成网络的低功耗、微型、低成本传感器节点组成的网络 特点:可自组织、自修复、容错性强、覆盖范围广、可扩展性强 应用:环境监测、智能家居、智能交通、工业自动化等领域 发展趋势:低功耗、低成本、高精度、高可靠性、智能化等方向发展
物联网感知层的主要任务
感知物体:通过传感器、 RFID等技术手段,感知物 体并获取相关信息。
数据采集:将感知到的数据 采集并传输到网络中,为后 续处理和分析提供数据支持。
数据传输:将采集到的数据通过 无线网络、有线网络等传输到数 据中心或云端进行存储和处理。
数据处理:对采集到的数据 进行清洗、整合、分析和挖 掘,提取有价值的信息。
未来发展趋势
感知层技术不断升级,实现更精准、 更快速的数据采集和处理
感知层技术将不断拓展应用领域, 从工业、家居等领域向更多领域延 伸
添加标题网络层、应用层融合,形 成更高效、更智能的物联网系统
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

MEMS压力传感器结构
传感器中集成的测量电桥
传感器外形
2.2.2 微机电加速度传感器 微机电加速度传感器主要通过半导体工艺在硅片中加工出可以在加速运 动中发生形变的结构,并且能够引起电特性的改变,如变化的电阻和电容。
应变电阻式MEMS加速度传感器的平面与刨面结构图
电容式MEMS 加速度传感器 的结构图
2.2.3 微机电气体流速传感器 以下图片中的气体流速传感器可以用于空调等设备的监测与控制。
气体流速传感器显微照片
气体流速传感器结构图
无气流时的温度分布
有气流时的温度分布
2.3 智能传感器 智能传感器(smart sensor)是一种具有一定信息处理能力的传感器,目 前多采用把传统的传感器与微处理器结合的方式来制造。 如下图所示,在传统的传感器构成的应用系统中,传感器所采集的信号通 常要传输到系统中的主机中进行分析处理;而由智能传感器构成的应用系统 中,其包含的微处理器能够对采集的信号进行分析处理,然后把处理结果发 送给系统中的主机。
霍尔效应 霍尔传感器
霍尔传感器结合不同的结构,能够间接测量电流,振动,位移,速度,加 速度,转速等等,具有广泛的应用价值。
霍尔转速传感器
霍尔液位传感器
基于霍尔器件的精密电流传感器
霍尔流速传感器
2.2 微机电(MEMS)传感器 微机电系统的英文名称是Micro-Electro-Mechanical Systems,简称 MEMS,是一种由微电子、微机械部件构成的微型器件,多采用半导体工 艺加工。目前已经出现的微机电器件包括压力传感器、加速度计、微陀螺 仪、墨水喷咀和硬盘驱动头等等。微机电系统的出现体现了当前的器件微 型化发展趋势。 2.2.1 微机电压力传感器 某轮胎压力传感器的内部结构以及外观如下图所示。该压力传感器利用 了传感器中的硅应变电阻在压力作用下发生形变而改变了电阻来测量压力; 测试时使用了传感器内部集成的测量电桥。
2.1.1 温度传感器 常见的温度传感器包括热敏电阻,半导体温度传感器,以及温差电偶。 热敏电阻主要是利用各种材料电阻率的温度敏感性,根据材料的不同, 热敏电阻可以用于设备的过热保护,以及温控报警等等。 半导体温度传感器利用半导体器件的温度敏感性来测量温度,具有成本 低廉,线性度好等优点。 温差电偶则是利用温差电现象,把被测端的温度转化为电压和电流的变 化;由不同金属材料构成的温差电偶,能够在比较大的范围内测量温度, 例如-200℃ ~ 2000℃。
2.3.1 智能压力传感器 下图显示的是Honeywell公司开发的PPT系列智能压力传感器的外形以及 内部结构。
PPT系列智能压力传感器
传感器内部结构
下面是一种车用智能压力传感器的芯片布局图。该芯片中把微机电压力传感 器,模拟接口、8位模-数转换器、微处理器(摩托罗拉69HC08)、存储器、 以及串行接口 (SPI)等集成在一个芯片上,主要用于汽车的各种压力传感。
其中
R( t ) = R0 ( 1 + At + Bt 2 )
R0 = 100Ω , A = 3.9083 × 10−3 o C , B = −5.775 × 10−7 o C
2.1.2 压力传感器 常见的压力传感器在受到外部压力时会产生一定的内部结构的变形或 位移,进而转化为电特性的改变,产生相应的电信号。
主机 传感器数据 分析结果 传感器 MCU 智能传感器 传感器数据 分析结果 传感器数据 分析结果 传感器 MCU 传感器 MCU
智能传感器
智能传感器
智能传感器能够显著减小传感器与主机之间的通信量,并简化了主机 软件的复杂程度,使得包含多种不同类别的传感器应用系统易于实现;此 外,智能传感器常常还能进行自检、诊断和校正。
光敏电阻结构图与实物
光敏三极管
集成光传感器
2.1.5 霍尔(磁性)传感器 霍尔传感器是利用霍尔效应制成的一种磁性传感器。霍尔效应是指:把一 个金属或者半导体材料薄片置于磁场中,当有电流流过时,由于形成电流的 电子在磁场中运动而收到磁场的作用力,会使得材料中产生与电流方向垂直 的电压差。可以通过测量霍尔传感器所产生的电压的大小来计算磁场的强度。
一种电阻式陶瓷湿敏传感器结构图
一种电容式湿敏传感器结构图
几种湿度传感器
2.1.4 光传感器 光传感器可以分为光敏电阻以及光电传感器两个大类。 光敏电阻主要利用各种材料的电阻率的光敏感性来进行光探测。 光电传感器主要包括光敏二极管和光敏三极管,这两种器件都是利用半导体 器件对光照的敏感性。光敏二极管的反向饱和电流在光照的作用下会显著变大, 而光敏三极管在光照时其集电极、发射极导通,类似于受光照控制的开关。此 外,为方便使用,市场上出现了把光敏二极管和光敏三极管与后续信号处理电 路制作成一个芯片的集成光传感器。 光传感器的不同种类可以覆盖可见光,红外线(热辐射),以及紫外线等波 长范围的传感应用。
一维条形码
条形码扫描器
2. 二维条形码 通常一维条形码所能表示的字符集不过10个数字、26个英文字母及一些特 殊字符,条码字符集最大所能表示的字符个数为128个ASCII字符,信息量非常 有限,因此二维条形码诞生了。 二维条形码是在二维空间水平和竖直方向存储信息的条形码。它的优点是 信息容量大,译码可靠性高,纠错能力强,制作成本低,保密与防伪性能好。 以常用的二维条形码PDF417码为例,可以表示字母、数字、ASCII字符与二进 制数;该编码可以表示1850个字符/数字,1108个字节的二进制数,2710个压 缩的数字;PDF417码还具有纠错能力,即使条形码的某个部分遭到一定程度 的损坏,也可以通过存在于其他位置的纠错码将损失的信息还原出来。
各种形状
RFID与其他方式的比较
信息 载体 信息量 读/写性 读取 方式 保密性 智能化 抗干扰 能力 寿命 成本
条 码/二 维码
纸、塑料薄 膜、金属表 面

只读
CCD或 激光束 扫描



较短
最低
磁卡 IC卡
磁条 EEPROM
中 大
读/写 读写
扫描 接触 无线通 信
中等 好
无 有
中 好
长 长
低 高
CPU
2.3.2 智能温湿度传感器 下面显示的是 Sensirion公司推出的SHT11/15温湿度智能传感器的外形, 引脚,以及内部框图。
2.3.3 智能液体浑浊度传感器 下面显示的是Honeywell公司推出的AMPS-10G型智能液体浑浊度传感器 的外形,测量原理,以及内部框图。
数据采集方式的发展过程
2009年12月10日,我国铁道部对火车票进行了升级改版。新版火车票明显的 变化是车票下方的一维条码编程二维防伪条码,火车票的防伪能力增强。进 站口检票时,检票人员通过二维条码识读设备对车票上的二维条形码进行识 读,系统自动辨别车票的真伪并将相应信息存入系统中。下面给出了我国使 用的一维条形码与二维条形码火车票的比较。
热敏 电阻
半导体温度 传感器
温差电偶
下面介绍铂电阻温度传感器的原理与特性 铂电阻温度传感器是一种用途广泛的高精度温度传感器具有温度敏感性,其 外观以及典型电阻-温度特性如下图所示
如上图中的电阻-温度特性曲线所示,铂电阻在很宽的温度范围内,其电阻 与温度具有良好的线性特性,非常适合作为温度传感器来使用。对于PT100 系列铂电阻温度传感器,在0~850℃范围内,电阻阻值与温度的关系为
一种车用电容式压力传感器
Honeywell 24PC 压力传感器及其内部结构
2.1.3 湿度传感器 湿度传感器主要包括电阻式和电容式两个类别。 电阻式湿度传感器也成为湿敏电阻,利用氯化锂,碳,陶瓷等材料的 电阻率的湿度敏感性来探测湿度。 电容式湿度传感器也称为湿敏电容,利用材料的介电系数的湿度敏感 性来探测湿度。
天线
RFID芯片
RFID系统组成
电子标签的结构 电子标签外观
2.6.2 RFID系统原理 每个RFID芯片中都有一个全球唯一的编码;在为物品贴上RFID标签后, 需要在系统服务器中建立该物品的相关描述信息,与RFID编码相对应。 当用户使用RFID阅读器对物品上的标签进行操作时,阅读器天线向标签 发出电磁信号,与标签进行通信对话,标签中的RFID编码被传输回阅读器, 阅读器再与系统服务器进行对话,根据编码查询该物品的描述信息。 RFID标签分为有源和无源标签,有源标签采用电池供电,工作时与阅读 器的距离可以达到10m以上,但成本较高,应用教少;目前实际应用中多采 用无源标签,依靠从阅读器发射的电磁场中提取能量来供电,工作时与阅读 器的距离大约在1m左右。
物联网概论 第二讲 物联网感知层技术
传感器是各种信息处理系统获取信息的一个重要途径。在物联网中传感器 的作用尤为突出,是物联网中获得信息的主要设备。 作为物联网中的信息采集设备,传感器利用各种机制把被观测量转换为一 定形式的电信号,然后由相应的信号处理装置来处理,并产生响应的动作。 2.1 常见传感器简介 常见的传感器包括温度,压力,湿度,光电,霍尔磁性传感器,等等。
RFID标准分类:
技术标准、数据标准、性能标准、应用标准
• • • • ISO18000系列含括了有源和无源RFID技术标准,主要是基于物品管理的 RFID空中接口参数。 ISO 17363 至17364 是一系列物流容器识别的规范,它们还未被认定为标准。 ISO 14443和ISO 15693标准在1995年开始操作,其完成则是在2000年之后, 二者皆以13.56MHz交变信号为载波频率。ISO 15693读写距离较远,而ISO 14443读写距离稍近,但应用较广泛。目前的第二代电子身份证采用的标准 是ISO 14443 TYPE B协议。ISO 14443定义了TYPE A、TYPE B两种类型协 议,通信速率为106kbit/s。 ISO 14443-3规定了TYPE A和TYPE B的防冲撞机制。 ISO 15693采用轮寻机制、分时查询的方式完成防冲撞机制。 ISO技术委员会及联合工作组TC104/SC4主要处理有关ISO/IEC贸易应用方面, 如货运集装箱及包装,制定了 RFID电子封条 (ISO 18185)、集装箱标签(ISO 10374)和供应链标签 (ISO 17363)等标准。
相关文档
最新文档