(完整版)2019年高考数学理科试卷全国一卷Word版和PDF版。

合集下载

【全国Ⅰ卷】(精校版)2019年高等学校招生全国统一考试理数试题(含答案)

【全国Ⅰ卷】(精校版)2019年高等学校招生全国统一考试理数试题(含答案)

绝密★启用前2019年普通高等学校招生全国统一考试理科数学注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合}242{60{}M x x N x x x =-<<=--<,,则M N =A .}{43x x -<<B .}42{x x -<<-C .}{22x x -<<D .}{23x x <<2.设复数z 满足=1i z -,z 在复平面内对应的点为(x ,y ),则 A .22+11()x y +=B .221(1)x y +=-C .22(1)1y x +-=D .22(+1)1y x +=3.已知0.20.32log 0.220.2a b c ===,,,则 A .a b c <<B .a c b <<C .c a b <<D .b c a <<4.古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是512-(512-≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是512-.若某人满足上述两个黄金分割比例,且腿长为105 cm ,头顶至脖子下端的长度为26 cm ,则其身高可能是A .165 cmB .175 cmC .185 cmD .190 cm5.函数f (x )=2sin cos ++x xx x在[,]-ππ的图像大致为 A .B .C .D .6.我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“——”和阴爻“— —”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是A.516B.1132C.2132D.11167.已知非零向量a,b满足||2||=a b,且()-a b⊥b,则a与b的夹角为A.π6B.π3C.2π3D.5π68.如图是求112122++的程序框图,图中空白框中应填入A.A=12A+B.A=12A+C.A=112A+D.A=112A+9.记nS为等差数列{}n a的前n项和.已知4505S a==,,则A.25na n=-B.310na n=-C.228nS n n=-D.2122nS n n=-10.已知椭圆C的焦点为121,01,0F F-(),(),过F2的直线与C交于A,B两点.若22||2||AF F B=,1||||AB BF=,则C的方程为A .2212x y += B .22132x y += C .22143x y += D .22154x y += 11.关于函数()sin |||sin |f x x x =+有下述四个结论:①f (x )是偶函数②f (x )在区间(2π,π)单调递增③f (x )在[,]-ππ有4个零点 ④f (x )的最大值为2其中所有正确结论的编号是 A .①②④B .②④C .①④D .①③12.已知三棱锥P −ABC 的四个顶点在球O 的球面上,P A =PB =PC ,△ABC 是边长为2的正三角形,E ,F 分别是P A ,AB 的中点,∠CEF =90°,则球O 的体积为 A .68πB .64πC .62πD .6π二、填空题:本题共4小题,每小题5分,共20分。

2019年普通高等学校招生全国统一考试(全国I卷)理科数学及答案解析

2019年普通高等学校招生全国统一考试(全国I卷)理科数学及答案解析

2019年普通高等学校招生全国统一考试(全国I 卷) 理科数学一、选择题(本大题共12小题,共60分)1.已知集合}24|{<<-=x x M ,}06|{2<--=x x x N ,则=N M ( )A.}34|{<<-x xB.}24|{-<<-x xC. }22|{<<-x xD. }32|{<<x x2.设复数z 满足1z i -=,z 在复平面内对应的点为(,)x y ,则( ) A.22(1)1x y ++= B.22(1)1x y -+= C.22(1)1x y +-= D.22(1)1x y ++= 3.已知2log 0.2a =,0.22b =,0.30.2c =,则( ) A.a b c << B.a c b << C.c a b << D.b c a <<4.古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是215-(618.0215≈-称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是215- .若某人满足上述两个黄金分割比例,且腿长为cm 105,头顶至脖子下端的长度为cm 26,则其身高可能是( )A.cm 165B.cm 175C.cm 185D.cm 1905. 函数2sin ()cos x xf x x x+=+在[,]ππ-的图像大致为( ) A.B.C.D.6.我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“”和阴爻“”,下图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是( ) A.516 B.1132 C.2132D.1116 7. 已知非零向量,a b 满足2a b =,且()a b b -⊥,则a 与b 的夹角为( )A.6π B.3π C.23π D.56π 8.右图是求112+12+2的程序框图,图中空白框中应填入( )A.12A A =+ B.12A A =+ C.112A A =+ D.112A A=+ 9.记n S 为等差数列{}n a 的前n 项和.已知40S =,55a =,则( )A.25n a n =-B.310n a n =-C.228n S n n =- D.2122n S n n =- 10.已知椭圆C 的焦点为)0,1(1-F ,)0,1(2F ,过2F 的直线与C 交于A ,B 两点.若||2||22B F AF =,||||1BF AB =,则C 的方程为( )A.1222=+y x B. 12322=+y x C.13422=+y x D.14522=+y x11. 关于函数()sin sin f x x x =+有下述四个结论: ①()f x 是偶函数 ②()f x 在区间(,)2ππ单调递增③()f x 在[],ππ-有4个零点 ④()f x 的最大值为2其中所有正确结论的编号是( )A.①②④B.②④C.①④D.①③12. 已知三棱锥P ABC -的四个顶点在球O 的球面上,PA PB PC ==,ABC ∆是边长为2的正三角形,,E F 分别是PA ,AB 的中点,90CEF ∠=︒,则球O 的体积为( )A.B.C.二、填空题(本大题共4小题,共20分)13.曲线23()xy x x e =+在点(0,0)处的切线方程为 . 14.记n S 为等比数列{}n a 的前n 项和,若113a =,246a a =,则5S = . 15.甲乙两队进行篮球决赛,采取七场四胜制(当一队赢得四场胜利时,该对获胜,决赛结束)根据前期的比赛成绩,甲队的主客场安排依次为“主主客客主客主”设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛相互独立,则甲队以4:1获胜的概率是 . 16.已知双曲线C:22221(0,0)x y a b a b-=>>的左、右焦点分别为12,F F ,过1F 的直线与C 的 两条渐近线分别交于,A B 两点.若112,0F A AB F B F B =⋅=uuu r uu u r uuu r uuu r,则C 的离心率为 .三、解答题(本大题共5小题,共60分)17.ABC ∆的内角,,A B C 的对边分别为,,a b c .设()22sin sin sin sin sin B C A B C -=-. (1)求A ;(22b c +=,求sin C .18.如图,直四棱柱1111ABCD A B C D -的底面是菱形,14,2,60AA AB BAD ==∠=︒,,,E M N 分别是11,,BC BB A D 的中点.(1)证明://MN 平面1C DE ;(2)求二面角1A MA N --的正弦值.19.已知抛物线x y C 3:2=的焦点为F ,斜率为23的直线l 与C 的交点为A ,B ,与x 轴的交点为P . (1)若4||||=+BF AF ,求l 的方程; (2)若PB AP 3=,求||AB .20.已知函数()sin ln(1)f x x x =-+,()f x '为()f x 的导函数.证明:(1)()f x '在区间(1,)2π-存在唯一极大值点;(2)()f x 有且仅有2个零点.21.为治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物实验.实验方案如下:每一轮选取两只白鼠对药效进行对比实验.对于两只白鼠,随机选一只施以甲药,另一只施以乙药.一轮的治疗结果得出后,再安排下一轮实验.当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止实验,并认为治愈只数多的药更有效.为了方便描述问题,约定:对于每轮实验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得1-分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得1分,甲药得1-分;若都治愈或都未治愈则两种药均得0分.甲、乙两种药的治愈率分别记为α和β,一轮实验中甲药的得分记为X .(1)求X 的分布列;(2)若甲药、乙药在实验开始时都赋予4分,(0,1,,8)i p i =表示“甲药的累计得分为i 时,最终认为甲药比乙药更有效”的概率,则00p =,81p =,11i i i i p ap bp cp -+=++(1,2,,7)i =,其中(1)a P X ==-,(0)b P X ==,(1)c P X ==.假设0.5α=,0.8β=.(i )证明:1{}(0,1,2,,7)i i p p i +-=为等比数列;(ii )求4p ,并根据4p 的值解释这种实验方案的合理性. 四、选做题(2选1)(本大题共2小题,共10分)22.在直角坐标系xOy 中,曲线C 的参数方程为22211()41t x t t t y t ⎧-=⎪⎪+⎨⎪=⎪+⎩为参数.以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为2cos sin 110ρθθ+=.(1)求C 和l 的直角坐标方程;(2)求C 上的点到l 距离的最小值.23. 已知,,a b c 为正数,且满足1abc =,证明: (1)222111a b c a b c++≤++ (2)333()()()24a b b c c a +++++≥2019年普通高等学校招生全国统一考试(全国I 卷)理科数学答案1.答案:C 解答:由题意可知,}32|{<<-=x x N ,又因为}24|{<<-=x x M ,则}22|{<<-=x x N M ,故选C . 2.答案:C 解答:∵复数z 在复平面内对应的点为(,)x y , ∴z x yi =+ ∴1x yi i +-= ∴22(1)1x y +-= 3.答案:B 解答:由对数函数的图像可知:2log 0.20a =<;再有指数函数的图像可知:0.221b =>,0.300.21c <=<,于是可得到:a c b <<. 4.答案:B 解答: 方法一:设头顶处为点A ,咽喉处为点B ,脖子下端处为点C ,肚脐处为点D ,腿根处为点E ,足底处为F ,t BD =,λ=-215, 根据题意可知λ=BD AB ,故t AB λ=;又t BD AB AD )1(+=+=λ,λ=DF AD ,故t DF λλ1+=; 所以身高t DF AD h λλ2)1(+=+=,将618.0215≈-=λ代入可得t h 24.4≈.根据腿长为cm 105,头顶至脖子下端的长度为cm 26可得AC AB <,EF DF >;即26<t λ,1051>+t λλ,将618.0215≈-=λ代入可得4240<<t 所以08.1786.169<<h ,故选B.方法二:由于头顶至咽喉的长度与头顶至脖子下端的长度极为接近,故头顶至脖子下端的长度cm 26可估值为头顶至咽喉的长度;根据人体的头顶至咽喉的长度与咽喉至肚脐的长度之比是215-(618.0215≈-称为黄金分割比例)可计算出咽喉至肚脐的长度约为cm 42;将人体的头顶至咽喉的长度与咽喉至肚脐的长度相加可得头顶至肚脐的长度为cm 68,头顶至肚脐的长度与肚脐至足底的长度之比是215-可计算出肚脐至足底的长度约为110;将头顶至肚脐的长度与肚脐至足底的长度相加即可得到身高约为cm 178,与答案cm 175更为接近,故选B.5.答案:D 解答: ∵()()()2sin ()cos x x f x x x ---=-+-=2sin cos x xx x+-+()f x =-, ∴()f x 为奇函数,排除A ,又22sin 4222()02cos22f πππππππ++==>⎛⎫+ ⎪⎝⎭,排除C ,()22sin ()01cos f πππππππ+==>++,排除B ,故选D.6.答案:A 解答:每爻有阴阳两种情况,所以总的事件共有62种,在6个位置上恰有3个是阳爻的情况有36C 种,所以36620526416C P ===.答案: 7.答案B 解答:设a 与b 的夹角为θ, ∵()a b b -⊥∴2()cos a b b a b b θ-⋅=-=0 ∴1cos =2θ ∴=3πθ.8.答案:A解答:把选项代入模拟运行很容易得出结论选项A 代入运算可得1=12+12+2A ,满足条件,选项B 代入运算可得1=2+12+2A ,不符合条件, 选项C 代入运算可得12A =,不符合条件,选项D 代入运算可得11+4A =,不符合条件.9.答案:A 解析:依题意有415146045S a d a a d =+=⎧⎨=+=⎩,可得132a d =-⎧⎨=⎩,25n a n =-,24n S n n =-.10.答案:B解答:由椭圆C 的焦点为)0,1(1-F ,)0,1(2F 可知1=c ,又 ||2||22B F AF =,||||1BF AB =,可设m BF =||2,则m AF 2||2=,m AB BF 3||||1==,根据椭圆的定义可知a m m BF BF 23||||21=+=+,得a m 21=,所以a BF 21||2=,a AF =||2,可知),0(b A -,根据相似可得)21,23(b B 代入椭圆的标准方程12222=+b y a x ,得32=a ,2222=-=c a b ,∴椭圆C 的方程为12322=+y x .11.答案:C解答:因为()sin sin()sin sin ()f x x x x x f x -=-+-=+=,所以()f x 是偶函数,①正确, 因为52,(,)632ππππ∈,而52()()63f f ππ<,所以②错误, 画出函数()f x 在[],ππ-上的图像,很容易知道()f x 有3零点,所以③错误, 结合函数图像,可知()f x 的最大值为2,④正确,故答案选C. 12.答案:D 解答:设PA x =,则2222222-42cos =22PA PC AC x x x APC PA PC x x x++--∠==⋅⋅⋅ ∴2222cos CE PE PC PE PC APC =+-⋅⋅∠22222222424x x x x x x x -=+-⋅⋅⋅=+∵90CEF ∠=︒,1,22xEF PB CF ===∴222CE EF CF +=,即222344x x ++=,解得x =∴PA PB PC ===又2AB BC AC ===易知,,PA PB PC 两两相互垂直,故三棱锥P ABC -∴三棱锥P ABC -的外接球的体积为343π⋅=⎝⎭,故选D. 13.答案:3y x = 解答:∵23(21)3()xxy x e x x e '=+++23(31)xx x e =++,∴结合导数的几何意义曲线可知在点(0,0)处的切线方程的斜率为3k =, ∴切线方程为3y x =. 14.答案:5S =1213解答:∵113a =,246a a = 设等比数列公比为q∴32511()a q a q =∴3q =∴5S =121315.答案:0.18解答:甲队要以4:1,则甲队在前4场比赛中输一场,第5场甲获胜,由于在前4场比赛中甲有2个主场2个客场,于是分两种情况:1221220.60.40.50.60.60.50.50.60.18C C ⋅⋅⋅⋅+⋅⋅⋅⋅=.16.答案:2解答:由112,0F A AB F B F B =⋅=uuu r uu u r uuu r uuu r 知A 是1BF 的中点,12F B F B⊥uuu r uuu r,又O 是12,F F 的中点,所以OA 为中位线且1OA BF ⊥,所以1OB OF =,因此1F OA BOA ∠=∠,又根据两渐近线对称,12FOA F OB ∠=∠,所以260F OB ∠=︒,2e ===.17.答案:略 解答:(1)由()22sin sin sin sin sin B C A B C -=-得222sin sin sin sin sin B C A B C +-= 结合正弦定理得222b c a bc +-=∴2221cos =22b c a A b c +-=⋅⋅又(0,)A π∈,∴=3A π.(22b c +=sin 2sin A B C +=,()sin 2sin A A C C ++=∴sin()2sin 23C C π++=,1cos 22C C -=∴sin()6C π-=又203C π<<∴662C πππ-<-< 又sin()06C π->∴062C ππ<-<∴cos 62C π⎛⎫-= ⎪⎝⎭ ∴sin sin()66C C ππ=-+=sin cos cos sin 6666C C ππππ⎛⎫⎛⎫-+- ⎪ ⎪⎝⎭⎝⎭=.18.答案: (1)见解析; (2解答:(1)连结,M E 和1,B C ,∵,M E 分别是1BB 和BC 的中点,∴1//ME B C 且112ME B C =, 又N 是1A D ,∴//ME DN ,且ME DN =,∴四边形MNDE 是平行四边形, ∴//MN DE ,又DE ⊂平面1C DE ,MN ⊄平面1C DE ,∴//MN 平面1C DE.(2)以D 为原点建立如图坐标系,由题(0,0,0)D ,(2,0,0)A ,1(2,0,4)A,M1(0,0,4)A A =-uuu r,1(2)A M =--u u u u r ,1(2,0,4)A D =--uuu r ,设平面1AA M 的法向量为1111(,,)n x y z =u r,平面1DA M 的法向量为2222(,,)n x y z =u u r,由111100n A A n A M ⎧⋅=⎪⎨⋅=⎪⎩u r uuu r u r uuuu r得11114020z x z -=⎧⎪⎨-+-=⎪⎩,令1x =得1n =u r , 由212100n A D n A M ⎧⋅=⎪⎨⋅=⎪⎩u u r uuu r u u r uuuu r得2222224020x z x z --=⎧⎪⎨-+-=⎪⎩,令22x =得2(2,0,1)n =-u u r ,∴121212cos ,n n n n n n ⋅==⋅u r u u ru r u u r u r u u r 1A MA N --19.答案:(1)07128=+-x y ;(2)3134.解答:设直线l 的方程为b x y +=23,设),(11y x A ,),(22y x B , (1)联立直线l 与抛物线的方程:⎪⎩⎪⎨⎧=+=xy b x y 3232消去y 化简整理得0)33(4922=+-+b x b x ,0494)33(22>⨯--=∆b b ,21<∴b ,9)33(421b x x -⨯=+,依题意4||||=+BF AF 可知42321=++x x ,即2521=+x x ,故259)33(4=-⨯b ,得87-=b ,满足0>∆,故直线l 的方程为8723-=x y ,即07128=+-x y .(2)联立方程组⎪⎩⎪⎨⎧=+=xy b x y 3232消去x 化简整理得0222=+-b y y ,084>-=∆b ,21<∴b ,221=+y y ,b y y 221=, 3=,可知213y y -=,则222=-y ,得12-=y ,31=y ,故可知23-=b 满足0>∆,∴3134|13|941||11||212=+⨯+=-⋅+=y y k AB . 20.答案:略 解答:(1)对()f x 进行求导可得,1()cos 1f x x x '=-+,(1)2x π-<< 取1()cos 1g x x x=-+,则21()sin (1)g x x x '=-++, 在(1,)2x π∈-内21()sin (1)g x x x '=-++为单调递减函数,且(0)1g =,21()102(1)2g ππ=-+<+所以在(0,1)x ∈内存在一个0x ,使得()0g x '=,所以在0(1,)x x ∈-内()0g x '>,()f x '为增函数;在0(,)2x x π∈内()0g x '<,()f x '为减函数,所以在()f x '在区间(1,)2π-存在唯一极大值点;(2)由(1)可知当(1,0)x ∈-时,()f x '单调增,且(0)0f '=,可得()0'<x f则()f x 在此区间单调减;当0(0,)x x ∈时,()f x '单调增,且(0)0f '=,()0f x '>则()f x 在此区间单调增;又(0)0f =则在0(1,)x x ∈-上()f x 有唯一零点0x =.当0(,)2x x π∈时,()f x '单调减,且0()0,()02f x f π''><,则存在唯一的10(,)2x x π∈,使得1()0f x '=,在01(,)x x x ∈时,()0f x '>,()f x 单调增;当1(,)2x x π∈时,()f x 单调减,且()1ln(1)1ln 022f e ππ=-+>-=,所以在0(,)2x x π∈上()f x 无零点; 当(,)2x ππ∈时,s i n y x =单调减,ln(1)y x =-+单调减,则()f x 在(,)2x ππ∈上单调减,()0ln(1)0f ππ=-+<,所以在(,)2x ππ∈上()f x 存在一个零点.当(,)x π∈+∞时,()sin ln(1)1ln(1)0f x x x π=-+<-+<恒成立,则()f x 在(,)x π∈+∞上无零点. 综上可得,()f x 有且仅有2个零点.21.答案:(1)略;(2)略 解答:(1)一轮实验中甲药的得分有三种情况:1、1-、0.得1分时是施以甲药的白鼠治愈且施以乙药的白鼠未治愈,则(1)(1)P X αβ==-; 得1-分时是施以乙药的白鼠治愈且施以甲药的白鼠未治愈,则(1)(1)P X αβ=-=-; 得0分时是都治愈或都未治愈,则(0)(1)(1)P X αβαβ==+--.则X 的分布列为:(2)(i )因为0.5α=,0.8β=,则(1)0.4a P X ==-=,(0)0.5b P X ===,(1)0.1c P X ===. 可得110.40.50.1i i i i p p p p -+=++,则110.50.40.1i i i p p p -+=+, 则110.4()0.1()i i i i p p p p -+-=-,则114i ii i p p p p +--=-,所以1{}(0,1,2,,7)i i p p i +-=为等比数列.(ii )1{}(0,1,2,,7)i i p p i +-=的首项为101p p p -=,那么可得:78714p p p -=⨯, 67614p p p -=⨯,………………2114p p p -=⨯,以上7个式子相加,得到76811(444)p p p -=⨯+++,则886781111441(1444)143p p p p --=⨯++++=⨯=-,则18341p =-, 再把后面三个式子相加,得23411(444)p p p -=⨯++,则4423411844141311(1444)334141257p p p --=⨯+++==⨯==-+. 4p 表示“甲药治愈的白鼠比乙药治愈的白鼠多4只,且甲药的累计得分为4”,因为0.5α=,0.8β=,αβ<,则实验结果中“甲药治愈的白鼠比乙药治愈的白鼠多4只,且甲药的累计得分为4”这种情况的概率是非常小的,而41257p =的确非常小,说明这种实验方案是合理的. 22.答案:略 解答:(1)曲线C :由题意得22212111t x t t-==-+++即2211x t +=+,则2(1)y t x =+,然后代入即可得到2214y x +=(1)x ?而直线l :将cos ,sin x y ρθρθ==代入即可得到2110x +=(2)将曲线C 化成参数方程形式为则d ==所以当362ππθ+=23.答案:见解析: 解答: (1)1abc =,111bc ac ab a b c∴++=++.由基本不等式可得:222222,,222b c a c a b bc ac ab +++≤≤≤, 于是得到222222222111222b c a c a b a b c a b c +++++≤++=++.(2)由基本不等式得到:332()8()a b a b ab +≥+≥,332()8()b c b c bc +≥⇒+≥,332()8()c a c a ac +≥+≥.于是得到333333222()()()8[()()()]a b b c c a ab bc ac +++++≥++824≥⨯=。

(完整word版)2019全国统一高考数学试卷(课标1)

(完整word版)2019全国统一高考数学试卷(课标1)
13.曲线 在点 处的切线方程为___________.
14.记Sn为等比数列{an}的前n项和.若 ,则S4=___________.
15.函数 的最小值为___________.
16.已知∠ACB=90°,P为平面ABC外一点,PC=2,点P到∠ACB两边AC,BC的距离均为 ,那么P到平面ABC的距离为___________.
A.165 cmB.175 cmC.185 cmD.190cm
5.函数f(x)= 在[—π,π]的图像大致为
A. B.
C. D.
6.某学校为了解1 000名新生的身体素质,将这些学生编号为1,2,…,1 000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验,若46号学生被抽到,则下面4名学生中被抽到的是
(2)求C上的点到l距离的最小值.
23.[选修4-5:不等式选讲]
已知a,b,c为正数,且满足abc=1.证明:
(1) ;
(2先由复数的除法运算(分母实数化),求得 ,再求 .
【详解】
因为 ,所以 ,所以 ,故选C.
【点睛】
本题主要考查复数的乘法运算,复数模的计算.本题也可以运用复数模的运算性质直接求解.
2.C
【解析】
【分析】
先求 ,再求 .
【详解】
由已知得 ,所以 ,故选C.
【点睛】
本题主要考查交集、补集的运算.渗透了直观想象素养.使用补集思想得出答案.
3.B
【解析】
【分析】
运用中间量 比较 ,运用中间量 比较
【详解】
则 .故选B.
【点睛】
本题考查指数和对数大小的比较,渗透了直观想象和数学运算素养.采取中间变量法,利用转化与化归思想解题.

2019年全国卷Ⅰ理数高考试题文档版(含答案)

2019年全国卷Ⅰ理数高考试题文档版(含答案)

绝密★启用前2019年普通高等学校招生全国统一考试理科数学本试卷共4页,23小题,满分150分,考试用时120分钟。

注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上。

用2B 铅笔将试卷类型(B )填涂在答题卡的相应位置上。

2.作答选择题时,选出每小题答案后,用2B 铅笔在答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其它答案。

答案不能答在试卷上。

3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。

不按以上要求作答无效。

4.考生必须保证答题卡的整洁。

考试结束后,将试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合}242{60{}M x x N x x x =-<<=--<,,则M N I =A .}{43x x -<<B .}42{x x -<<-C .}{22x x -<<D .}{23x x <<2.设复数z 满足=1i z -,z 在复平面内对应的点为(x ,y ),则A .22+11()x y +=B .221(1)x y +=-C .22(1)1y x +-=D .22(+1)1y x +=3.已知0.20.32log 0.220.2a b c ===,,,则A .a b c <<B .a c b <<C .c a b <<D .b c a <<4.古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是512-(512-≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是512-.若某人满足上述两个黄金分割比例,且腿长为105 cm ,头顶至脖子下端的长度为26 cm ,则其身高可能是A .165 cmB .175 cmC .185 cmD .190 cm5.函数f (x )=2sin cos ++x xx x 在[,]-ππ的图像大致为A .B .C .D .6.我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“——”和阴爻“— —”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是A .516B .1132C .2132D .11167.已知非零向量a ,b 满足||2||=a b ,且()-a b ⊥b ,则a 与b 的夹角为A .π6B .π3C .2π3D .5π68.如图是求112122++的程序框图,图中空白框中应填入A .A =12A+ B .A =12A+C .A =112A+D .A =112A+9.记n S 为等差数列{}n a 的前n 项和.已知4505S a ==,,则A .25n a n =-B . 310n a n =-C .228n S n n =-D .2122n S n n =- 10.已知椭圆C 的焦点为121,01,0F F -(),(),过F 2的直线与C 交于A ,B 两点.若22||2||AF F B =,1||||AB BF =,则C 的方程为A .2212x y += B .22132x y += C .22143x y += D .22154x y += 11.关于函数()sin |||sin |f x x x =+有下述四个结论:①f (x )是偶函数 ②f (x )在区间(2π,π)单调递增③f (x )在[,]-ππ有4个零点④f (x )的最大值为2其中所有正确结论的编号是 A .①②④B .②④C .①④D .①③12.已知三棱锥P -ABC 的四个顶点在球O 的球面上,P A =PB =PC ,△ABC 是边长为2的正三角形,E ,F分别是P A ,PB 的中点,∠CEF =90°,则球O 的体积为A .68πB .64πC .62πD .6π二、填空题:本题共4小题,每小题5分,共20分。

2019年高考理科数学(全国卷1有答案)(可编辑修改word版)

2019年高考理科数学(全国卷1有答案)(可编辑修改word版)

2019年普通高等学校招生全国统一考试理科数学注意事项:1.答卷前.考生务必将S己的姓名、考生号等填写在答题卡和试卷指定位置上。

2.回答选择题吋,选出每小题答案后,用铅笔把答题卡对应题0的答案标号涂黑。

如需改动,用橡皮擦•后,再选涂其它答案标号。

回答非选择题时.将答案写在笞题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交问。

_、选择题:本题共12小题.每小题5分,共50分。

在每小题给出的四个选项中.只有一项是符合题目要求的。

l.己知集合W = {.r-4<x<2}, W=(XX2-X-6<0},则()D.{x|2 <x<3)A. {x\- 4<x<3} 3. {x|- 4 < x < -2} C.{x|-2<x<2}2.设复数z满足|z+l,z在复平面内对应的点为(x,^).则()A.(又十l)2十y2= 1B. (x-l)2+y2 =1 c.x2 +(J/-1)2 = 1 D. X2 +(J 十I)2 =13.己知a = log2 0.2. b =202, c = 0.2°\ 则■)k.a<b<c B.a<c<h C.c < a <b D.b<c<a4.古希腊吋期,人们认力最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是«0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,13美人体的头顶至咽头顶至脖了-下端的长度力26cm,则其身高可能是(>A.165cmB.175cmC.185cmD.190cm5.设函数f(X)= Sln -V~-\在[-牙,冗]的图像为()cosx + x~V5-1喉的长度勾咽喉至肚脐的长度之比也是V5-12.若某人满足上述两个黄金分割比例,且腿长为105cm,A. B. c. D.6.我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下之上排列的6个爻三三组成,爻分为阳爻“一一”和阴爻“——”,右图就是一重卦,在所有重卦中随机取一重二—卦,则该重卦恰有3个阳爻的概率是( ) -----5 11 21 11A.—B.—C.—D.—16 32 32 167.已知非零向fifl,石满足p| = 2@,且(Z-石)丄则5与S的夹角为( )5TVD.—6的程序框图,图巾空白框中应填入( )8.右图足求1 -2 1 + 2 +A'A = 2 + AB. A = 2 +—AC. -------------- A=} + 2A D」9.记S.,为等差数列{a fl }的前《项和.己知54=0, a 5 = 5, A.a… =2« 5Ba… = = 3/7 10=2n~ -8/71 , = — n~ -2/7 210.已知椭圆C 的焦点为6(-1,0) , 6(1,0),过6的直线勾ex 于AS 两点.若pG| = 2|6S|, \AB\ = l\BF^,则C 的方程为( )11.关于函数/(x) = sin|x| + |sinx|竹下述四个结论:①/(x)是偶函数 ②./‘(J)在区间单调递增 ③f(x)在区间有四个零点 ④/U)的最大值为2X 2I. ----2其中所有正确结论的编号是(A.①②④ 3.②④ C.①④ D.①③12.己知三棱锥P-ABC的四个顶点在球0的球而上,PA = PB = PC, \ABC是边长为2的正三角形,■分别是PA,AB的中点,ZCFF = 90 ,则球0的体积为( >A. 8>/6^B. 4-76^C. 2>/6^ 0.^67:二、填空题:本题共4小题,每小题5分,共20分。

2019年全国统一高考数学试卷(理科含解析版)精品文档A4版

2019年全国统一高考数学试卷(理科含解析版)精品文档A4版

2019年全国统一高考数学试卷(理科)(新课标Ⅲ)一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(5分)已知集合A={﹣1,0,1,2},B={x|x2≤1},则A∩B=()A.{﹣1,0,1} B.{0,1} C.{﹣1,1} D.{0,1,2} 2.(5分)若z(1+i)=2i,则z=()A.﹣1﹣i B.﹣1+i C.1﹣i D.1+i3.(5分)《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100位学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该学校学生总数比值的估计值为()A.0.5 B.0.6 C.0.7 D.0.84.(5分)(1+2x2)(1+x)4的展开式中x3的系数为()A.12 B.16 C.20 D.245.(5分)已知各项均为正数的等比数列{a n}的前4项和为15,且a5=3a3+4a1,则a3=()A.16 B.8 C.4 D.26.(5分)已知曲线y=ae x+xlnx在点(1,ae)处的切线方程为y=2x+b,则()A.a=e,b=﹣1 B.a=e,b=1 C.a=e﹣1,b=1 D.a=e﹣1,b=﹣1 7.(5分)函数y=在[﹣6,6]的图象大致为()A.B.C.D.8.(5分)如图,点N为正方形ABCD的中心,△ECD为正三角形,平面ECD⊥平面ABCD,M是线段ED的中点,则()A.BM=EN,且直线BM,EN是相交直线B.BM≠EN,且直线BM,EN是相交直线C.BM=EN,且直线BM,EN是异面直线D.BM≠EN,且直线BM,EN是异面直线9.(5分)执行如图的程序框图,如果输入的ɛ为0.01,则输出s的值等于()A.2﹣B.2﹣C.2﹣D.2﹣10.(5分)双曲线C:﹣=1的右焦点为F,点P在C的一条渐近线上,O 为坐标原点.若|PO|=|PF|,则△PFO的面积为()A.B.C.2D.311.(5分)设f(x)是定义域为R的偶函数,且在(0,+∞)单调递减,则()A.f(log3)>f(2)>f(2)B.f(log3)>f(2)>f(2)C.f(2)>f(2)>f(log3)D.f(2)>f(2)>f(log3)12.(5分)设函数f(x)=sin(ωx+)(ω>0),已知f(x)在[0,2π]有且仅有5个零点.下述四个结论:①f(x)在(0,2π)有且仅有3个极大值点②f(x)在(0,2π)有且仅有2个极小值点③f(x)在(0,)单调递增④ω的取值范围是[,)其中所有正确结论的编号是()A.①④B.②③C.①②③D.①③④二、填空题:本题共4小题,每小题5分,共20分。

2019高考(卷1)理科数学(2020年7月整理).pdf

2019高考(卷1)理科数学(2020年7月整理).pdf

2019年普通高等学校招生全国统一考试(卷1)理科数学一、选择题:本题共12小题,每小题5分,共60分1、已知集合{}{}06,242<−−=<<−=x x x N x x M ,则=N M ( ) A 、{}34<<−x x B 、{}24−<<−x x C 、{}22<<−x x D 、{}32<<x x2、设复数z 满足1=−i z ,z 在复平面内对应的点为),(y x ,则( )A 、1)1(22=++y xB 、1)1(22=+−y xC 、1)1(22=−+y xD 、1)1(22=++y x3、已知3.02.022.0,2,2.0log ===c b a ,则( )A 、c b a <<B 、b c a <<C 、b a c <<D 、a c b <<4、古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是215− (618.0215≈−,称为黄金分割比例),著名的“断臂维纳斯”便是如此。

此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是215−.若某人满足上述两个黄金分割比例,且腿长为105cm ,头顶至脖子下端的长度为26cm ,则其身高可能是( )A 、165cmB 、175cmC 、185cmD 、190cm5、函数2cos sin )(xx x x x f ++=在[]ππ,−的图像大致为( )A、B 、C 、D 、 6、我国古代典籍《周易》用“卦”描述万物的变化,每一“重卦”由从下到上排列的6 个 爻组成,爻分为阳爻“——”和阴爻“――”,右图为一重卦,在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是( )A 、165B 、3211C 、3221 D 、16117、已知非零向量a ,b 满足∣a ∣=2∣b ∣,且(a -b )⊥b ,则a 与b 的夹角为( )A 、6πB 、3πC 、32πD 、65π 8、右图是212121++的程序框图,图中空白框中应填入( ) A 、A A +=21 B 、212+=A C 、 A 211+ D 、A A 211+= 9、记n S 为等差数列{}n a 的前n 项和,已知5,054==a S ,则( )A 、52−=n a nB 、103−=n a nC 、n n S n 822−=D 、n n S n 2212−= 10、已知椭圆C 的焦点为)0,1(,)0,1(21F F −,过2F 的直线与C 交于B A ,两点,若B F AF 222=,1BF AB =,则C 的方程为( )A 、1222=+y xB 、12322=+y xC 、13422=+y xD 、14522=+y x 11、关于函数x x x f sin sin )(+=在下述四个结论:其中所有正确结论的编号是( ) ○1)(x f 是偶函数 ○2)(x f 在区间),2(ππ单调递增 ○3)(x f 在[]ππ,−有4个零点 ○4)(x f 的最大值为2A 、○1○2○4B 、○2○4C 、○1○4D 、○1○312、已知三棱柱ABC P −的四个顶点在球O 的球面上,PC PB PA ==,ABC ∆是边长为2的正三角形,E ,F 分别是PA ,AB 的中点,090=∠CEF 则球O 的体积为( )A 、π68B 、π64C 、π62D 、π6二、填空题:本题共4小题,每小题5分,共20分13、曲线x e x x y )(32+=在点)0,0(处的切线方程为_______________.14、记n S 为等比数列{}n a 的前n 项和,已知6241,31a a a ==,则=5S ____________. 15、甲,乙两队篮球决赛,采取七场四胜制(当一队赢得四场胜利时,该队获胜,决赛结束)。

(完整word版)2019年高考数学理科试卷全国一卷Word版和PDF版。

(完整word版)2019年高考数学理科试卷全国一卷Word版和PDF版。

2019年高考理科数学全国一卷一、单选题 本大题共12小题,每小题5分,共60分。

在每小题给出的4个选项中,有且只有一项是符合题目要求。

1.已知集合M={x |-4<x <2},N={x |-x -6<0},则M∩U =A{x |-4<x <3} B{x |-4<x <-2} C{x |-2<x <2} D{x |2<x <3}2.设复数z 满足|z -i|=1,z 在复平面内对应的点为(x ,y),则A BC D 3.已知a =2.0log 2,b =2.02,c =3.02.0,则 A.a <b <c B.a <c <b C.c <a <b D.b <c <a4.古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐到足底的长度之比是⎪⎪⎭⎫ ⎝⎛≈称之为黄金分割.618.021-521-5,著名的“断臂维纳斯”便是如此。

此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是21-5 。

若某人满足上述两个黄金分割比例,且腿长为105cm,头顶至脖子下端的长度为26cm,则其身高可能是A.165 cmB.175 cmC.185 cmD.190 cm5.函数()][ππ,的-cos sin 2xx x x x f ++=图像大致为 A BC D6.我国古代典籍《周易》用“卦”描述万物的变化,每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“—”和阴爻“- -”,右图就是一重卦。

在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是A.165B.3211C.3221D.1611 7.已知非零向量,满足,且,则与的夹角为 A.6π B.3π C.32π D.65π8.右图是求212121++的程序框图,图中空白框中应填入 A.A A +=21 B.A A 12+= C.A A 211+= D.A A 211+= 9.记n S 为等差数列{n a }的前n项和.已知5054==a S ,,则A.52-=n a nB.103-=n a nC.n n S n 822-=D.n n S n 2212-= 10.已知椭圆C 的焦点为F 1(-1,,0),F 2(1,0),过F 2的直线与C 交于A ,B 两点,若122,2BF AB B F AF ==,则C 的方程为A.1222=+y xB.12322=+y xC.13422=+y xD.14522=+y x 11.关于函数x x x f sin sin )(+=有下述四个结论:①)(x f 是偶函数 ②)(x f 在区间⎪⎭⎫⎝⎛ππ,2单调递增 ③)(x f 是在[]ππ,-有4个零点 ④)(x f 最大值是2 其中所有正确结论的编号是 A.①②④ B.②④ C.①④ D.①③12.已知三棱锥P -ABC 的四个顶点在球O 的球面上,PA=PB=PC ,△ABC 是连长为2的正三角形,E ,F 分别是PA ,AB 的中点∠CEF =90o ,则球O 的体积为A.π68B.π64C.π62D.π6二、填空题 本大题共4小题,每小题5分,共20分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019年高考理科数学全国一卷一、单选题 本大题共12小题,每小题5分,共60分。

在每小题给出的4个选项中,有且只有一项是符合题目要求。

1.已知集合M={x |-4<x <2},N={x |-x -6<0},则M∩U =A{x |-4<x <3} B{x |-4<x <-2} C{x |-2<x <2} D{x |2<x <3}2.设复数z 满足|z -i|=1,z 在复平面内对应的点为(x ,y),则A BC D 3.已知a =2.0log 2,b =2.02,c =3.02.0,则 A.a <b <c B.a <c <b C.c <a <b D.b <c <a4.古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐到足底的长度之比是⎪⎪⎭⎫ ⎝⎛≈称之为黄金分割.618.021-521-5,著名的“断臂维纳斯”便是如此。

此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是21-5 。

若某人满足上述两个黄金分割比例,且腿长为105cm,头顶至脖子下端的长度为26cm,则其身高可能是A.165 cmB.175 cmC.185 cmD.190 cm5.函数()][ππ,的-cos sin 2xx x x x f ++=图像大致为 A BC D6.我国古代典籍《周易》用“卦”描述万物的变化,每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“—”和阴爻“- -”,右图就是一重卦。

在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是A.165B.3211C.3221D.1611 7.已知非零向量,满足,且,则与的夹角为 A.6π B.3π C.32π D.65π8.右图是求212121++的程序框图,图中空白框中应填入 A.A A +=21 B.A A 12+= C.A A 211+= D.A A 211+= 9.记n S 为等差数列{n a }的前n项和.已知5054==a S ,,则A.52-=n a nB.103-=n a nC.n n S n 822-=D.n n S n 2212-= 10.已知椭圆C 的焦点为F 1(-1,,0),F 2(1,0),过F 2的直线与C 交于A ,B 两点,若122,2BF AB B F AF ==,则C 的方程为A.1222=+y xB.12322=+y xC.13422=+y xD.14522=+y x 11.关于函数x x x f sin sin )(+=有下述四个结论:①)(x f 是偶函数 ②)(x f 在区间⎪⎭⎫⎝⎛ππ,2单调递增 ③)(x f 是在[]ππ,-有4个零点 ④)(x f 最大值是2 其中所有正确结论的编号是 A.①②④ B.②④ C.①④ D.①③12.已知三棱锥P -ABC 的四个顶点在球O 的球面上,PA=PB=PC ,△ABC 是连长为2的正三角形,E ,F 分别是PA ,AB 的中点∠CEF =90o ,则球O 的体积为A.π68B.π64C.π62D.π6二、填空题 本大题共4小题,每小题5分,共20分。

把答案填写在题中横线上。

13.曲线xe x x y )(32+=在点(0,0)处的切线方程为 . 14. 记Sn 为等比数列{}n a 的前n 项和,若6241,31a a a ==,则5S = . 15. 甲、乙两队进行篮球决赛,采取七场四胜(当一队赢得四场胜利时,该队获胜,决赛结束).根据前期比赛成绩,甲队的主客场安排依次为“主主客客主客主”。

设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,甲队以4:1获胜的概率是 .16. 已知双曲线C :12222=-by a x (a >0,b >0)的左、右焦点分别为F 1,F 2,过F 1的直线与C 的两条渐近线分别交于A ,B 两点.若0,211=⋅=B F B F AB A F ,C 的离心率为 .三、简答题(综合题) 本大题共80分。

简答应写出文字说明、证明过程或演算步骤。

17. (12分)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c.设()C B A C B sin sin sin sin sin 22-=-. (1)求A ;(2)若c b a 22=+,求sinC .18.(12分)如图,直四棱柱ABCD -A 1B 1C 1D 1的底面是菱形,AA 1= 4,AB =2,∠BAD =600,E ,M ,N 分别是BC ,BB 1,A 1D ,,的中点.(1)证明:MN ∠平面C 1DE ;(2)求二面角A -MA 1-N 的正弦值.19.(12分)已知抛物线C:x y 32=的焦点为F ,斜率为23的直线l 与C的交点为A ,B ,与x轴的交点为P. (1)若4=+BF AF ,求l 的方程;(2)若PB AP 3=,求AB .20.(12分)已知函数)()('),1ln(sin )(x f x f x x x f 为+-=的导数.证明:(1)⎪⎭⎫ ⎝⎛21-)('π,在区间x f 存在唯一极大值点; (2)()x f 有且仅有2个零点.21.(12分)为治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物试验.试验方案如下:每一轮选取两只白鼠对药效进行对比试验,对于两只白鼠,随机选一只施以甲药,另一只施以乙药. 一轮的治疗结果得出后,再安排下一轮试验.当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只数多的药更有效. 为了方便描述问题,约定:对于每轮试验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得-1分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得1分,甲药得-1分:若都治愈或都未治愈则两种药均得0分.甲、乙两种药的治愈率分别记为βα和,一轮试验中甲药的得分记为X .(1)求X 的分布列;(2)若甲药、乙药在试验开始时都赋予4分,P i (i =0,1....8)表示“甲药的累计得分为i时,最终认为甲药比乙药更有效”的概率,则()7,,2,1,1,011180⋅⋅⋅=++===+-i cP bP aP P P P i i i ,其中()()()1,0,1====-==X P c X P b X P a .假设8.0,5.0==βα.(i )证明:{}()7,,2,1,01⋅⋅⋅=-+i P P i i 为等比数列(ii )求P 4,并根据P 4的值解释这种试验方案的合理性.22.[选修4-4:坐标系与参数方程](10分)在直角坐标系xoy 中,曲线C 的参数方程为⎪⎪⎩⎪⎪⎨⎧+=+-=2221411t t y t t x (t 为参数),以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为011sin 3cos 2=++θρθρ(1)求C 和l 的直角坐标方程;(2)求C 上的点到l 距离的最小值.23.[选修4-5:不等式选讲](10分)已知a ,b ,c 为正数,且满足abc =1.证明:(1);111222c b a cb a ++≤++ (2)()()()24333≥+++++ac c b b a .2019年高考理科数学全国一卷评析一、总体评价2019年高考数学命题严格依据考试大纲,重点考察数学的基础知识和应用,试题稳中求新,稳中求变,较2018年压轴题有较大变化,整体难度合理。

二、试题特点1.突出主干,强调本质2019年高考全国卷Ⅰ理科数学试卷突显了主干知识的价值,强化了对三角函数和函数与导数(39分)、数列(10分)、立体几何(17分)、解析几何(22分)、统计与概率(17分)等核心主干知识的考查力度。

这与新高考改革所倡导“突出独立思考、逻辑推理、数学应用、数学阅读和表达等关键能力的考查,突出对数学思想方法的理解,重视数学核心素养考查”的思想是契合的。

2.强化思维,有效区分不同思维层次的考生今年试题非常侧重对逻辑推理能力、分析问题和解决问题的能力的考查。

命题从知识立意到能力立意,再从能力立意发展到学科素养立意,目的就是以数学知识为载体,培养学生的理性思维和数学精神,考查考生理性思维的广度和深度,满足了高校对人才选拔的需求(如压轴题20和21题)。

3. 强调数学理论与实践相结合通过设置真实的问题情境,引导学生从“解题”到“解决问题”能力的培养,使得学生能灵活应用所学知识进行分析问题与解决问题,提高学生学习数学兴趣(如21题)。

同时增强数学文化浸润,试题注意吸收世界数学文化的精华,引导学生热爱数学文化。

4. 注重基础,突出能力2019年高考数学卷Ⅰ理科数学命题严格遵循了《考试大纲》和《数学课程标准》的要求。

试题总体难度平缓,背景公平,容易题、中档题和难题的比例基本是3:5:2。

试卷注重基础,解题思路常规,大多数试题都是以往高考和课本作业题适度拓展改编,即使是高区分度试题也是以中学数学主干知识和主要思想方法为载体的,较对比2018,选填变换增加:1道数学文化,1道概率;减少:排列组合和二项式定理模块,三视图;解答题压轴题由以往的导数调整为概率数列综合,而导数作为第二压轴题;选做题由解绝对值调整为不等式的证明。

总之,今年考卷传达一个信息:回归课本,发展学生的基本数学思维,注重数学思维的培养。

说白了,考生需要“吃透课本、抓实基础、注意通法通性,理解中心思想”,才能在高考中考出理想成绩。

今后,中学数学教学要高度重视独立思考、逻辑推理、数学应用、数学阅读和表达等关键能力的培养,特别重视使用数学方法解决实际问题的教学。

不要盲目追求题量,而是注重引导学生经历数学知识的发生过程,以及问题的发现、提出、分析和解决的全过程,充分挖掘典型问题的内在价值与迁移功能,培养学生思维的灵活性与创新性2019年高考全国卷1理科数学试卷真题:- 21 -。

相关文档
最新文档