秀丽线虫综述 (1)

合集下载

秀丽线虫综述 (1)

秀丽线虫综述 (1)

4
喂养方法
➢ 用冰M9缓冲液清洗虫体 ➢ 置4℃环境20min ➢ 1000r离心,弃上清,沉淀物用M9缓冲液重悬 ➢ 置4℃环境20min 弃上清 ➢ 取200ul沉淀物以靠接法接种到涂有大肠杆菌OP50的 NGM培养基上 ➢将培养基放置到16℃生化培养箱中,72h后可繁育至第二 代
精选课件
5
• 冻存 准备1mlEP管,加入700ul30%甘油(s缓冲
秀丽隐杆线虫的饲养及研究用途
精选课件
By 王传杰
1
介绍
• 秀丽隐杆线虫(Caenorhabditis elegans),属于线形动物 门、线虫纲。体形非常小,成虫只有1mm左右。 线 虫 是 细 胞 定 数 动 物 , 两性 成虫 只有 9 5 9 个 体 细 胞 , 雄 性 成 虫 只 有 1 0 3 1 个 体细 胞 , 其 中 1 3 1个 细 胞 注 定 要 接 一 定 的发 育 程 序 陆续 死 亡 。 神 经 系 统解 剖结 构 十 分 简 单 , 仅有 3 0 2个细 胞 , 约 占整 个 动 物 体 细 胞 总 数 的 三 分 之 一 。它身体透明,能感 知气味和味道,对光线、温度有反应。研究者很容易在显 微镜下对其细胞和组织进行跟踪观察
显微注射后的整合
•目前常用的整合方法有:用 y射线和 X射线照射,或用光敏剂补骨脂素 加长波紫外线照射整合(TMP/UV integration). 基本策略是大量筛选经 •射线照射过的转基因线虫,一般挑取数百只 F1 代繁殖,筛选 F4 代, 检测是否有 100%的转基因表达,若是则说明整合成功. 一般一次整合 能得到若干个独立种系,可选择最好的一个进行实验.

容易脱水 而死
后的性腺被液体充 满.
精选课件

秀丽隐杆线虫

秀丽隐杆线虫
第一章
动物的主要类群ຫໍສະໝຸດ 第二节 线形动物和环节动物
想一想 议一议
你知道蛔虫病吗? 蛔虫寄生在人体的什么器官内? 为什么儿童容易得蛔虫病?
通过本节学习,你将知道:
1、线形动物和环节动物的主要特征是什么? 2、它们与人类的生活有什么关系?
一、线形动物
线形动物因体形细长如线得名。有些寄生,如蛔虫; 有些自由生活,如秀丽隐杆线虫
二 、 环 节 动 物
沙蚕
水蛭
蚯蚓
(一)蚯蚓
你在什么样的环境中可以找到蚯蚓?
1、生活习性
蚯蚓适于生活在富含腐殖质的湿润的土壤 中,白天它在土壤中穴居,以泥土中枯枝残 叶等有机物为食,夜间爬出地面,取食地面 上的落叶。
2、外部形态及生理特征
探究实验:观察蚯蚓
①体形
蚯蚓的身体呈长圆柱形,由许多环形的体 节构成,使运动更加灵活。靠近身体前端 的几节体 节,有几节较粗大,颜色较浅且光滑,称为环带, 环带与蚯蚓的有性生殖有关。蚯蚓身体前端有口, 后端有肛门,除靠近最前端和最后端的环带和几节 体节外,其他体节腹面都生有刚毛。
蛔虫
秀丽隐杆线虫
(一)蛔虫
1、生活环境 寄生在人体小肠里,靠吸食小肠中半消 化的食糜生活。 食糜指食物被磨碎后像粥一样的物质
2、外部形态 蛔虫雌雄异体, 身体细长呈圆柱形, 两端逐渐变细。雌虫 体长20~35厘米, 雄虫比雌虫略短。前 端有口,后端有肛门; 身体表面有半透明、 密不透水的角质层, 保护它不被人体消化 道中的消化液消化分 解。
水蛭 蛭类具有吸血习性,曾在19世纪被 用于医疗,作为人体组织淤血的放血 手段,现今还在断肢再接手术中应用。 目前,水蛭及水蛭素被作为治疗心血 管病的良药。
(三)环节动物的主要特征(识记)

神奇的模式生物—秀丽隐杆线虫

神奇的模式生物—秀丽隐杆线虫

神奇的模式生物—秀丽隐杆线虫摘要:本文对秀丽隐杆线虫的模式生物一般特征入手,介绍了线虫形态学、生物学特征和繁殖、基因组和遗传学等方面的内容。

关键词:秀丽隐杆线虫模式生物基因组最近,秀丽隐杆线虫用于生物实验材料倍受科学家们的关注。

进入21世纪以来,已经有六位科学家利用秀丽隐杆线虫为实验材料揭开了生命科学领域的重大秘密而获得了诺贝尔奖。

1974年英国科学家悉尼·布雷内(Sydney Brenner)第一次把秀丽隐杆线虫作为模式生物,成功地分离出线虫的各种突变体,发现了在器官发育过程中的基因规则而获得了2002年诺贝尔生理学或医学奖。

与悉尼·布雷内共同分享诺贝尔奖的有两名科学家,其中一位科学家是英国约翰·苏尔斯顿(John E. Sulston),通过显微镜活体观察线虫的胚胎发育和细胞迁移途径,于1983年完成线虫从受精卵到成体的细胞谱系。

另一位科学家是美国的罗伯特·霍维茨(H. Robert Horvitz),是利用秀丽隐杆线虫作为研究对象进行了“细胞程序性死亡”研究。

克雷格·梅洛(Craig C. Mello)和安德鲁·菲尔和(Andrew Z. Fire)利用秀丽隐杆线虫实验发现一种全新的基因调控方式—RNA干扰(RNAi)而获得2006年诺贝尔生理学或医学奖。

此外,Martin Chalfie证明了GFP(绿色荧光蛋白)作为多种生物学现象的发光遗传标记的价值。

在最初的一项实验中,他用GFP使秀丽隐杆线虫的6个单独细胞有了颜色,由此获得了2008年化学奖。

究竟什么原因使秀丽隐杆线虫成为如此富有盛名的实验材料?1.秀丽隐杆线虫一般特征秀丽隐杆线虫是一种食细菌的线形动物,学名是Caenorhabditis elegans,通常缩写成C.elegans其成体长仅1mm,全身透明,以细菌为食,居住在土壤中,被称为“自由生活线虫”。

1.1分类地位秀丽隐杆线虫属于线虫门(Phylum nematoda)、侧尾腺纲(Secernentea)、小杆线虫目(Rhabditida)小杆线虫科(Rhabditidae)小杆线虫属(Caenorhabditis)。

秀丽线虫

秀丽线虫
实验操作方便简单且实验规模易大到96孔三应用研究领域自brenner开始四十多年来以秀丽线虫为模式生物的研究几乎涉及到生命科学的各个领域并取得了重大突破如mapk信号转导细胞程序性死亡tgf信号传递途径rna干扰rnainterferencernai和微rnamicrornamrna衰老及脂肪代谢等
性别不同具有不同的细胞数。雌雄同体成虫含有959个体细 胞,约2000个生殖细胞,而雄性成虫则具有1031个体细胞 和1000个生殖细胞。
5.秀丽线虫有两种性别:雌雄同体和雄性。 雌雄同体可进行自我繁殖,也可与雄性交配繁殖;与雄
性交配的后代,50%是雌雄同体,50%为雄性。自我繁殖的 大多是雌雄同体,雄性个体以很低的频率自发产生。一条未 经交配的雌雄同体在生殖期可产生约300个后代。若与雄性 个体交配则产生多达1000个。
John E. Sulston
H. Robert Horvitz
2002年,Brenner和Horvitz、Sulston对器官 发育的遗传基础及程序性细胞死亡基因调控机 制的揭示,荣获了诺贝尔生理医学奖
Sydney Brenner
Andrew Z. Fire
Craigc. Mell
2006年,安德鲁· 法尔和克雷格· 梅洛获得诺贝尔生理医学奖, 以表彰他们发现了RNA干扰现象。
参考文献:
[1] Breener.S, The genetics of Caenorhabditis elegans [J].Genetics ,1974,77(1):7194 [2] /view/705699.htm [3] Stephen.J, Kenney.A, Garyl, et al. Persistence of EscherichiacoliO157: H7, Salmonella Newport and Salmonella Poona in thegut of a free-living nematode, Caenorhabditis elegans, and trans-mission to progeny and uninfected nematodes [ J]. International Journal of Food Microbiology,2005, 101: 227-236. [4] 庞林海,杜爱芳,李孝军等.秀丽隐杆线虫培养特性与保存方法研究[J].浙江农业学 报,2007,19(1):34-36 [5] Sulston JE. Neuronal cell lineages in the nematode, Caenorhabditis elegans [J]. Cold Spring Harb Symp Quant Biol,1983,48(2):443-452 [6] Simonetta SH, Golombek DA. An automated tracking system for Caenorhabditis elegans locomotor behavior and circadian studies application[J]. J Neurosci Methods, 2007, 161:273— 280. [7] Benedetti MG Foster AL,Vantipalli MC,et a1.Compounds that confer thermal stress resistance and extended lifespan[J]. Exp Gerontol, 2008, 43:882—89 1. [8] Verwaerde P'Cuvillier G Improved assay techniques using nematode worms: USA,US7083947[PI.2006-08—01.

植物秀丽隐杆线虫的生命史和生物学特性研究

植物秀丽隐杆线虫的生命史和生物学特性研究

植物秀丽隐杆线虫的生命史和生物学特性研究植物秀丽隐杆线虫是一种微小的线虫,通常生活在植物根际以及土壤中。

这种线虫体形柔软,虚弱,但却有着十分耐久的生命力。

在自然界中,植物秀丽隐杆线虫是一种常见的有害生物,它会在农作物的生长过程中带来许多危害,导致产量降低和质量下降。

但是,对于科学家和生物学家们来说,植物秀丽隐杆线虫却是一个十分有趣的研究对象。

植物秀丽隐杆线虫的生命周期包括卵、孵化、四个幼虫期和成虫期。

它们通常在土壤中以卵的形式存活。

一旦卵孵化,秀丽隐杆线虫就开始进入其四个幼虫期。

在每个幼虫期,它们会通过脱皮来适应其环境,同时也会增长其身体大小。

在第四个幼虫期结束后,秀丽隐杆线虫就成长为成虫。

成虫期通常只持续几天。

在这段时间里,秀丽隐杆线虫会寻找适合繁殖的环境并进行交配。

交配过后,雌性线虫会产生大量的卵,以保证下一代线虫的繁殖。

植物秀丽隐杆线虫的生物学特性十分独特。

一方面,它们是一种无性繁殖的生物。

在一些极端环境下,秀丽隐杆线虫可以通过无性生殖形式来繁殖后代。

这种能力使得它们具有更强的环境适应性和生命力。

另一方面,植物秀丽隐杆线虫也是一种寄生性生物。

它们依靠吸食植物的汁液来维持生命。

在植物上寄生的时候,植物秀丽隐杆线虫会带来许多的害处。

它们可以带来大量的病原体,使得植物易感染疾病。

另外,它们还会阻碍植物的营养吸收,导致植物的生长和发育受到限制。

为了对植物秀丽隐杆线虫有更深刻的理解,许多科学家和生物学家们对其进行了大量的研究工作。

他们发现,植物秀丽隐杆线虫和其他许多线虫一样,具有一些非常重要的遗传特征和发育特性。

这些特征不仅是对于研究其生命史和行为学特征有帮助,而且也对于构建运用于其他生物的众多遗传学和生物学模型具有指导意义。

尽管植物秀丽隐杆线虫是有害生物,但它们作为一个重要的研究对象,对于生命科学的进一步发展具有重大的意义。

通过对植物秀丽隐杆线虫的生物学特性和遗传学特征进行研究,不仅有助于我们更好地了解其在自然界中的地位和作用,还有助于我们在理解其他生物的生命史和行为学特征上得到更多的启发和指导。

秀丽隐杆线虫研究综述

秀丽隐杆线虫研究综述

秀丽隐杆线虫研究综述一、本文概述秀丽隐杆线虫(Caenorhabditis elegans,简称C. elegans)是一种微小的、透明的、生活在土壤中的线虫,自20世纪60年代以来,它已成为生物学研究的重要模型生物之一。

由于其生命周期短、繁殖迅速、基因组小且相对简单等特点,秀丽隐杆线虫被广泛用于研究细胞生物学、发育生物学、神经生物学、遗传学、基因组学等多个领域。

本文旨在对秀丽隐杆线虫的研究进行全面的综述,从基础生物学特性、基因组学进展、到其在各个领域的应用研究,以期为读者提供一个清晰、全面的秀丽隐杆线虫研究图景。

二、秀丽隐杆线虫的基本生物学特性秀丽隐杆线虫(Caenorhabditis elegans,简称C. elegans)是一种具有独特生物学特性的小型线虫,其身体长度仅约1毫米,属于线虫动物门、无尾感器纲、小杆目、小杆科。

自1974年被悉尼·布伦纳(Sydney Brenner)选为遗传学研究的模式生物以来,秀丽隐杆线虫已成为生物学和医学领域广泛研究的对象。

生命周期与繁殖:秀丽隐杆线虫的生命周期大约为3天,在适宜的环境下,它们能以极快的速度繁殖。

它们通常以细菌为食,尤其是大肠杆菌(Escherichia coli),并通过摄取这些细菌来获取所需的营养。

成年线虫通过自交或雌雄同体交配繁殖,产生的后代数量巨大,每个成虫一生可以产生多达300个子代。

基因组与遗传学:秀丽隐杆线虫的基因组相对较小,约含有1亿个碱基对,使其成为研究基因功能和基因相互作用的理想模型。

由于其生命周期短、繁殖迅速,科学家能够迅速地进行遗传筛选和基因编辑,以研究特定基因的功能。

神经系统与行为:秀丽隐杆线虫拥有相对简单的神经系统,仅由302个神经元组成。

尽管如此,这些神经元足以控制线虫的各种复杂行为,如觅食、逃避、交配等。

这使得秀丽隐杆线虫成为研究神经生物学和行为学机制的重要工具。

衰老与疾病模型:秀丽隐杆线虫因其短寿命和快速的生理变化而成为研究衰老机制的理想模型。

秀丽线虫综述(1)

秀丽线虫综述(1)

需要确定荧光蛋白的连接不影响目的蛋白的功能; b. 目的基因与荧光标记基因共注射;c. 目的基因 与具有明显表型的标记基因共注射,我们通常使用易观察的 pmyo-3::TDimer II作为
荧光标记,它在所有体壁肌肉细胞表达,转基因效率高且本身对线虫的行为 和功能 没有 影响。
显微注射后的整合
•目前常用的整合方法有:用 y射线和 X射线照射,或用光敏剂补骨脂素 加长波紫外线照射整合(TMP/UV integration). 基本策略是大量筛选经 •射线照射过的转基因线虫,一般挑取数百只 F1 代繁殖,筛选 F4 代, 检测是否有 100%的转基因表达,若是则说明整合成功. 一般一次整合
CED-3:凋亡蛋白,与 ICE(caspase家族)同 源
低氧能够引起秀丽线虫发生相应的生理和行为学变 化,并可保护机体免受缺氧损伤。秀丽 线虫的低氧诱导因子(HIF-1)的恒定性调控通路和人 类的相应通路之间具有高度保守性,因此秀丽线虫 也已成为研究低氧应答调控通路进化保守性的重要 工具之一。阐明秀丽线虫的低氧应答机制将为了解 人类低氧相关疾病的发病机制提供有价值的线索。
注射时将 线虫挑至 琼脂糖固 定垫上, 调整线虫 使性腺暴 露,滴加 注射油覆 盖整个虫 体. 固定 好后的操 作要迅速, 否则线虫 容易脱水 而死
将琼脂糖固定垫放 在载物台上,40x物 镜下找到线虫,使 性腺聚焦在正确的 平面. 操作微操或 轻移滑动载物台, 将注射针尖刺入性 腺. 启动微量加压 器进行注射,能观 察到注射液在性腺 中快速流动,注射 后的性腺被液体充 满.
• 冻存 准备1mlEP管,加入700ul30%甘油(s缓冲 液溶解)
用冰M9缓冲液清洗虫体
置4℃环境20min,1000r离心弃去上清

秀丽隐杆线虫作为病原菌宿主模型的研究概述

秀丽隐杆线虫作为病原菌宿主模型的研究概述

制。目前,以 犆.犲犾犲犵犪狀狊 为 模 式 宿 主 进 行 研 究 的 病 原菌有真菌、细菌、病 毒 等,有 50 多 种(表 1)。 其 中
模式生物用于 研 究 动 物 发 育 和 行 为 的 模 式 动 物,现 研究较深入的 主 要 是 一 些 人 类 病 原 菌,如 铜 绿 假 单
已经发展成为研究动物发育、神经、衰 老、毒 理学、脂 肪沉积和天然免疫等方面 重 要 的 模 式 生 物 。 [1] 近 些 年来,以 犆.犲犾犲犵犪狀狊 作 为 病 原 菌 宿 主 模 型 来 研 究 病 原菌与宿主的相互作用逐渐成为了一个新的热点, 犆.犲犾犲犵犪狀狊作为 病 原 菌 宿 主 模 型 有 很 多 优 势,个 体 小 ,成 虫 的 长 度 大 约 1.5 mm;生 长 快 ,3d~3.5d 就
可以长成 成 虫;繁 殖 快,成 熟 的 线 虫 每 次 可 以 获 得 300个~350个 子 代 个 体;培 养 简 单,可 以 直 接 以 要 研究的细菌为食物[1];基因组 测 序 已 经 完 成;基 因 操 作系统完善,突变 体 数 量 齐 备,转 基 因 线 虫 和 RNAi 技 术 成 熟;表 型 易 观 察 等 特 征 。 [2] 目 前,犆.犲犾犲犵犪狀狊 作为病原菌宿 主 模 型,在 病 原 菌 的 致 病 机 制 和 宿 主 防御病原菌天然免疫等方面取得了一系列的进展。 本文就近些年 来 利 用 线 虫 作 为 宿 主 模 型,在 重 要 病 原菌的致病机制和线虫天然免疫信号通路取得的进 展进行综述。
鞠 守 勇 等 :秀 丽 隐 杆 线 虫 作 为 病 原 菌 宿 主 模 型 的 研 究 概 述
铜绿假 单 胞 菌 (犘狊犲狌犱狅犿狅狀犪狊犪犲狉狌犵犻狀狅狊犪,PA) 在自然界分布 广 泛,是 医 院 内 感 染 的 主 要 病 原 菌 之
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基因组学和功能蛋白组学的研究
其他(MAPK 信号传导 、 TGF- b 信号传递途径 、衰老和年龄及脂
肪代谢等)
方法 —— 线虫基因显微注射
显微注射技术是线虫研究领域的常用技术,对 线虫进行转基因操作的一种高效且相对简单的 方法,主 要用于研究线虫突变种系的功能恢复 (mutant rescue)、特定基因的过表达或异位表 达、标 签 蛋白的 表达、特 定 蛋白 质 结构域 的功 能、DNA 或 RNA 调节元件的分析及 RNA 干扰等. 此外,这项转基因技术对于特 异表型的筛选也是个强有 力 的 工具 , 并 且 它还 可 用于 将人 工 合 成 mRNAs 或其他分 子接引入细胞
秀丽隐杆线虫的饲养及研究用途
By 王传杰
介绍
• 秀丽隐杆线虫(Caenorhabditis elegans),属于线形动物 门、线虫纲。体形非常小,成虫只有1mm左右。 线 虫 是 细 胞 定 数 动 物 , 两性 成虫 只有 9 5 9 个 体 细 胞 , 雄 性 成 虫 只 有 1 0 3 1 个 体细 胞 , 其 中 1 3 1个 细 胞 注 定 要 接 一 定 的发 育 程 序 陆续 死 亡 。 神 经 系 统解 剖结 构 十 分 简 单 , 仅有 3 0 2个细 胞 , 约 占整 个 动 物 体 细 胞 总 数 的 三 分 之 一 。它身体透明,能感 知气味和味道,对光线、温度有反应。研究者很容易在显 微镜下对其细胞和组织进行跟踪观察
• 冻存 准备1mlEP管,加入700ul30%甘油(s缓冲 液溶解)
用冰M9缓冲液清洗虫体
置4℃环境20min,1000r离心弃去上清
将虫体转入事先准备好的EP管中,置于-80℃ 冰箱冻存(可保存2个月),需要时取出室 温解冻重置培养基
研究范围
细胞程序性死亡的遗传调控机制 RNAi 及其作用机制 秀丽线虫的功能基因组学及其他研究 低氧应答模式生物
注射时将 线虫挑至 琼脂糖固 定垫上, 调整线虫 使性腺暴 露,滴加 注射油覆 盖整个虫 体. 固定 好后的操 作要迅速, 否则线虫 容易脱水 而死
将琼脂糖固定垫放 在载物台上,40x物 镜下找到线虫,使 性腺聚焦在正确的 平面. 操作微操或 轻移滑动载物台, 将注射针尖刺入性 腺. 启动微量加压 器进行注射,能观 察到注射液在性腺 中快速流动,注射 后的性腺被液体充 满.
CED-3:凋亡蛋白,与 ICE(caspase家族)同 源
低氧能够引起秀丽线虫发生相应的生理和行为学变 化,并可保护机体免受缺氧损伤。秀丽 线虫的低氧诱导因子(HIF-1)的恒定性调控通路和人 类的相应通路之间具有高度保守性,因此秀丽线虫 也已成为研究低氧应答调控通路进化保守性的重要 工具之一。阐明秀丽线虫的低氧应答机制将为了解 人类低氧相关疾病的发病机制提供有价值的线索。
需要确定荧光蛋白的连接不影响目的蛋白的功能; b. 目的基因与荧光标记基因共注射;c. 目的基因 与具有明显表型的标记基因共注射,我们通常使用易观察的 pmyo-3::TDimer II作为
荧光标记,它在所有体壁肌肉细胞表达,转基因效率高且本身对线虫的行为 和功能 没有 影响。
显微注射后的整合
•目前常用的整合方法有:用 y射线和 X射线照射,或用光敏剂补骨脂素 加长波紫外线照射整合(TMP/UV integration). 基本策略是大量筛选经 •射线照射过的转基因线虫,一般挑取数百只 F1 代繁殖,筛选 F4 代, 检测是否有 100%的转基因表达,若是则说明整合成功. 一般一次整合
设备
• 显微注射全套仪器 • 琼脂糖固定垫 • 添 加 了 4% 葡萄糖 (glucose) 的 M9 缓 冲 液
注射步骤
制剂及破针
固定虫
注射
恢复
将纯化的 DNA 溶解在 TrisEDTA(TE)缓冲液中即可接用 于注射。在注射液中加入终浓 度约 10 mg/L 的线虫基因组 DNA,则会有效地提高转基因 效率。 将一小玻片放在加了注射油的 固定垫上,操纵微操使注射针 与玻片边缘相撞,若针头尖端 撞破,可观察到有液泡自动渗 出
M9缓冲液——每升缓冲液中含15.12gNa2HPO4#12H2O(或 6gNa2HPO4),3gKH2PO4,5gNaCl,0.25gMgSO4#7H2O,宜现 用现配 S缓冲液——0.1mol/LNaCl,0.05mmol/L K2HPO4-KH2PO4缓 冲液(pH=6.0)
喂养方法 用冰M9缓冲液清洗虫体 置4℃环境20min 1000r离心,弃上清,沉淀物用M9缓冲液重悬 置4℃环境20min 弃上清 取200ul沉淀物以靠接法接种到涂有大肠杆菌OP50的 NGM培养基上 将培养基放置到16℃生化培养箱中,72h后可繁育至第二 代
功能基因组学和功能蛋白组学 的研究
秀丽线虫的蛋白质相互作用网 络也已初步建立,结合 RNAi 等反向遗传学手段 可以有效地 开展相关研究
基于秀丽线虫与人在多种生命活动调控机制 上的相似性 可以用秀丽线虫为动物模型进 行药物筛选
药物筛选
本次汇报结束,谢谢
首个时序调控的miRNA 基因 lin-4发现于线虫,转 录后形成两种长度的RNA,较小的一个与基因lin14的mRNA互补配对阻碍其翻译,随后又发现了类 似作用的let-7.
衰老和寿命控制机制
DAF-16 蛋白可以转运到细胞核中激活 靶基因转录时 线虫的寿命就可延长 反 之则缩短
RNAI机制研究 根据线虫细胞内相关蛋白 保守性,在全基因组范围 内筛选功能蛋白,并对比 于人相关调节机制研究
饲养与冻存
设备试剂: 大肠杆菌OP50 —— 大肠杆菌OP50是尿嘧啶渗漏突变型,作为 秀丽隐杆线虫的食物。 NGM培养基——1000ml的NGM培养基内加有:3gNaCl,2.5g蛋 白胨,17g琼脂,1mol/LK2HPO4-KH2PO4缓冲液 (pH=6.0)25ml,975ml蒸馏水,灭菌后加入分别抽滤除菌的1ml胆固 醇溶液(5mg/ml乙醇),1mol/LMgSO41ml,1mol/L的 CaCl 21ml
在体视显微镜下, 滴加恢复缓冲液至 注射后的线虫正上 方,由于与油互不 相溶,缓冲液会渗 入油下使线虫浮起 . 一般等待 2~ 5 min,线虫活力恢 复,身体开始游动 ,即可挑至培养板 上,20℃ 常规培养 .
子代目的基因表达检测
注射后约 3 天,观察孵出的 F1 代是否有目的 DNA 表达. 目前,线虫外源基因表达的标记通常 用:a. 荧光蛋白与目的蛋白形成融合蛋白,但
能得到若干个独立种系,Байду номын сангаас选择最好的一个进行实验.
现阶段研究已发现了十几个控制细胞 凋亡的基因,这些凋亡基因之间通过 遗传相互作用组成一条线性的调控途 径控制细胞程序性死亡,包括凋亡的 激活阶段、凋亡的起始 、凋亡细胞的 清除及凋亡细胞内部的 DNA 降解
EGL-1:促凋亡蛋白,属 BCl—2蛋白家族,与哺乳动 物BAD、BIK/NBK及HRK同 源 CED-9:抗凋亡蛋白,与 人体bcl-2同源 CED-4:促凋亡蛋白,同 源体为Apaf-1
低氧环境
秀丽线虫的非HIF一1介导的低氧应答通路
胰岛素/胰岛素样受体DAF-2通路
热休克蛋白及其它
秀丽线虫中低氧诱导因子HIF—1介 导的低氧应答
秀丽线虫的氧感知神经回路
通过研究miRNA在线虫细胞内对于靶 基因翻译表达的阻碍作用,为疾病治疗 提供新手段,特别是探究其对RNA病毒 侵染的抑制作用
相关文档
最新文档