差动变面积式电容传感的静态及动态特性
第3章电容式传感器

由图3Z C 7 可( 得R 到S 等1 效 阻R 2 抗R PZ2 C C,2) 即j(1 R 2 P R 2 C 2 C 2L )
P
P
式中2f为激励电源角频率
由于传感器并联电阻RP很大,上式经简化后得等效电容为
等效电容
CE1 C 2LC 1(C f/f)2
式中 f
1
0
为电路谐振. 频率
例如在图3-10(b)中a=1,=0。根据图3-9曲线知:k=0.25, =0, 因此输出电压USC=0.25E;图(c)中当
R 1 时,a1,900 根据图3-9曲线得到k=0.5, =0 jC
USC=0.5E;图3-10(c)和(d)线路形式相同,但是由于(d)图
中采用了差动式电容传感器,故输出电压USC=E ,比图 (c)的输出电压提高了一倍。
对于变极距型, 其静态灵敏度
KCC 0( 1 ) d d 1d/d
因△d/d <<1,上式可按 台劳级数展开而得
KC0[1d(d)2 ] d dd
KC0[1d(d)2 ] d dd
由上式可知,灵敏度与起始极间距d有关,而且不是常数, 是随被测量变化而改变。要提高灵敏度,应减小d,但δ过 小容易引起电容器击穿(空气的击穿电压3kV/mm)。
注意:1.上述各种电桥输出电压是在假设负载阻抗无限 大(即输出端开路)时得到的,
实际上由于负载阻抗的存在而使输出电压偏小。
2.电桥输出为交流信号,不能判断输入传感器信号的极 性,只有将电桥输出信号经交流放大后,再用相敏检波电 路和低通滤波器,才能得到反映输入信号极性的输出信号。
(四)运算法测量电路 它由传感器电容CX和固定电容 C。、以及运算放大器A组成。
④采用“驱动电缆”技 术(也称“双层屏蔽等位 传输”技术)。 见教材P60
《传感器与检测技术》期末考试试卷及答案(1)

传感器与自动检测技术一、填空题(每题3分)1、传感器通常由直接响应于被测量的敏感元件、产生可用信号输出的转换元件、以及相应的信号调节转换电路组成。
2、金属材料的应变效应是指金属材料在受到外力作用时,产生机械变形,导致其阻值发生变化的现象叫金属材料的应变效应。
3、半导体材料的压阻效应是半导体材料在受到应力作用后,其电阻率发生明显变化,这种现象称为压阻效应.4、金属丝应变片和半导体应变片比较其相同点是它们都是在外界力作用下产生机械变形,从而导致材料的电阻发生变化.5、金属丝应变片和半导体应变片比较其不同点是金属材料的应变效应以机械形变为主,材料的电阻率相对变化为辅;而半导体材料则正好相反,其应变效应以机械形变导致的电阻率的相对变化为主,而机械形变为辅。
6、金属应变片的灵敏度系数是指金属应变片单位应变引起的应变片电阻的相对变化叫金属应变片的灵敏度系数。
7、固体受到作用力后电阻率要发生变化,这种现象称压阻效应.8、应变式传感器是利用电阻应变片将应变转换为电阻变化的传感器。
9、应变式传感器是利用电阻应变片将应变转换为电阻变化的传感器。
10、应变式传感器是利用电阻应变片将应变转换为电阻变化的传感器,传感器由在弹性元件上粘贴电阻敏感元件构成,弹性元件用来感知应变,电阻敏感元件用来将应变的转换为电阻的变化。
11、应变式传感器是利用电阻应变片将应变转换为电阻变化的传感器,传感器由在弹性元件上粘贴电阻敏感元件构成,弹性元件用来感知应变,电阻敏感元件用来将应变的转换为电阻的变化.12、应变式传感器是利用电阻应变片将应变转换为电阻变化的传感器,传感器由在弹性元件上粘贴电阻敏感元件构成,弹性元件用来感知应变,电阻敏感元件用来将应变的转换为电阻的变化.13、应变式传感器是利用电阻应变片将应变转换为电阻变化的传感器,传感器由在弹性元件上粘贴电阻敏感元件构成,弹性元件用来感知应变,电阻敏感元件用来将应变的转换为电阻的变化.14、要把微小应变引起的微小电阻变化精确地测量出来,需采用特别设计的测量电路,通常采用电桥电路.15、电容式传感器利用了将非电量的变化转换为电容的变化来实现对物理量的测量。
东华大学自动检测技术 实验答案 实验报告 附上实验指导书 实验报告

实验要有两次的。
好好做吧,加油哦。
楼主来自东华。
这年头就业压力大,自动化一定要学好数电模电单片机arm。
知道了吗。
加油!!!下面是实验指导书前言:随着社会的进步,科学技术的发展,特别是近20年来,电子技术日新月异,计算机的普及和应用把人类带到了信息时代,各种电器设备充满了人们生产和生活的各个领域,相当大一部分的电器设备都应用到了传感器件,传感器技术是现代信息技术中主要技术之一,在国民经济建设中占据有极其重要的地位。
在工农业生产领域,工厂的自动流水生产线,全自动加工设备,许多智能化的检测仪器设备,都大量地采用了各种各样的传感器,它们在合理化地进行生产,减轻人们的劳动强度,避免有害的作业发挥了巨大的作用。
在家用电器领域,象全自动洗衣机、电饭褒和微波炉都离不开传感器。
医疗卫生领域,电子脉博仪、体温计、医用呼吸机、超声波诊断仪、断层扫描(CT)及核磁共振诊断设备,都大量地使用了各种各样的传感技术。
这些对改善人们的生活水平,提高生活质量和健康水平起到了重要的作用。
在军事国防领域,各种侦测设备,红外夜视探测,雷达跟踪、步器的精确制导,没有传感器是难以实现的。
在航空航天领域,空中管制、导航、飞机的飞行管理和自动驾驶,仪表着陆盲降系统,都需要传感器。
人造卫星的遥感遥测都与传感器紧密相关。
没有传感器,要实现这样的功能那是不可能的。
QSCGQ-ZX1系列传感器与检测技术实验台主要用于各大、中专院校及职业院校开设的“传感器原理与技术”“自动化检测技术”“非电量电测技术”“工业自动化仪表与控制”“机械量电测”等课程的实验教学。
QSCGQ-ZX1型系列传感器与检测技术实验台上采用的大部分传感器虽然是教学传感器(透明结构便于教学),但其结构与线路是工业应用的基础,通过实验可以帮助广大学生加强对书本知识的理解,并在实验的进行过程中,通过信号的拾取,转换,分析,掌握作为一个科技工作者应具有的基本的操作技能与动手能力。
目录前言: (8)实验一(A)金属箔式应变片性能—单臂电桥型 (10)实验一(B)金属箔式应变片性能—单臂电桥 (12)实验二(A)金属箔式应变片:单臂、半桥、全桥比较 (13)实验二(B)金属箔式应变片:单臂、半桥、全桥比较 (16)实验三应变片的温度影响 (18)实验四热电偶原理及现象 (19)实验五移相器实验 (21)实验六相敏检波器实验 (23)实验七交流全桥的应用―振幅测量 (26)实验八直流全桥的应用―电子秤之一 (28)实验九差动变压器性能 (29)实验十差动变压器零点残余电压的补偿 (31)实验十一差动变压器的应用—振动测量 (33)实验十二电涡流式传感器的静态标定 (35)实验十三被测体材料对电涡流传感器特性的影响 (37)实验十四电涡流式传感器的应用-振幅测量 (38)实验十五电涡传感器应用-电子秤之三 (40)实验十六霍尔式传感器的特性—直流激励 (41)实验十七霍尔式传感器的应用—电子秤之四 (43)实验十八霍尔式传感的特性—交流激励 (44)实验十九霍尔式传感器的应用—振幅测量 (46)实验二十磁电式传感器的性能 (48)实验二十一压电传感器的动态响应实验 (50)实验二十二差动变面积式电容传感器的静态及动态特性 (51)实验二十三扩散硅压阻式压力传感器实验 (53)实验二十四光纤位移传感器静态实验 (55)实验二十五光纤位移传感器的动态测量一 (56)实验二十六光纤位移传感器的动态测量二 (57)实验二十七PN结温度传感器测温实验 (58)实验二十八热敏电阻演示实验 (60)实验二十九气敏传感器(MQ3)实验 (62)实验三十湿敏电阻(RH)实验 (64)实验三十一光电传感器(反射型)测转速实验 (65)实验三十二热释电红外传感器实验 (66)附录:传感器实验仪器面板分布图 (67)实验一(A)金属箔式应变片性能—单臂电桥型一、实验目的:了解金属箔式应变片,单臂单桥的工作原理和工作情况。
实验6电涡流式传感器静态标定实验...

前言金属箔式应变片实验1金属箔式应变片:直流单臂、半桥、全桥比较实验2金属箔式应变片:交流全桥附:信号获取电路及电阻应变仪差动变压器式电感传感器实验3差动变压器性能测试实验4差动变压器零点残余电压的补偿实验5差动变压器的标定及应用应用例(1)、(2)电涡流式传感器实验6电涡流式传感器的静态标定实验7被测体材料对电涡流传感器特性影响霍尔式传感器实验8霍尔传感器的直流激励特性实验9霍尔传感器的交流激励特性压电式传感器实验10压电传感器的动态响应实验实验11压电传感器引线电容对电压放大器的影响、电荷发大器电容式传感器实验12差动变面积电容式传感器的静态及动态特性光电式传感器实验13 光纤位移传感器的静态测量实验14 光纤位移传感器的动态测量一实验15 光纤位移传感器的动态测量二半导体式传感器实验16扩散硅压阻式压力传感器实验实验17PN结温度传感器测温实验实验18热敏电阻演示实验实验19 气敏传感器实验实验20湿敏传感器实验综合性传感器应用实验实验21光敏电阻应用实验实验22光电传感器应用实验实验23集成霍尔传感器应用实验实验24气敏传感器应用实验传感器原理与应用试验指南前言《传感器实验指导》是针对测量与控制专业、电子仪器专业、应用电子技术专业、自动控制专业、机械自动化、机电工程、计算机技术应用与信息通信技术类等专业开设的“传感器检测技术”、“传感器原理及工程应用”等课程编写的一本实验教材。
为加强对学生实践能力的培养,使同学更好的理解实验原理,了解实验内容,并对实验过程和结果有所思考,本教材对传感器的基本工作原理进行了简要概述,并详细给出实验主要内容及要求和步骤。
实验不涉及太多的先进测量技术,而是着眼于理解最基本的测量原理,通过学习使学生建立扎实的学科基础。
为培养学生的独立思考和工作能力。
大部分实验中要求实验者拟定实际使用方案,有思考题让同学讨论。
实验教材的实验一至实验十七是针对浙江大学设计研制的CSY--传感器系统实验仪编写,仪器配用一台双踪示波器可以进行多项实验内容;实验十八至实验二十一是作者自行设计的综合性应用实验,实验中给定器件后同学可以根据实验要求自己动手设计、安装、调试,是一种实践性、综合性较强的实验方式。
《传感器与检测技术》试卷及答案

《传感器与检测技术》试卷及答案一. 选择题(每题1分,共计18分)1.通常用热电阻测量( C )A.电阻 B.扭矩 C.温度 D.压力2.反射式电涡流传感器激磁线圈的电源是( C )A.直流B.工频交流C.高频交流3.差动变压器式传感器的结构形式很多,其中应用最多的是( C )A.变间隙式B.变面积式C.螺丝管式4.通常用电容式传感器测量( B )A.电容量B.加速度C.电场强度D.交流电压5.利用热电偶测温条件是( C )A.分别保持热电偶两端温度恒定 B.保持热电偶两端温差恒定C.保持热电偶冷端温度恒定 D.保持热电偶热端温度恒定6.电阻应变片的初始电阻有多种,其中用的最多的是( B )A.60ΩB.120ΩC.200ΩD.240Ω7.在工程技术中,通常用电感式传感器测量( C )A.电压B.磁场程度C.位移D.速度8.我国使用的铂热电阻的测量范围是( A )A.-200~850℃B.-50~850℃C.-200~150℃D.-200~650℃9.涡流传感器的工作原理是基于( D )A.热阻效应B.霍尔效应C.光电效应D.电磁效应10.铜电阻测温线性好、价廉,其测温范围为( C )A.-50℃~50℃B.0℃~100℃C.-50℃~150℃D.-100℃~100℃11.被测对象温度为300℃左右,实验室有以下几种规格的温度计,试从提高测量精度的角度出发,合理选择其中之一( B )A.量程800℃,精度等级1级B.量程400℃,精度等级1.5级C.量程600℃,精度等级1.5级D.量程500℃,精度等级2.5级12.热电偶中产生热电势的条件是( B )A.两热电极材料相同 B.两热电极材料不同 C.两热电极的两端温度相同13.压电式传感器目前多用于测量( B )A.静态的力或压力 B.动态的力或压力 C.速度之间是( B )14.变间隙式电容传感器的非线性误差与材料初始距离dA.正比关系B.反比关系C.无关系15.热电偶中的热电势主要是( D )A.感应电势 B.温差电势 C.切割电势 D.接触电势16.压电传感器的信号处理有电荷放大器、电压放大器,二者在应用方面最主要区别是( B )A.阻抗变换能力 B.电缆线长度变化影响计入与否C.输出电压与输入电压 D.前三种讲法都不对17.图为一个电感传感器,当衔铁上移Δδ后,那么( A )A.Rm变小B.e变小C.L变小D.μ0变小18.光敏三极管的结构可看成用光敏二极管代替普通三极管中的( C )A.集电极 B.发射极 C.集电结 D.发射结二、填空(24)1、检测仪表中常用测试方法有直接比较测量法、微差法和零位法。
差动变面积式电容传感器的静态及静态特征[新版]
![差动变面积式电容传感器的静态及静态特征[新版]](https://img.taocdn.com/s3/m/5153e1e2f71fb7360b4c2e3f5727a5e9856a27fd.png)
差动变面积式电容传感器的静态及动态特性
【实验目的】
了解差动变面积式电容传感器的原理及其特性
【实验仪器】
电容式传感器、电容变换器、差动放大器、低通滤波器、JK-19型直流恒压电源、JK-20型频率振荡器、九孔实验板接口平台、万用表、示波器
【实验原理】
由C = S0/d得,电容式传感器可分为极距变化型、面积变化型、介质变化型三类,本仪器中差动变面积式。
传感器由两组定片和一组动片组成。
当安装于振动台上的动片上、下改变位置,与两组静片之间的重叠面积发生变化,极间电容也发生相应变化,称为差动电容。
如将上层定片与动片形成的电容定为C l,下层定片与动片形成的电容定为C2,当将C l和C2接入桥路作为相邻两臂时,桥路的输出电压与电容量的变化有关,即与振动台的位移有关。
【实验步骤】
旋钮初始位置:差动放大器增益旋钮置于中间,万用表置于2 V档。
1.将电容式动片固定在振动盘上,调整好动片与静片的位置,不能相互接触。
2.按图22-1接线。
把电容的增益拧至合适位置,万用表20 V档。
调节测微头,使输出为零,并读出其刻度值。
3.转动测微头,每次0.3 mm,记下此时测微头的读数及万用表的读数,直至电容动片与上(或下)静片覆盖面积最大为止。
退回测微头至初始位置,并开始以相反方向旋动,同上法,记下)mm (X 及)mV (U 值。
4.计算系统灵敏度S 。
X /U S ∆∆=(式中U ∆为电压变化,X ∆为相应的两端位移变化),并作出X ~U 关系曲线。
5.卸下测微头,断开万用表,接通激振器,用示波器观察输出波形。
改变激振频率,测量3种波形的电压、频率和周期。
电容式传感器的位移特性实验报告
-127
-106
-85
-64
-43
-25
-3
15
35
52
64
X/mm
24
24.5
25
25.5
26
26.5
27
27.5
28
28.5
29
29.5
U/mv
76
84
88
89
85
80
77
74
73
73
73
74
X/mm
29.5
29
28.5
28
27.5
27
26.5
26
25.5
25
24.5
24
U/mv
74
73
73
71
五、 思考题:
1、简述什么是传感器的边缘效应,它会对传感器的性能带来哪些不利影响。
对于平行板型电容器,其极板之间存在静电场。理想平行板电容器的电场线
是直线,但实际中在靠近边缘的地方会变弯,相当于在传感器电容中并联了一个
电容,而且越靠边就越弯到边缘时最弯,这种现象叫做边缘效应。
带来的不利影响:会引起极板间的电场分布不均,导致非线性问题仍然存在,
-530
-532
-534
-531
-526
-520
-515
-507
-502
-496
-489
-485
三、 数据处理:
1、输入—输出特性曲线
由表 1 电容传感器的输出电压值与输入位移量可画出该传感器的输入输出
特性曲线,如图 1 所示。
图 1 电容传感器特性曲线
200
输出电压U/mv
传感器实验报告
传感器实验报告实验一金属箔式应变片单臂电桥实验数据处理线性拟合V=5.767*x-0.422 灵敏度为5.767思考题:(1) 本实验电路对直流稳压电源有何要求,对放大器有何要求。
直流稳压源输出应稳定,且不超过负载的额定值。
放大器应对差模信号有较好放大作用,无零漂或零漂小可忽略。
(2)将应变片换成横向补偿片后,又会产生怎样的数据,并根据其结构说明原因。
灵敏度将大幅度降低,线性性也将变差,电压随位移的变化将变得十分小。
因为横向补偿片原本是横向粘贴在悬梁臂上的,用于补偿应变片测量的横向效应。
在悬梁臂形变的时候,横向补偿片仅仅横向部分发生形变,而应变片敏感栅往往很粗而且有效长度短,因此阻值变化小。
实验二金属箔式应变片双臂电桥(半桥)实验数据处理V=11.95*x+0.778灵敏度为11.95思考题:(1)根据应变片受力情况变化,对实验结果作出解释。
在梁上下表面受力方向相反的应变片相当于将形变放大两倍,,因此,ΔV/ΔX大约是实验一中的两倍。
(2)将受力方向相反的两片应变片换成同方向应变片后,情况又会怎样。
同方向的两片应变片相互抵消,输出为零。
(3)比较单臂,半桥两种接法的灵敏度。
在相同形变量下,半桥的灵敏度约是单臂的两倍。
实验三金属箔式应变片四臂电桥(全桥)的静态位移性能V=24.15*x+1.4灵敏度问24.15思考题:(1)如果不考虑应变片的受力方向,结果又会怎样。
对臂应变片的受力方向应接成相同,邻臂应变片的受力方向相反,否则相互抵消没有输出(2)比较单臂,半桥,全桥各种接法的灵敏度。
在相同形变量下,半桥灵敏度约是单臂的两倍,全桥灵敏度越是半桥的两倍,即约为全桥的四倍。
实验四金属箔式应变片四臂电桥(全桥)振动时的幅频性能实验数据处理思考题:(1)在实验过程中,观察示波器读出频率与频率表示值是否一致,据此,根据应变片的幅频特性可作何应用。
不一致。
可以根据这个原理反向测出梁的震动频率,利用应变片读出峰值,在找到对应的频率值即可。
YL-9XX传感器实验仪实验(二)
可见,本实验测出的实际上是磁场情况,磁场分布为梯度磁场,位移测量的线性度,灵敏度与磁场分布有很大关系。
6、实验完毕后关闭主、副电源,各旋钮置初始位置。
注意事项:1、由于磁路系统的气隙较大,应使霍尔片尽量靠近极靴,以提高灵敏度。
2、一旦调整好后,测量过程中不能移动磁路系统。
3、激励电压不能超过2V,以免损坏霍尔片。
实验二十四霍尔式传感器的应用——电子秤之四一、实验目的:了解霍尔式传感器在静态测量中的应用。
二、需用器件与单元:霍尔片、磁路系统、差动放大器、直流稳压电源、电桥、砝码、F/V表(电压表)、主、副电源、振动平台。
三、旋钮初始位置:直流稳压电源置±2V档,F/V表置2V档,主、副电源关闭。
四、实验步骤:1、开启主、副电源,将差动放大器调零,关闭主、副电源。
2、调节测微头脱离平台并远离振动台。
3、按图23接线,开启主、副电源,将系统调零。
4、差动放大器增益调至最小位置,然后不再改变。
5、在称重平台上放上砝码,填入下表:W(g)V(v)6、在平台上放一个未知重量之物,记下表头读数。
根据实验结果作出V-W曲线,求得未知重量。
注意事项:1、此霍尔传感器的线性范围较小,所以砝码和重物不应太重。
2、砝码应置于平台的中间部分。
实验二十五霍尔式传感器的交流激励特性一、实验目的:了解交流激励霍尔片的特性。
二、所需单元及部件:霍尔片、磁路系统、音频振荡、差动放大器、测微头、电桥、移相器、相敏检波器、低通滤波器、主、副电源、F/V 表、示波器、振动平台。
三、旋钮初始位置:音频振荡器1KH Z ,放大器增益最大,主、副电源关闭。
四、实验步骤:1、开启主、副电源将差放调零,关闭主、副电源。
2、调节测微头脱离振动平台并远离振动台。
按图25接线。
开启主、副电源,将音频振荡器的输出幅度调到5V P-P 值,差动增益值最小。
根据实验七(3)的方法利用示波器和F/V 表(F/V 表置20V 档)。
按照实验十一的方法调整好W 1、W 2及移相器。
(整理)大学物理自主设计性实验
大学物理自主设计性实验(FB716-Ⅱ型物理设计性(传感器)实验装置)实验指导书杭州精科仪器有限公司目录第一、产品简介 (02)第二、实验项目内容 (04)实验一、应变片性能—单臂电桥 (04)实验二、应变片:单臂、半桥、全桥比较 (06)实验三、移相器实验 (08)实验四、相敏检波器实验 (10)实验五、应变片—交流全桥实验 (12)实验六、交流全桥的应用—振幅测量 (14)实验七、交流全桥的应用—电子秤 (14)实验八、霍尔式传感的直流激励静态位移特性 (16)实验九、霍尔式传感的应用——电子秤 (17)实验十、霍尔片传感的交流激励静态位移特性 (17)实验十一、霍尔式传感的应用研究—振幅测量 (18)实验十二、差动变压器(互感式)的性能 (19)实验十三、差动变压器(互感式)零点残余电压的补偿 (20)实验十四、差动变压器(互感式)的标定 (21)实验十五、差动变压器(互感式)的应用研究—振幅测量 (22)实验十六、差动变压器(互感式)的应用—电子秤 (23)实验十七、差动螺管式(自感式)传感器的静态位移性能 (24)实验十八、差动螺管式(自感式)传感器的动态位移性能 (25)实验十九、磁电式传感器的性能 (26)实验二十、压电传感器的动态响应实验 (27)实验二十一、压电传感器引线电容对电压放大器、电荷放大器的影响 (28)实验二十二、差动面积式电容传感器的静态及动态特性 (29)实验二十三、扩散硅压阻式压力传感实验 (30)实验二十四、气敏传感器(MQ3)实验 (32)实验二十五、湿敏电阻(RH)实验 (34)实验二十六、热释电人体接近实验 (34)实验二十七、光电传感器测转速实验 (36)第三、结构安装图片和说明 (37)第一、产品简介一、FB716-II型物理设计性(传感器)实验装置本实验装置主要由以下所述5个部分组成:1.传感器实验台部分:装有双平行振动梁(包括应变片上下各2片、梁自由端的磁钢)、双平行梁测微头及支架、振动盘(装有磁钢、用于固定霍尔传感器的二个半圆磁钢、差动变压器的可动芯子、电容传感器的动片组、磁电传感器的可动芯子、压电传感器),安装时可参考第三部分结构图片及安装说明。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
差动变面积式电容传感的静态及动态特性
一.实验目的:
了解差动变面积式电容传感器的原理及其特性。
二.实验设备及器材:
电容传感器、电压放大器、低通滤波器、F/V表、激振器、示波器
三.实验初值:
差动放大器增益旋钮置于中间,F/V表置于V表2V档,
四.实验步骤:
(1) 按图17.1接线。
图17.1
(2) F/V表打到20V,调节测微头,使输出为零。
(3) 转动测微头,每次0.1mm,记下此时测微头的读数及电压表的读数,直至电容动片与上(或下)静片复盖面积最大为止。
X(mm)
V(mv)
退回测微头至初始位置。
并开始以相反方向旋动。
同上法,记下X(mm)及 V(mv)值。
(4) 计算系统灵敏度S。
S=ΔV/ΔX(式中ΔV为电压变化,ΔX为相应的梁端位移变化),并作出V-X关系曲线。
X(mm)
V(mv)
(5) 卸下测微头,断开电压表,接通激振器,用示波器观察输出波形。