八年级数学下学期第一次月考

合集下载

湖南省长沙市长沙县百熙实验学校2023-2024学年八年级下学期第一次月考数学试题

湖南省长沙市长沙县百熙实验学校2023-2024学年八年级下学期第一次月考数学试题

湖南省长沙市长沙县百熙实验学校2023-2024学年八年级下学期第一次月考数学试题一、单选题1.下列计算中,正确的是( )A 2B .1C 9D 2= 2.如图,在平行四边形ABCD 中,50A ∠=︒,则C ∠的度数是( )A .130︒B .115︒C .65︒D .50︒3的结果是( )A .B .C .3D .94.不能判定四边形ABCD 为平行四边形的题设是( )A .AB CD =,AD BC ∥B .AB CD ∥,AB CD =C .AB CD =,AD BC = D .AB CD ∥,AD BC ∥5.以下列各组数为三角形的三条边长:① 13;②9,40,41;2;④1.5,2.5,2 .其中能构成直角三角形的有( )A .1组B .2组C .3组D .4组6.如图,在ABCD Y 中,E 为边BC 延长线上一点,连结AE 、DE .若△ADE 的面积为2,则ABCD Y 的面积为( ).A .5B .4C .3D .27.如图有两棵树,一棵高14,一堁高2,两树之间相距5,一只小鸟从一棵树的树梢飞到另一棵树的树梢,至少飞了( )米?A .11B .12C .13D .148.如图,在平行四边形中,对角线,AC BD 交于点,90O BAC ∠︒=,若6,4AB A O ==,则AD 的长为( )A .10B .12C .D .9.已知a ,b ,c 是三角形的三边长,如果满足(a -6)2c-10|=0,那么下列说法中不正确的是( )A .这个三角形是直角三角形B .这个三角形的最长边长是10C .这个三角形的面积是48D .这个三角形的最长边上的高是4.810.如图,所有四边形都是正方形,所有三角形都是直角三角形,其中最大的正方形边长为7cm ,则正方形A 、B 、C 、D 的面积和( )2cm .A .14B .35C .42D .49二、填空题11x 的取值范围是.12.定理“平行四边形的对角相等”的逆命题是.13.我们在学习“实数”时画了这样一个图,即“以数轴上的单位长为“1”的线段作一个正方形,然后以原点O 为圆心,正方形的对角线长为半径画弧交数轴于点A ”,如图线段OA 的长度是.14.如图已知长方形ABCD中8cmAB=,10cmBC=,在边CD上取一点E,将ADEV折叠使点D恰好落在BC边上的点F,则CE的长为.15.在探索数学名题“尺规三等分角”的过程中,有下面的问题:如图BD是平行四边形ABCD 的对角线,点E在BD上,DC=DE=AE,∠1=25°,则∠C的大小是.16.如图,有一圆柱,它的高为20cm,底面周长为30cm.则蚂蚁沿圆柱侧面从点A爬到点B的最短路程是cm.三、解答题17.计算:+;(π1V的三个顶点都在正方形网格的格点上,网格中每个小正方形的边长均为1.18.如图,ABC(1)计算:AB =______;BC =______;AC =______.(2)证明:ABC V 是直角三角形(3)求AC 边上的高BD .19.如图,在平行四边形ABCD 中,7BC =,4AB =,BE 平分ABC ∠交AD 于点E ,求DE 的长.20.如图,在△ABC 中,DE 是中位线,EF ∥AB ,EF 交BC 于点F .(1)求证:四边形DEFB 是平行四边形;(2)若AB =8,BC =6,求四边形DEFB 的周长.21.如图,在ABCD Y 中,E 、F 是对角线BD 上的两点(点E 在点F 左侧),且90AEB CFD ∠=∠=︒.(1)求证:四边形AECF 是平行四边形;(2)当90BAF ∠=︒,4AB =,3AF =时,求BD 的长.22.大丰施耐庵公园是许多青少年喜爱的场所.如图是公园内一个滑梯的示意图,左边是楼梯,中间是过道,右边是滑道,已知滑道AC 与AE 的长度一样,滑梯的高度3BC m =,1BE m =.(1)要想求AC 的长度,我们可以设AC 为m x ,则AB =______;(2)请求出滑梯AC 的长度.23())()01110a a b b =≥=-≥,两个含有二次根式的代数式相乘,积不含二次根式,我们称这两个代数式互为有理化因式.例如)21111=-=,222=-=1理化因式.在进行二次根式计算时,利用有理化因式,可以将分母有理化.请完成下列问题:(1)==;(2)已知有理数a 、b 1=,则=a ,b =; (3). 24.如图,在ABCD Y 中,90BAC ∠=︒,=45ABC ∠︒,在射线CB 上取一点E ,使得220BE BC ==.当点P 从点A 匀速运动到点D 时,点Q 恰好从点C 匀速运动到点E .在线段QC 上取点F ,使得2QF =,连接PF ,记23AP x x ⎛⎫=≥ ⎪⎝⎭.(1)①CF =______(用含x 的式子表示);②若PF BC ⊥,求BQ 的长.(2)若以A ,B ,F ,P 为顶点的四边形是平行四边形,请求出x 的值.。

福建省龙岩市第七中学2023-2024学年八年级下册第一次月考数学试题(含解析)

福建省龙岩市第七中学2023-2024学年八年级下册第一次月考数学试题(含解析)

2023-2024学年第二学期八年级数学练习(一)一、单选题(每小题4分,共40分)1( )A .B .C .D .2.下列四组数中,不是勾股数的是( )A .,,B .,,C .,,D .,,3.已知菱形的两条对角线,则菱形的面积为( )A .48B .40C .24D .204.下列计算正确的是( )ABC .D5.已知两条线段长分别为3,4,那么能与它们组成直角三角形的第三条线段长是( )A .5B C .5或 D .46.下列命题的是真命题的是( )A .有一个角是直角的四边形是矩形B .邻边相等的平行四边形是矩形C .两条对角线相等的四边形是矩形D .三个角等于90度的四边形是矩形7.如图,中,,现将沿进行翻折,使点A 刚好落在,则的长为( )A .B .C .2D .8.如图,在正方形中,点,点,则点的坐标为( )1x ≤1x ≥1x >1x <15a =8b ==17c 6a =8b =10c =6a =5b =8c =9a =12b =15c =ABCD 8,6AC BD ==ABCD =3=(22=2=-Rt ABC 90,3,4A AB AC ∠=︒==ABC BD BC CD 522532ABCD (2,0)A (0,4)B DA .B .C .D .9.如图,正方形ABCD 的边长为4,点E 在边AB 上,AE =1,若点P 为对角线BD 上的一个动点,则△PAE 周长的最小值是( )A .3B .4C .5D .610.如图,四边形是矩形,点在边上,平分且,垂足为点,连接并延长交于点,连接交于点,连接交于点,有下列结论:①;②垂直且平分;③;④;⑤.其中正确的结论有( )个.A .1B .2C .3D .4二、填空题(每小题4分,共24分)11的计算结果是 .12.直角三角形一直角边为12cm ,斜边长为13cm ,则它的面积为13.已知平行四边形ABCD 的周长是28cm ,AC 和BD 交于O ,△OAB 的周长比△OBC 的周长小2cm ,则AB = .14.如图,矩形的对角线交于点O ,,则的长(6,2)(5,2)(6,3)(5,3)ABCD F BC AF BAD ∠AD AF =DE AF ⊥E BE CD G DF BG H EC DF I AFD CFD ∠=∠DF EC EFC EHD ≌AB EG =67.5EGC ∠=︒2cm ABCD AC BD ,260AB AOB =∠=︒,BD为 .15.如图,,D 为AB 的中点,点E 为AF 的中点,使E 、C 、D 共线,且,若,则AB 的长为 .16.如图,在平面直角坐标系中有一个边长为的正方形,边,分别在轴、轴上,如果以对角线为边作第二个正方形,再以对角线为边作第三个正方形,,照此规律作下去,则点的坐标为 .三、解答题(每小题4分,共8分)17.计算:(2)18.如图,在正方形网格中,每个小正方形的边长均是1,A ,B ,C 为格点(每个小正方形90ACB ∠= 14CE CD =10BF =1OABC OA OC x y OB 11OBB C 1OB 122OB B C ⋯6B (33+-的顶点叫格点).(1)填空:线段___________,___________,___________;(2)判断的形状,并说明理由.19.如图,已知四边形ABCD 是平行四边形,BE ⊥AC , DF ⊥A C ,求证:AE =CF .20.如图,甲乙两船从港口同时出发,甲船以10海里/时速度向北偏东航行,乙船向南偏东航行,5小时后,甲船到达岛,乙船到达岛,若、两岛相距130海里,问乙船的航速是多少?21.在等腰三角形中,,点D 是中点,点E 是中点.过点A 作交的延长线于点F .(1)试判断四边形的形状,并加以证明;AB =BC =AC =ABC A 48︒42︒C B C B ABC AB AC =BC AD AF BC ∥BE ADCF(2)若,,求四边形的面积.22.如图,为矩形的对角线,按要求完成下列各题.(1)用直尺和圆规作出的垂直平分线,分别交于点,垂足为.(不写作法,仅保留作图痕迹);(2)连接和.求证:四边形是菱形;23.【信息阅读】的式子,可以按如下方法化简:.,还可以这样化简:.【问题解决】利用上述方法解决下列问题:= ;(2)化简:;24.阅读理解:【问题情境】教材中小明用4张全等的直角三角形纸片拼成图1,利用此图,可以验证勾股定理吗?17AB=30BC=ADCFBD ABCDBD AD BC,E F,O BE DF BFDE==1===1====-【探索新知】从面积的角度思考,不难发现:大正方形的面积=小正方形的面积 + 4个直角三角形的面积,从而得数学等式: ;(用含字母a 、b 、c 的式子表示)化简证得勾股定理:【初步运用】(1)如图1,若b=2a ,则小正方形面积:大正方形面积= ;(2)现将图1中上方的两直角三角形向内折叠,如图2,若a= 4,b= 6此时空白部分的面积为 ;【迁移运用】如果用三张含60°的全等三角形纸片,能否拼成一个特殊图形呢?带着这个疑问,小丽拼出图3的等边三角形,你能否仿照勾股定理的验证,发现含60°的三角形三边a 、b 、c 之间的关系,写出此等量关系式及其推导过程.知识补充:如图4,含60°的直角三角形,对边y :斜边x =定值k25.平面直角坐标系中有正方形AOBC ,O 为坐标原点,点A 、B 分别在y 轴、x 轴正半轴上,点P 、E 、F 分别为边BC 、AC 、OB 上的点,EF ⊥OP 于M .(1)如图1,若点E 与点A 重合,点A 坐标为(0,8),OF =3,求P 点坐标;(2)如图2,若点E 与点A 重合,且P 为边BC 的中点,求证:CM =2CP ;(3)如图3,若点M 为线段OP 的中点,连接AB 交EF 于点N ,连接NP ,试探究线段OP 与NP 的数量关系,并证明你的结论.222+=a b c参考答案与解析1.B 【分析】根据二次根式的被开方数是非负数,可得不等式,解不等式可得答案.得:,解得:.故选:B .【点拨】本题考查了二次根式有意义的条件,注意被开方数为非负数.2.C【分析】根据勾股定理逐项验证即可得到答案.【解答】解:A 、,,,,即,,,是勾股数,不符合题意;B 、,,,,即,,,是勾股数,不符合题意;C 、,,,,即,,,不是勾股数,符合题意;D 、,,,,即,,,是勾股数,不符合题意;故选:C .【点拨】本题考查勾股定理的应用,熟练掌握勾股定理是解决问题的关键.3.C【分析】根据菱形的面积等于两对角线积的一半求解. 【解答】解:由已知可得:菱形 ABCD 的面积为故选C .10x -≥1x ≥ 2215225a ==22864b ==2217289c ==22564289∴+=222+=a b c ∴15a =8b ==17c 22636a ==22864b ==2210100c ==3664100∴+=222+=a b c ∴6a =8b =10c = 22636a ==22525b ==22864c ==36256164∴+=≠222a b c +≠∴6a =5b =8c = 22981a ==2212144b ==2215225c ==81144225∴+=222+=a b c ∴9a =12b ==15c 68242⨯=,【点拨】本题考查菱形的应用,熟练掌握菱形对角线的性质及菱形面积的各种求法是解题关键.4.C【分析】根据同类二次根式,二次根式的除法,二次根式的乘法,算术平方根计算,即可求解.【解答】A不是同类二次根式,无法合并,故本选项错误,不符合题意;BC 、,正确,故本选项符合题意;D,故本选项错误,不符合题意;故选:C .【点拨】本题主要考查了同类二次根式,二次根式的除法,二次根式的乘法,算术平方根,熟练掌握相关知识点是解题的关键.5.C【分析】本题考查了勾股定理,分两种情况:当两条线段均为直角边时;当线段为斜边,线段为直角边时;利用勾股定理计算即可.【解答】解:当两条线段均为直角边时,则与它们组成直角三角形的第三条线段长,当线段为斜边,线段为直角边时,则与它们组成直角三角形的第三条线段长综上所述,两条线段长分别为3,4,那么能与它们组成直角三角形的第三条线段长是5或,故选:C .6.D【分析】利用矩形的判定定理分别对每个选项进行判断后即可确定正确的选项.【解答】解:A 、有一个角是直角的平行四边形是矩形,故原命题错误,是假命题;B 、邻边相等的平行四边形是菱形,故原命题错误,是假命题;C 、两条对角线相等的平行四边形是矩形,故原命题错误,是假命题;D 、三个角等于90°的四边形是矩形,正确,是真命题;故选:D .=(22=2435==43==【点拨】此题主要考查了命题的真假,熟练利用相关定理以及性质进而判定举出反例即可判定出命题正确性.7.B【分析】将沿进行翻折,使点A 刚好落在上,则,,在直角中,根据勾股定理,即可得到一个关于CD 的方程,即可求得.【解答】解:设,则,在中,,,在中,即:解得:,故选:B .【点拨】本题考查了勾股定理和折叠的问题,解题的关键是根据勾股定理把求线段的长的问题转化为方程问题.8.A【分析】通过证明得到,即可求得点的坐标.【解答】解:如下图所示,过点D ,作垂直于x 轴,交x 轴于点E ,∵,,∴,∵,,∴,ABC BD BC AD A D '=AB A B '=Rt A DC '△CD x =4A D ADx ¢==-Rt ABC 5BC ==532ACB C AB B C A B ¢¢\=-=-=-=Rt A DC ' 222A D A C CD ''+=()22242x x -+=52x =ABO DAE ≌2,4DE OA AE OB ====D DE (2,0)A (0,4)B ==OA 2,OB 490OAB DAE ∠+∠=︒90OAB OBA ∠+∠=︒DAE ABO ∠=∠∵,∴,∴,∴,∴点的坐标为,故选:A .【点拨】本题考查直角坐标、正方形和全等三角形的性质,解题的关键是证明.9.D【分析】连接AC 、CE ,CE 交BD 于P ,此时AP +PE 的值最小,求出CE 长,即可求出答案.【解答】解:连接AC 、CE ,CE 交BD 于P ,连接AP 、PE ,∵四边形ABCD 是正方形,∴OA =OC ,AC ⊥BD ,即A 和C 关于BD 对称,∴AP =CP ,即AP +PE =CE ,此时AP +PE 的值最小,所以此时△PAE 周长的值最小,∵正方形ABCD 的边长为4,点E 在边AB 上,AE =1,∴∠ABC =90°,BE =4﹣1=3,由勾股定理得:CE =5,∴△PAE 的周长的最小值是AP +PE +AE =CE +AE =5+1=6,故选:D .【点拨】本题考查了正方形的性质与轴对称——最短路径问题,知识点比较综合,属于较难ABO DAE BOA AED BA AD ∠=∠⎧⎪∠=∠⎨⎪=⎩()ABO DAE AAS ≌2,4DE OA AE OB ====6OE OA AE =+=D (6,2)ABO ADE ≌△△题型.10.C【分析】由矩形的性质可得,,得出,由等腰三角形的性质得出,故①正确;由得,由线段垂直平分线的性质可得②正确;由,,得不可能是等边三角形,得,故③错误;由等腰三角形的性质可判断④;由全等三角形的性质及长方形的性质可得为等腰直角三角形,求出,再根据平行线的性质可得,可判定⑤正确.【解答】解:四边形是矩形,,,,,,,故①正确;,,,,在的垂直平分线上,在和中,,,,点在的垂直平分线上,垂直且平分,故②正确;平分,,,,又,不可能是等边三角形,AD BC ∥90BCD ∠=︒ADF CFD ∠=∠AFD ADF ∠=∠Rt Rt DEF DCF ≌EF CF =45EDC ∠=︒ED DC =EDC △ED EC ≠AED △67.5ABE ∠=︒67.5EGC ABE ∠=∠=︒ ABCD AD BC ∴∥90BCD ∠=︒∴∠=∠ADF CFD AD AF = AFD ADF ∴∠=∠AFD CFD ∴∠=∠AFD CFD ∠=∠ DE AF ⊥DC BC ⊥DE DC ∴=D ∴CE Rt DEF Rt DCF △DE DC DF DF=⎧⎨=⎩Rt Rt (HL)DEF DCF ∴ ≌EF CF ∴=∴F CE DF ∴CE AF BAD ∠45DAF ∴∠=︒45ADE ∴∠=︒45EDC ∴∠=︒ED DC = EDC ∴△,错误;故③错误;,,,,,,故④错误;,,为等腰直角三角形,,,,又,,,,,,,故⑤正确.故选:C .【点拨】本题主要考查全等三角形的判定和性质,等腰三角形的判定与性质,矩形的性质,线段垂直平分线的性质等知识,熟练掌握矩形的性质是解题的关键.11【分析】根据二次根式的乘法法则进行计算即可..【点拨】本题考查二次根式的乘法,掌握运算法则是解题的关键.12.30ED EC ∴≠EFC EHD ∴ ≌AB CD = ED CD =AB ED ∴=45EDG ∠=︒ ED EG ∴≠AB EG ∴≠45DAF ∠=︒ DE AF ⊥AED ∴ AE DE ∴=Rt Rt (HL)DEF DCF ≌DE DC ∴=AB DC = AB AE =∴ABE AEB ∴∠=∠45BAE ∠=︒ 67.5ABE ∴∠=︒AB DC ∥67.5EGC ABE ∴∠=∠=︒==【分析】根据勾股定理求得其另一直角边的长,再根据面积公式即可求得其面积.【解答】解:∵直角三角形一直角边为12cm ,斜边长为13cm ,∴另一直角边=,∴面积=×5×12=30 (cm 2).故答案为:30.【点拨】本题考查了勾股定理解三角形,解决本题的关键是根据勾股定理求得另一直角边的长.13.6cm【分析】根据平行四边形的性质可得AB +BC =14cm ,OA =OC ,再根据△OAB 的周长比△OBC的周长小2cm ,即可求得.【解答】解:∵平行四边形ABCD 的周长为28cm ,∴AB +BC =14cm ,OA =OC ,∵△OAB 的周长比△OBC 的周长小2cm ,∴,∴AB =6cm ,BC =8cm .故答案为:6cm .【点拨】本题考查了平行四边形的性质,三角形的周长,利用二元一次方程组求解,采用方程思想是解决本题的关键.14.4【分析】本题考查了矩形的性质、等边三角形的判定与性质;熟练掌握矩形的性质,并能进行推理计算是解决问题的关键,首先根据矩形的性质,可得;接下来再根据和,即可判断为等边三角形;根据等边三角形的性质,可得,即可作答.【解答】解:∵四边形是矩形,12()()2cm OB OC BC OA OB AB BC AB ++-++=-=12OA OB AC ==60AOB ∠=︒OA OB =AOB 22AB OA AC OA ===,ABCD∴,又∵,∴为等边三角形,∴.故答案为4.15.8【分析】先根据三角形中位线定理可得,再根据可得,然后根据直角三角形斜边上的中线等于斜边的一半即可得.【解答】解:点为中点,点为中点,且,,,,,点为中点,.故答案为:8.【点拨】本题主要考查了三角形中位线定理、直角三角形斜边上的中线等于斜边的一半等知识点,熟练掌握三角形中位线定理是解题关键.16.【分析】本题考查了坐标规律,正方形的性质,勾股定理;根据勾股定理求出的长,利用正方形的每一条对角线都把它分成两个全等的等腰直角三角形得出的坐标,再根据题意和图形可看出每经过一次变化,都逆时针旋转的坐标.【解答】解:正方形边长为,,,正方形是正方形的对角线为边,,12OA OB AC ==60AOB OA OB ∠=︒=,AOB 22224AB OA BD AC OA =====⨯=,152DE BF ==14CE CD =4CD = D AB E AF 10BF =152DE BF ∴==14CE CD = 445CD DE ∴==90ACB ∠=︒ D AB 28AB CD ∴==()8,8-OB B 45︒6B OABC 1OB ∴=()1,1B 11OBB C OABC OB ∴212O B ==点坐标为,同理可知,点坐标为,根据题意和图形可看出每经过一次变化,都逆时针旋转点在第四象限的角平分线上,,点,纵坐标是,点的坐标为故答案为:.17.(2)【分析】本题考查了二次根式的混合运算,熟练掌握运算法则是解此题的关键.(1化简,再计算减法即可;(1)先根据平方差公式和二次根式的除法计算,然后计算加减即可.【解答】(1;(2)解:.18.(1;(2)直角三角形;理由见解析.【分析】(1)根据勾股定理即可求解;(2)根据勾股定理的逆定理即可求解.【解答】解:(1)AC =5.5;(2)△ABC 为直角三角形,理由如下:∵AB 2=5,BC 2=20,AC 2=25,∴AB 2+BC 2=AC 2,∴1B ()0,232OB ==∴2B ()2,2-45︒∴6B 76OB =∴6B 78=78=-∴6B ()8,8-()8,8-2-=((223339832+-=-=--=-5AB =BC =∴△ABC 为直角三角形.【点拨】此题考查了勾股定理和勾股定理的逆定理,熟练掌握勾股定理和勾股定理的逆定理是解本题的关键.19.见解析【分析】可证明ABE CDF ,即可得到结论.【解答】证明:∵四边形ABCD 是平行四边形∴AB =CD ,AB CD∴∠BAC =∠DCA∵BE AC 于E ,DF AC 于F∴∠AEB =∠DFC =90°在ABE 和CDF 中 ,∴ABE CDF (AAS )∴AE =CF【点拨】此题考查平行四边形的性质和全等三角形的判定及性质,掌握平行四边形的性质和全等三角形的判定是解决问题的关键.20.24海里/小时【分析】利用方向角的意义和平角的定义得到∠BAC =90°,则利用勾股定理可计算出AB =120海里,然后计算乙船的航速.【解答】解:依题意:,从而可得:,在中,,由已知得:(海里),(海里),从而可得:(海里),乙船的速度为:(海里/时),答:乙船的速度为24海里/小时.【点拨】本题考查了勾股定理解决航海问题,熟练掌握勾股定理时解题的关键.21.(1)四边形是矩形,证明见解析≌ ∥⊥⊥ BAE DCF AEB CFD AB CD ∠=∠⎧⎪∠=∠⎨⎪=⎩≌ 484290︒+︒=︒()180484290BAC ∠=︒-︒+︒=︒Rt ABC 222AB AC BC +=10550AC =⨯=130BC =120AB =120524÷=ADCF(2)120【分析】(1)由证明,得,证得四边形为平行四边形,再由等腰三角形“三线合一”得,则,根据矩形的判定定理可证得结论;(2)根据等腰三角形的性质得到,勾股定理求得,然后根据矩形的面积公式即可得到结论.【解答】(1)解:四边形是矩形;证明:∵E 是的中点,∴,∵,∴,在和中,,∴;∴,∵点D 是中点,∴,∴,又∵,∴四边形是平行四边形,∵,点D 是中点,∴,∴,∴四边形是矩形;(2)解:∵,点D 是中点,∴,,∴,AAS AEF DEB ≌△△AF DB =ADCF AD BC ⊥90ADC ∠=︒1152BD CD BC ===AD ADCF AD AE DE =AF BC ∥AFE DBE ∠=∠AEF △DEB AFE DEB AEF DEB AE DE ∠=∠⎧⎪∠=∠⎨⎪=⎩()AAS AEF DEB ≌△△AF DB =BC CD DB =CD AF =AF BC ∥ADCF AB AC =BC AD BC ⊥90ADC ∠=︒ADCF AB AC =BC 1152BD CD BC ===AD BC ⊥90ADC ∠=︒∴,∴四边形的面积.【点拨】本题考查了矩形的判定和性质、平行四边形的判定、全等三角形的判定与性质、等腰三角形的性质等知识;熟练掌握矩形的判定与性质,证明三角形全等是解题的关键.22.(1)见解析(2)见解析【分析】本题考查了作图—复杂作图、线段垂直平分线的性质、菱形的判定、矩形的性质、三角形全等的判定与性质,熟练掌握以上知识点并灵活运用是解此题的关键.(1)根据要求作出图形即可;(2)由线段垂直平分线的性质得出,,由矩形的性质得出,证明得出,即可得证.【解答】(1)解:如图,直线即为所作,;(2)证明:垂直平分线段,,,四边形为矩形,,,在和中,,,,8AD ===ADCF 158120=⨯=OB OD =EF BD ⊥EDO FBO ∠=∠()ASA EDO FBO ≌OE OF =EF EF BD OB OD ∴=EF BD ⊥ ABCD AD BC ∴∥EDO FBO ∴∠=∠EDO FBO △EDO FBO BO DOEOD FOB ∠=∠⎧⎪=⎨⎪∠=∠⎩()ASA EDO FBO ∴ ≌OE OF ∴=,四边形是平行四边形,,四边形是菱形.23.(2)②44【分析】(1)根据材料的方法即可求解,(2)①根据材料的方法:利用平方差公式进行分母有理化即可求解,②先把每一个加数进行分母有理化,再找出规律后面的第二项和前面的第一项抵消,得出答案.【解答】(1(2)②原式=.【点拨】本题主要考查了分母有理化,解题的关键是找准有理化因式.24.[探索新知]:;[初步运用]:(1)5:9;(2)28; [迁移运用] :,证明详见解析.OB OD = ∴BFDE EF BD ⊥ ∴BFDE===+ 1=+ 144==221()42a b c ab +=+⨯222a b ab c +-=【分析】[探索新知]分别表示出大正方形,小正方形,直角三角形面积,再由面积关系可得关系式;[初步运用](1)将b=2a 代入可推出,即小正方形面积为大正方形面积=,可求出比值;(2)空白部分面积为小正方形面积减去2个直角三角形面积;[迁移运用]大正三角形面积=三个全等三角形面积+小正三角形面积,分别求出面积代入关系式化简即可.【解答】[探索新知]大正方形边长为,所以面积=,小正方形的边长为,所以面积=,直角三角形的面积=,由大正方形的面积=小正方形的面积 + 4个直角三角形的面积可得[初步运用](1)将b=2a 代入得,∴,即小正方形面积为大正方形面积=,∴ 小正方形面积:大正方形面积=:=5:9(2)∵a= 4,b= 6∴小正方形面积=,直角三角形面积=∴空白部分面积=小正方形面积-两个直角三角形面积=[迁移运用]由补充知识可得大正三角形的高为,小正三角形的高为,全等三角形的高为,则由大正三角形面积=三个全等三角形面积+小正三角形面积可得∴【点拨】本题考查勾股定理的证明和应用,根据图形得出面积关系是解题的关键.222+=a b c 22=5c a 25a ()229+=a b a ()a b +2()a b +c 2c 12ab 221()42a b c ab +=+⨯222+=a b c ()2222+=a a c 22=5c a 25a ()229+=a b a 25a 29a 22222=+4652=+=c b a 11=46=1222⨯⨯ab 52212=28-⨯()+k a b kc ka 111()()3222+⋅+=⨯⋅+⋅a b k a b b ka c kc 22()3a b ab c +=+222a b ab c +-=25.(1);(2)证明见解析;(3),证明见解析【分析】(1)证明△OAF ≌△BOP (ASA ),得出OF=PB=3,则P 点坐标可求出;(2)取的中点,连接交于,连接,利用,证得四边形为平行四边形,然后根据直角三角形斜边中线等于斜边的一半求得MN=AN ,用HL 定理证明,从而求得为的垂直平分线,使问题得解;(3)过点作交于点,交于点,连接,由矩形和正方形的性质求得为等腰直角三角形,从而求得,,利用垂直平分线的性质求得ON=NP ,然后根据HL 定理证得,然后利用全等三角形的性质求得,即为等腰直角三角形,从而使问题得解.【解答】解:∵A (0,8),∴OA=8,∵EF ⊥OP 于M ,∴∠OMF=90°,∴∠MOF+∠OFM=90°,∵∠OFM+∠OAF=90°,∴∠MOF=∠OAF .∵OA=OB ,∠AOF=∠OBP ,∴△OAF ≌△BOP (ASA ),∴OF=PB=3,∴P (8,3);(2)取的中点,连接交于,连接∵在正方形AOBC 中,OA=BC=AC ,且点P 为BC 中点∴,(83)P,OP =OA N CN AM H MN PC ON =PC ON ∥OPCN AHN MHN R t △≌R t △CN AM N HG AC OA H BC G ON AHN AH NH =OH NG =Rt ONH Rt NPG △≌△90ONH PNG ∠+∠=︒ONP △OA N CN AM H MN12PC BC =12ON OA =∴,∴四边形为平行四边形∴∵EF ⊥OP∴又∵N 为OA 中点∴在Rt △AOM 中,MN=AN在Rt △AHN 和Rt △MHN 中,MN=AN ,NH=NH∴∴,为的垂直平分线∴(3)过点作交于点,交于点,连接由题意可知四边形AHGC 是矩形且四边形AOBC 为正方形∴HG=AC=OA在正方形AOBC 中,∠OAB=45°∴为等腰直角三角形∴,由EF ⊥OP 于M 且M 为OP 的中点∴MN 垂直平分OP∴ON=NP在Rt △ONH 和Rt △NPG 中∴∴,,PC ON =PC ON∥OPCN CN OP∥CN AM⊥AHN MHNR t △≌R t △AH MH =CN AM 2AC CM CP==N HG AC OA H BC G ONAHN AH NH =OH NG=OH NG ON NP=⎧⎨=⎩Rt ONH Rt NPG△≌△ON PN =GNP HON ∠=∠HNO GPN∠=∠∵∴∴∴为等腰直角三角形∴.【点拨】本题是四边形综合题,考查了正方形的性质,等腰直角三角形的性质,全等三角形的判定及性质,等腰三角形的性质等知识,解答时正确作出辅助线,证明三角形全等是关键.90ONH NOH ∠+∠=︒90ONH PNG ∠+∠=︒90ONP ∠=︒ONP△OP =。

广东省河源市紫金县紫城第二中学2023-2024学年八年级下学期第一次月考数学试题

广东省河源市紫金县紫城第二中学2023-2024学年八年级下学期第一次月考数学试题

广东省河源市紫金县紫城第二中学2023-2024学年八年级下学期第一次月考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.①3>0;②4x +y ≤1;③x +3=0;④y ﹣7;⑤m ﹣2.5>3.其中不等式有( ) A .1个 B .2个 C .3个 D .4个2.下列四组线段中,能组成直角三角形的是( )A .6,8,9B .5,12,13C .6,9,12D .3,4,6 3.等腰三角形两边长为3和6,则周长为( )A .12B .15C .12或15D .无法确定4.如图,OP 平分MON PA OM PB ON ∠⊥⊥,,,垂足分别为A 、B .若3PA =,则PB 为( )A .2B .4C .6D .35.已知a b >,则下列不等式变形正确的是( )A .ac bc >B .22a b −>−C .a b −>−D .22a b −>− 6.滨河国际新城潮河公园改造,该公园有三角形草坪ABC ,如图,现准备在该三角形草坪内种一棵树,使得该树到ABC 三个顶点的距离相等,则该树应种在ABC 的( )A .三条边的垂直平分线的交点B .三个角的角平分线的交点C .三条高的交点D .三条中线的交点7.满足不等式()3212x −<的所有正整数解有几个( )A .4B .5C .6D .78.若不等式组123x a x b −≤⎧⎨−≥⎩的解集为11x −≤≤,那么( ) A .2,0a b =−= B .1,2a b ==− C .0,2a b ==− D .2a =−,32b = 9.如图,ABD △是等边三角形,AC AD =,15CBD ∠=︒,则BDC ∠的度数为( )A .120︒B .125︒C .130︒D .135︒10.如图,将边长为2的等边三角形沿x 轴正方向连续翻折2019次,依次得到点1P ,2P ,3P ,…,2019P ,则点2019P 的坐标是( )A .(4036B .((4037)C .(4036D .(4037二、填空题11.“两直线平行,内错角相等”的逆命题是 .12.若等腰三角形有一个内角为100︒,则该等腰三角形的底角为 .13.如图,在Rt ABC △中,90ACB ∠=︒,CD AB ⊥于点D ,1BD =,30A ∠=︒,则AD = .14.一次函数1y kx b =+与2y x a =+的图像如图,则()0kx b x a +−+>的解集是 .15.如图,在△ABC 中,AB 的垂直平分线分别交AB ,AC 于D ,E 两点,且AC =10,BC =4,则△BCE 的周长为 .16.如图,在Rt ABC △中,90C ∠=︒,4cm AC BC ==,E 是BC 的中点,在斜边AB 上有一动点D .从点B 出发,沿着B A →的方向以每秒1cm 的速度运动,当点D 运动到点A 时,停止运动.设动点D 的运动时间为s t ,连接DE ,若BDE △为等腰直角三角形,则t 的值为 .三、解答题17.解不等式:5432x x −>+.18.解不等式组()3+22+51+32<12x x x x ≥−⎧⎪⎨⎪⎩,并把不等式组的解集在数轴上表示出来.19.一块试验田的形状如图,已知,90ABC ∠=︒,4m AB =,3m =BC ,12m AD =,13m CD =,求这块试验田的面积.20.如图,已知90C D ∠=∠=︒,AC 与BD 交于O ,AC BD =.求证:△OAB 是等腰三角形.21.空气炸锅利用高速空气循环技术煎炸各种美味食物,既安全又经济.某品牌空气炸锅进价为800元,标价为1200元.店庆期间,商场为了答谢顾客,进行打折促销活动,但是要保证利润率不低于5%,则至多打几折时销售最优惠?22.如图,15AOE BOE ∠=∠=︒,EF OB ∥,EC OB ⊥,若3EC =,求OFE S △.23.西岗区某中学为落实《教育部办公厅关于进一步加强中小学生体质管理的通知》文件要求,决定增设篮球、足球两门选修课程,为此需要购进一批篮球和足球.已知购买2个篮球和3个足球需要510元;购买3个篮球和5个足球需要810元.(1)根据以上信息解答若需要购买1个篮球和2个足球需要多少钱;(2)学校计划采购篮球、足球共50个,并要求篮球不少于30个,且总费用不超过5500元,则有哪几种购买方案?24.某印刷厂有甲、乙两种收费方式,除按印数收取印刷费外,甲种方式还需收取制版费而乙种不需要.两种印刷方式的费用y (元)与印刷份数x (份)之间的关系如图所示: (1)填空:甲种收费的函数表达式是 ,乙种收费的函数表达式是 .(2)请你根据不同的印刷数量帮忙确定选择哪种印刷方式较合算.25.问题探究: 如图1,ACB △和DCE △均为等边三角形,点A D E 、、在同一直线上,连接BE .(1)证明:AD BE =; (2)求AEB ∠的度数. 问题变式: (3)如图2,ACB △和DCE △均为等腰直角三角形,90ACB DCE ∠=∠=︒,点A D E 、、在同一直线上,CM 为DCE △中DE 边上的高,连接BE .请求出AEB ∠的度数并证明:2AE BE CM =+.。

河北省邢台市第十九中学2023-2024学年八年级下学期第一次月考数学试题

河北省邢台市第十九中学2023-2024学年八年级下学期第一次月考数学试题

河北省邢台市第十九中学2023-2024学年八年级下学期第一次月考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列调查适合普查的是( ) A .检测某城市的空气质量B .了解某市居民对废电池的处理情况C .日光灯厂要检测一批灯管的使用寿命D .学校在给学生订做校服前进行的尺寸大小的调查2.下列调查,样本具有代表性的是( )A .了解全校同学对课程的喜欢情况,对某班男同学进行调查B .了解某小区居民的防火意识,对你们班同学进行调查C .了解商场的平均日营业额,选在周末进行调查D .了解观众对所看电影的评价情况,对座号是奇数号的观众进行调查 3.下列图象中,表示y 是x 的函数的个数有( )A .1个B .2个C .3个D .4个4.若点()2,3P m m ++在平面直角坐标系的x 轴上,则点P 的坐标为( ) A .()1,0-B .()0,1C .()1,0D .()0,1-5.为了解某市80000名学生参加初中毕业考试英语成绩情况,从中抽取了2000名考生的英语成绩进行统计分析,在这次调查中,下列说法:①这80000名学生参加初中毕业考试英语成绩的全体是总体;②每个考生是个体;③2000名考生是总体的一个样本;④样本容量是2000.其中正确的是( ) A .①②③④B .②③④C .①④D .①③④6.如果A (1-a ,b +1)关于y 轴的对称点在第三象限,那么点B (1-a ,b )在( ) A .第一象限B .第二象限C .第三象限D .第四象限7.如图所示的折线图描述了某地某日的气温变化情况.根据图中信息,下列说法错误的是( ) A .4:00气温最低 B .6:00气温为24 ℃C .14:00气温最高D .气温是30 ℃的时刻为16:008.已知等腰三角形的周长为24cm ,若底边长为y ,一腰长为x ,则y 与x 之间的函数关系式为( )A .()242012y x x =-<<B .()242612y x x =-<<C .()24012y x x =-<<D .()24612y x x =-<<9.如图是反映两个变量关系的图,下列的四个情境比较合适该图的是( )A .一杯热水放在桌子上,它的水温与时间的关系B .一辆汽车从起动到匀速行驶,速度与时间的关系C .一架飞机从起飞到降落的速度与时晨的关系D .踢出的足球的速度与时间的关系10.下表列出了一次实验的统计数据,表示皮球从高处落下时,弹跳高度b 与下落高度d 的关系,试问下面哪个式子能表示这种关系( )A .2b d =B .2b d =C .2d b =D .25b d =+11.如图,在平面直角坐标系中,正三角形OAB 的顶点B 的坐标为()2,0,点A 在第一象限内,将OAB V沿直线OA 的方向平移至O A B '''△的位置,此时点A '的横坐标为3,则点B '的坐标为( )A .()3,3B .(C .(D .(12.下列说法正确的个数是( ) (1)若0ab =,则点(),P a b 表示原点(2)点()21,a -在第四象限(3)已知()1,3A -与()1,3B ,则直线AB 平行于y 轴(4)已知()1,3A -,AB y P 轴,且4AB =,则B 点的坐标为()1,1A .0个B .1个C .2个D .3个13.小明根据邻居家的故事写了一首小诗:“儿子学成今日返,老父早早到车站,儿子到后细端详,父子高兴把家还.”如果用纵轴y 表示父亲与儿子行进中离家的距离,用横轴x 表示父亲离家的时间,那么下面的图象与上述诗的含义大致吻合的是( )A .B .C .D .14.如图,在平面直角坐标系上有个点()1,0A -,点A 第1次向上跳动1个单位至点()11,1A -,紧接着第2次向右跳动2个单位至点()21,1A ,第3次向上跳动1个单位,第4次向左跳动3个单位,第5次又向上跳动1个单位,第6次向右跳动4个单位,…,依次规律跳动下去,点A 第2022次跳动至点2022A 的坐标是( )A .()506,1010-B .()506,1011C .()505,1010-D .()505,1011二、填空题15.某校八年级共有学生400人,为了解这些学生的视力情况,抽查20名学生的视力,对所得数据进行整理,在得到的频数分布表中,各小组频数之和等于.若某一小组的频数为4,则该小组的频率为;若数据在0.95 1.15~这一小组的频率为0.3,则估计该校八年级学生视力在0.95 1.15~这一范围内的人数约为人.16.函数y =x 的取值范围是. 17.小丽家在学校北偏西60︒方向上,距学校4km ,以学校所在位置为坐标原点建立直角坐标系,1km 为一个单位长度,则小丽家所在位置的坐标为.18.如图1,点P 从ABC V 的顶点A 出发,沿A →B →C 匀速运动到点C ,图2是点P 运动时线段CP 的长度y 随时间x 变化的关系图象,其中点Q 为曲线部分的最低点,则ABC V 的边AB 的长度为.三、解答题19.已知点()24,1P m m +-,试分别根据下列条件,求出点P 的坐标.(1)点P 在过点()2,3A -且与x 轴平行的直线上; (2)点P 到x 轴的距离是1; (3)点P 到x 轴,y 轴的距离相等.20.某校举行全体学生“汉字听写”比赛,每位学生听写汉字39个.随机抽取了部分学生的听写结果,绘制成如下的统计图表图1 图2根据以上信息完成下列问题:(1)统计表中的m =______,n =______; (2)补全条形统计图;(3)扇形统计图中“B ”类所对应的圆心角是______度;(4)若该校有4000名学生,且正确字数在“A ”类和“B ”类的定为不合格,需要补考,求该校需要参加补考的学生人数.21.如图,在平面直角坐标系xOy 中,ABC V 的三个顶点分别为()3,4A -,()5,1B -,()1,2C -.(1)画出ABC V 关于x 轴对称的111A B C △,并写出点1B 的坐标;(2)画出111A B C △向右平移6个单位长度,再向上平移2个单位长度后的222A B C △,并写出点2B 的坐标; (3)求出ABC V 的面积.22.某软件科技公司20人负责研发与维护游戏、网购、视频和送餐共4款软件.投入市场后,游戏软件的利润占这4款软件总利润的40%.如图是这4款软件研发与维护人数的扇形统计图和利润的条形统计图.根据以上信息,网答下列问题 (1)直接写出图中a ,m 的值;(2)分别求网购与视频软件的人均利润;(3)在总人数和各款软件人均利润都保持不变的情况下,能否只调整网购与视频软件的研发与维护人数,使总利润增加60万元?如果能,写出调整方案;如果不能,请说明理由.23.深圳市12号地铁线断安段正在施工,现甲乙两工程队共同承包,A B 两地之间的道路.两队分别从,A B 两地相向修建,已知甲队先施工3天,乙队才开始施工,乙队施工几天后因另有紧急任务暂停施工,因考虑工期,由甲队以原速的2倍修建,乙队完成紧急任务后又以原速恢复施工,直到道路修通,甲、乙两队各自修路长度与时间之间的关系如图所示,请结合图中信息解答下列问题.(1)在施工的过程中,甲队在提速后每天修道路米;乙队每天修路 米. (2)乙队共参与施工的天数是 天. (3)求,A B 两地之间的道路长度.24.已知平面直角坐标系内两点A 、B ,点(3,4)A -,点B 与点A 关于y 轴对称. (1)则点B 的坐标为________;(2)动点P 、Q 分别从A 点、B 点同时出发,沿直线AB 向右运动,同向而行,点P 的速度是每秒4个单位长度,点Q 的速度是每秒2个单位长度,设P 、Q 的运动时间为t 秒,用含t 的代数式表示OPQ ∆的面积S ,并写出t 的取值范围; (3)在平面直角坐标系中存在一点(,)M m m -,满足23MOB ABO S S ∆∆≤.求m 的取值范围.。

江苏省南京市2023-2024学年八年级下学期第一次月考模拟练习数学试卷答案

江苏省南京市2023-2024学年八年级下学期第一次月考模拟练习数学试卷答案

2023-2024学年江苏省南京市八年级数学第一次月考模拟练习参考答案 1.C2.A3.D4.A5.C【解析】如图,连接AC 、与BD 交于点O ,连接ME ,MF ,NF ,EN ,MN ,∵四边形ABCD 是平行四边形∴OA =OC ,OB =OD∵BE =DF∴OE =OF∵点E 、F 时BD 上的点,∴只要M ,N 过点O ,那么四边形MENF 就是平行四边形∴存在无数个平行四边形MENF ,故①正确;只要MN =EF ,MN 过点O ,则四边形MENF 是矩形,∵点E 、F 是BD 上的动点,∴存在无数个矩形MENF ,故②正确;只要MN ⊥EF ,MN 过点O ,则四边形MENF 是菱形;∵点E 、F 是BD 上的动点,∴存在无数个菱形MENF ,故③正确;只要MN =EF ,MN ⊥EF ,MN 过点O ,则四边形MENF 是正方形,而符合要求的正方形只有一个,故④错误;故选:C6.A【解析】 在边长为4的菱形ABCD 中,120ABC ∠=°,4AB CD ∴==,30BAC DAC ∠=∠=°,将ADC 沿射线AC 的方向平移得到′′′A D C △,∴A D ′′4AD =,A D ′′∥AD ,四边形ABCD 是菱形,AD CB ∴=,AD CB ,120ADC ∴∠=°,∴A D CB ′′=,A D CB ′′∥,∴四边形D A BC ′′是平行四边形,∴A B D C ′′=,【解析】如图1,当点P 在线段由折叠可得:3AB AE ==如图2,当点P 在BC 的延长线上时,由折叠得:3AB AE BP PE B ===∠=,,【解】(1)12÷20%=60(人),C 的人数:故答案为:60;(2)如图,△A2B2C2为所作;若点B的坐标为((3)连接A A,C C,作A A和C C22.【解】(1)证明:连接∵E、F、G、H分别是AB(2)如图②中,高AM即为所求;根据网格与勾股定理得出AF=∴ADF EAH≌,∴EAH ADF∠,∠=(3)如图③中,点N即为所求.(2)如图,连接BM MC ,, ∵90ABC ∠=°,四边形ABCD∵AD GF ∥,AB DF ∥,,∵P 为边FG 的中点,∴1322PF FG ==, ∴222235()222PE PF EF =+=+=, 过A 作AM PE ⊥,∴当A ,M ,B 三点共线时高最大,三角形面积最大如图所示,∵90AEF ∠=°, ∴90FEC AEO AEO OAE ∠+∠=∠+∠=°,∴FEC OAE ∠=∠, ∵3OEEC ==,K 为OA 的中点,OA OC =, ∴AK EC =,OK OE =,∴45OKE ∠=°, ∴135AKE ∠=°, ∵CF 是正方形外角的平分线,∴45DCF ∠=°, ∴135ECF ∠=°, ∴AKE ECF ∠=∠, 在AKE 和ECF 中,AKE ECF AK EC KAE FEC ∠=∠ = ∠=∠,∴()ASA AKE ECF ≌△△,∴AE EF =;②延长CD ,并在延长线上截取DH OE =,连接AH ,如图所示,∵四边形AOCD 是正方形,∴AO AD =,90AOE ADH ∠=∠=°, ∴()SAS AOE ADH ≌△△,∴OAE DAH ∠=∠,AE AH =,AEO AHD ∠=∠, 由①可知AE EF =,∴AEF 为等腰直角三角形,∴45EAF ∠=°, ∴45OAE DAG DAH DAG GAH ∠+∠=∠+∠=∠=°,∴GAH GAE ∠=∠, ∴()SAS AEG AHG ≌△△,∴EGGH DG OE ==+,AGE AGH ∠=∠,AEG AHD ∠=∠, ∴AEO AEG ∠=∠, ∵EN CD ∥,∴AGH GNE AGE ∠=∠=∠,。

八年级下学期第一次月考数学试卷(含参考答案)

八年级下学期第一次月考数学试卷(含参考答案)

八年级下学期第一次月考数学试卷(含参考答案)(满分150分;时间:120分钟)学校:___________班级:___________姓名:___________考号:___________第I卷(选择题共40分)一.单选题.(共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一个最符合题目要求。

1.下列各曲线是根据不同的函数绘制而成的,其中是中心对称图形的是( )2.若a<b<0,则下列条件一定成立的是( )A.ab<0B.a+b>0C.ac<bcD.a+c<b+c3.下列各式由左边到右边的变形中,是因式分解的为( )A.a2-16+3a=(a-4)(a+4)+3aB.10x2-5x=5x(2x-1)C.x2-4x+4=x(x-4)+4D.a(m+n)=am+an4.不等式x>4的解集在数轴上表示正确的是( )A. B. C. D.5.在平面直角坐标系中,已知点A的坐标为(1,4),如果将点A向右平移2个单位长度得到点A’,则点A’的坐标为( )A.(1,2)B.(1,6)C.(-1,4)D.(3,4)6.多项式12a3b-8ab2c的公因式是( )A.4a2B.4abC.2a2D.4abc7.下列多项式能用平方差公式进行因式分解的是( )A.x2-1B.x2+4C.x+9D.x2-6x8.下列多项式能直接用完全平方公式进行因式分解的是( )A.9x2-16y2B.4x2-4x+1C.x2+xy+y2D.9-3x+x29.如图,将△ABC绕点A逆时针旋转角a(0°<a<180°)得到△MDE,点B的对应点D恰好落在BC边上,若DE⊥AC,∠CAD=25,则旋转角a的度数是( )A.70°B.60°C.50°D.40°(第9题图) (第10题图)10.如图,将点A 1(1,1)向上平移1个单位,再向右平移2个单位,得到点A 2;将点A 2向上平移2个单位,再向右平移4个单位,得到点A 3;将点A 3向上平移4个单位,再向右平移8个单位,得到点A 4……按这个规律平移得到点A n ,则点A 2024的横坐标为( )A.22024B.22004-1C.22023-1D.2203+1第II 卷(非选择题 共110分)二.填空题:(每题4分,共24分)11.用适当的符号表示下列关系:a 是正数 .12.因式分解:a 2+4a= .13.若m>n ,则m -n 0(填">"或"="或"<").14.若一次函数y=kx+b 的图象如图所示,则关于x 的不等式kx+b<0的解集是 .(第14题图) (第15题图) (第16题图)15.如图,将周长为10cm 的△ABC 沿 BC 方向平移得到△DEF ,连接AD ,四边形ABFD 的周长为15cm ,则平移的距离为 cm.16.如图,长方形ABCD 中,AB=5,BC=12,点E 是BC 边上一点,连接AE ,把∠B 沿AE 折叠,使点B 落在点B’处,当△CEB'为直角三角形时,BE 的长为 .三.解答题(共10小题,86分)17.(4分)解下列不等式,并把不等式的解集在数轴上表示出来:-x -1≤3x -518.(6分)解不等式组{x -3(x -1)>11+3x 2>x -1,并写出它的所有非负整数解.19.(每题3分,共18分)因式分解:(1)8m 2n+2mn (2)-15a ³b 2+9a 2b 2-3ab 3 (3)4a 2-1(4)a 2-4ab+4b 2 (5)3x 3-12x (6)mx 2+2m 2x+m 320.(6分)先分解因式,再求值:2x(a-2)-y(2-a),其中a=2,x=1.5,y=-2.21.(6分)在如图所示的平面直角坐标系中,已知点4(1,2),B(3,1).(1)C点的坐标为.(2)将三角形ABC先向下平移4个单位,在向左平移3个单位,得到三角形A1B1C1,画出三角A1B1C1:(3)三角形A1B1C1的面积为。

2024—2025学年最新人教版八年级下学期数学第一次月考考试试卷(含答题卡)

最新人教版八年级下学期数学第一次月考考试试卷考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟一、选择题(每题只有一个正确选项,每小题3分,满分30分)1、下列各数中为无理数的是()A.6B.1.5C.D.2、若二次根式有意义,则x的取值范围是()A.x>﹣2B.x≥﹣2C.x<﹣2D.x≥23、下列二次根式中为最简二次根式的是()A.B.C.D.4、三角形三边长为a,b,c满足|a﹣4|++(c﹣3)2=0,则这个三角形是()A.等边三角形B.钝角三角形C.锐角三角形D.直角三角形5、下列说法正确的是()A.矩形对角线相互垂直平分B.对角线相等的菱形是正方形C.一组邻边相等的四边形是菱形D.对角线相等的平行四边形是菱形6、《九章算术》中有一道“折竹抵地”问题:“今有竹高一丈,末折抵地,去根三尺,问折者高几何?”题意是:如图,一根竹子原高一丈(1丈=10尺),中部有一处折断,竹梢触地面处离竹根3尺.若设折断处离地面的高度为x尺,则可以列出关于x的方程为()A.x2+32=(1﹣x)2B.x2+(1﹣x)2=32C.x2+(10﹣x)2=32D.x2+32=(10﹣x)27、如图,菱形ABCD的对角线AC,BD相交于点O,过点D作DH⊥AB于点H,连接OH,若OA=6,OH=4,则菱形ABCD的面积为()A.24B.48C.72D.968、已知﹣1<a<0,化简的结果为()A.2a B.﹣2a C.﹣D.9、如果实数a满足|2021﹣a|+=a.那么a﹣20212的值是()A.2022B.2021C.2020D.201910、如图,在正方形ABCD中,以AB为边作等边三角形ABP,连接AC,PD,PC,则下列结论;①∠BCP=75°;②△ADP≌△BCP;③△ADP和△ABC 的面积比为1:2;④.其中结论正确的序号有()A.①②④B.②③C.①③④D.①②③④第7题图第10题图二、填空题(每小题3分,满分18分)11、比较大小:67.(填“>”,“=”,“<”号)12、若一个直角三角形两边的长分别为6和8,则第三边的长为.13、已知,则xy=.14、如图,有一圆柱形油罐,底面周长为24m,高为10m.从A处环绕油罐建梯子,梯子的顶端点B正好在点A的正上方,梯子最短需要m.15、如图所示,DE为△ABC的中位线,点F在DE上,且∠AFB=90°,若AB=4,BC=10,则EF的长为.16、如图,在Rt△ABC中,∠BAC=90°,且BA=5,AC=12,点D是斜边BC上的一个动点,过点D分别作DM⊥AB于点M,DN⊥AC于点N,连接MN,则线段MN的最小值为.第14题图第15题图第16题图最新人教版八年级下学期数学第一次月考考试试卷(答卷)考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟姓名:____________ 学号:_____________座位号:___________一、选择题题号12345678910答案二、填空题11、_______ 12、______13、_______ 14、______15、_______ 16、______三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17、计算:.18、已知,,则:(1)x+y=;x﹣y=;xy=.(2)计算式子x2﹣3xy+y2﹣x﹣y的值.19、如图,平行四边形ABCD的对角线AC,BD相交于点O,EF过点O且与AB、CD分别交于点E、F.求证:OE=OF.20、如图,四边形ABCD为某街心公园的平面图,经测量AB=BC=AD=100米,CD=100米,且∠B=90°.(1)求∠DAB的度数.(2)若射线BA为公园的车辆进出口道路(道路的宽度忽略不计),工作人员想要在点D处安装一个监控装置来监控道路BA的车辆通行情况,已知摄像头能监控的最大范围为周围的100米(包含100米),求被监控到的道路长度.21、实数a,b,c在数轴上的对应点如图所示:(1)比较大小:a﹣b0;b﹣c0;a+b+c0.(2)化简:.22、如图,正方形ABCD,点E,F分别在AD,CD上,且DE=CF,AF与BE相交于点G.(1)求证:BE=AF;(2)若AB=4,DE=1,求AG的长.23、如图,在四边形ABCD中,AD∥BC,∠ABC=∠ADC=90°,对角线AC,BD交于点O,DE平分∠ADC交BC于点E,连接OE.(1)求证:四边形ABCD是矩形;(2)若∠BDE=15°,求∠DOE;(3)在(2)的条件下,若AB=2,求△BOE的面积.24、将正方形ABCD放置在平面直角坐标系中,B与原点重合,点A的坐标为(0,a),点E的坐标为(b,0),并且实数a,b使式子成立.(1)直接写出点D、E的坐标:D,E.(2)∠AEF=90°,且EF交正方形外角的平分线CF于点F.①如图①,求证AE=EF;②如图②,连接AF交DC于点G,作GM∥AD交AE于点M,作EN∥AB交AF于点N,连接MN,求四边形MNGE的面积.(3)如图③,连接正方形ABCD的对角线AC,若点P在AC上,点Q在CD 上,且AP=CQ,求(BP+BQ)2的最小值.25、将一矩形纸片OABC放在平面直角坐标系中,O为原点,点A在x轴上,点C在y轴上,OA=10,OC=8.如图1在OC边上取一点D,将△BCD沿BD折叠,使点C恰好落在OA边上,记作E点.(1)求点E的坐标及折痕DB的长;(2)如图2,在OC、CB边上选取适当的点F、G,将△FCG沿FG折叠,使点C落在OA上,记为H点,设OH=x,四边形OHGC的面积为S.求:S 与x之间的函数关系式;(3)在线段OA上取两点M、N(点M在点N的左侧),且MN=4.5,求使四边形BDMN的周长最短的点M、点N的坐标.。

山西省大同市煤矿第一中学校2023-2024学年八年级下学期第一次月考数学试卷(含答案)

2023—2024学年第二学期第一次月考八年级数学试题卷(全卷三个大题,共27个小题,共8页;满分100分,考试用时120分钟)注意事项:1.本卷为试题卷.考生必须在答题卡上解题作答.答案应书写在答题卡的相应位置上,在试题卷、草稿纸上作答无效.2.考试结束后,请将试题卷和答题卡一并交回.一、选择题(本大题共15小题,每小题只有一个正确选项,每小题2分,共30分)1. 下列二次根式能与合并的是()A. B. C. D.答案:B2. 下列各组数中,以它们为边长能构成直角三角形的是()A. 2,3,4B. 1,2,C. 2,2,D. ,,答案:C3. 下列二次根式中,不是最简二次根式是()A. B. C. D.答案:D4. 已知,则x的值是()A. B. 2 C. D.答案:C5. 一艘轮船以16海里时速度从港口出发向东北方向航行,另一艘轮船以12海里/时的速度同时从港口出发向东南方向航行,离开港口1.5小时后,两船相距()A. 10海里B. 20海里C. 30海里D. 40海里答案:C6. 已知a=,b=,用含a、b的代数式表示,这个代数式是()A. a+bB. abC. 2aD. 2b答案:B7. 已知a <0,那么可化简为( )A.B. C. D.答案:D8. 如图,长方形中,,,在数轴上,若以点A 为圆心,AC 的长为半径画弧交数轴于点M ,则点M 表示的数为( ).A. B. C. D.答案:D 9. 下列计算中,正确的是( )A. B.C. D. 答案:A10. 下列命题的逆命题是真命题的是( )A. 若,,则B. 全等三角形的对应角相等C. 对顶角相等D. 若,则答案:D11. 估计的值应该在( )A. 6和7之间B. 7和8之间C. 8和9之间D. 9和10之间答案:B12. 如图,在中,平分交于点,则点到的距离是( )A. 3B. 4C. 5D. 6答案:A13. 如图中字母A所代表的正方形的面积为()A. 4B. 8C. 16D. 64答案:D14. 如图,从一个大正方形中裁去面积为27和48的两个小正方形,则剩下阴影部分的面积为()A. 36B.C. 72D.答案:C15. 如图所示,在长方形中,,若将长方形沿折叠,使点C落在边上的点F处,则线段的长为()A. B. C. D. 10答案:C二、填空题(本大题共4小题,每小题2分,共8分)16. 若式子在实数范围内有意义,则的取值范围是________.答案:17. 如图,有一个长方体盒子,其长、宽、高分别是、、,则该长方体盒子内可放入的木棒(木棒的粗细忽略不计)的长度最长是______.答案:18. 如果,其中、为有理数,那么等于___________.答案:319. 如图,在中,,以点A为圆心,长为半径画弧,交于点D,.则________°.答案:90三、解答题(本大题共8小题,共62分)20. 计算:.答案:21. 如图,在中,,垂足为,且.求证:是直角三角形.答案:见解析证明:∵,∴,∵,,.∴,,∴,∵,,∴,∴是直角三角形.22. 先化简,再代入求值:,其中.答案:,.解:原式,,,,,把代入得,原式.23. 小明家装修,电视背景墙长为,宽为,中间要镶一个长为,宽为的大理石图案(图中阴影部分).(1)长方形周长是多少?(结果化为最简二次根式)(2)除去大理石图案部分,其他部分贴壁布,若壁布造价为6元,大理石的造价为200元,则整个电视墙需要花费多少元?(结果化为最简二次根式)答案:(1)(2)元【小问2详解】解:长方形的面积:,大理石的面积:,壁布的面积:,整个电视墙的总费用:(元).24. 如图,在中,,,点为内一点,且,,.(1)求的长;(2)求图中阴影部分的面积.答案:(1)(2)【小问1详解】解:∵,,,,;【小问2详解】解:∵,,,且,即,∴是直角三角形,,25. 求代数式的值.(1),,;(2),,.答案:(1)(2)【小问1详解】解:∵,,,∴;【小问2详解】解:∵,,,∴.26. 如图,在中,的垂直平分线分别交,及的延长线于点D,E,F,且.(1)求证:;(2)若,求的长.答案:(1)证明见解析(2)【小问1详解】证明:如图,连接,∵垂直平分,∴,∵,∴,∴,∴是直角三角形,∴;【小问2详解】解:设,则,在中,由勾股定理得,即,解得,∴的长为.27. 阅读下面的材料,解决问题:;;;……(1)求与的值;(2)已知是正整数,求的值;(3)计算.答案:(1);(2)(3)【小问1详解】解:==,==;【小问2详解】==,【小问3详解】.。

广东省江门市第二中学2023-2024学年八年级下学期第一次月考数学试题

广东省江门市第二中学2023-2024学年八年级下学期第一次月考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.x 的取值范围是( ) A .x >2 B .x ≥2 C .x <2 D .x ≤22 )A B C D .3.下列各组数中,不是勾股数的一组是( )A .3,4,5B .4,5,6C .6,8,10D .5,12,13 4.下列说法错误的是( )A .对角线相等且互相垂直的平行四边形是正方形B .对角线互相垂直的平行四边形是菱形C .有一个内角是直角的四边形是矩形D .对角线相等且互相平分的四边形是矩形5.如图,P 为线段AB 上任意一点,分别以AP 、PB 为边在AB 同侧作正方形APCD 、PBEF ,若28CBE ∠=︒,则AFP ∠的度数为( )A .56︒B .62︒C .73︒D .76︒ 6.下列曲线中表示y 是x 的函数的是( )A .B .C .D .7.如图,在Rt ABC △中,90302C A BC ∠=︒∠=︒=,,则AC =( )AB .C .D .48.顺次连接下列各四边形各边中点所得的四边形是矩形的是( )A .等腰梯形B .矩形C .平行四边形D .菱形或对角线互相垂直的四边形9.如图,在平行四边形ABCD 中,DE 平分∠ADC 交BC 边于点E ,已知BE =4cm ,AB =6cm ,则AD 的长度是( )A .4cmB .6cmC .8cmD .10cm10.已知等腰三角形一边长为4,另一边长为6,则这个等腰三角形的面积等于( )A .B .C .D .二、填空题113.(填“>”、“=”或“<”)12.已知平行四边形ABCD 中,∠B=4∠A ,则∠C=13.如图,已知菱形ABCD 中,对角线AC 与BD 交于点O ,∠BAD =120°,AC =4,则该菱形的面积是.14.如图,分别以等腰Rt ABC △的边AB ,AC ,BC 为直径画半圆,若2AB =,则阴影部分的面积为.15.勾股定理被合为“几何明珠”,在数学的发展历程中占有举足轻重的地位.中国数学史上最先完成勾股定理证明的数学家是公元3世纪三国时期的赵爽,他为了证明勾股定理,创制了一幅“弦图”,后人称其为“赵夹弦图”(如图①所示).图②由弦图变化得到,它是由八个全等的直角三角形拼接而成的.记图中正方形ABCD ,正方形EFGH ,正方形MNKT 的面积分别为1S ,2S ,3S ,若123129S S S ++=,则2S 的值是.三、解答题16.(1)计算:(1123-⎛⎫ ⎪⎝⎭. (2)如图,小正方形的边长为1,ABC V 的三个顶点都在小正方形的顶点处,判断ABC V 的形状,并求出ABC V 的面积.17.如图,一张直角三角形纸片,两直角边4AC =,3BC =,将ABC V 折叠,使点A 与点B 重合,求折痕DE 的长.18.如图,ABC V 中,AB AC AD BC ⊥=,,垂足为D ,点E 、F 、G 分别是AB CE AC 、、中点,直线DF 交AC 点G .(1)求证:四边形AEDG 是菱形;(2)若DG CE ^,求BCE ∠的度数.19.某数学兴趣小组开展了“笔记本电脑张角大小与顶部边缘离桌面高度之间的关系”的实践探究活动.如图,当张角为BAF ∠时,顶部边缘点B 离桌面的高度BC 为7cm ,此时底部边缘点A 与点C 之间的距离AC 为24cm .(1)求AB 的长度.(2)若小组成员调整张角的大小继续探究,发现当张角为DAF ∠时(点D 为点B 的对应点),顶部边缘点D 离桌面的高度为DE ,此时底部边缘点A 与点E 之间的距离AE 为15cm ,求此时电脑顶部边缘上升的高度.20.小华骑电动车从家出发去西安交大,当他骑了一段路时,想起要买一本书,于是原路返回刚经过的新华书店,买到书后继续前往交大,如图是他离家的距离与时间的关系示意图,请根据图中提供的信息回答下列问题:(1)小华家离西安交大的距离是多少?(2)买到书后,小华从新华书店到西安交大骑车的平均速度是多少?(3)本次去西安交大途中,小华一共行驶了多少米?21.如图,ABC V 中,D 是AB 边上任意一点,F 是AC 中点,过点C 作CE AB ∥交DF 的延长线于点E ,连接AE ,CD .(1)求证:四边形ADCE 是平行四边形;(2)若30B ∠=︒,45CAB ∠=︒,AC =CD BD =,求AD 的长.22.【阅读材料】嘉嘉在学习二次根式时,发现一些含根号的式子可以化成另一个式子的平方.如:=(2+3)22+2;(1+7)=12+2+2×2(1; 【类比归纳】(1)请你仿照嘉嘉的方法将(2【变式探究】(3)若a ±2,且a ,m ,n 均为正整数,则a =.23.下面图片是八年级教科书中的一道题:如图,四边形ABCD 是正方形,点E 是边BC 的中点,90AEF ∠=︒,且EF 交正方形外角的平分线CF 于点F .求证AE EF =.(提示:取AB 的中点G ,连接EG .)(1)请你思考题中“提示”,这样添加辅助线的意图是得到条件:;(2)如图1,若点E 是BC 边上任意一点(不与B 、C 重合),其他条件不变.求证:AE EF =;(3)在(2)的条件下,连接AC ,过点E 作EP ⊥AC ,垂足为P .设=BE k BC,当k 为何值时,四边形ECFP 是平行四边形,并给予证明.。

广东省佛山市南海外国语学校2023-2024学年八年级下学期第一次月考数学试题

广东省佛山市南海外国语学校2023-2024学年八年级下学期第一次月考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列不等式中,是一元一次不等式的是( ) A .5x y >-B .230x -<C .42>D .2x x <2.若x y >,则下列式子中错误的是( ) A .x -3>y -3B .33x y > C .x+3>y+3 D .-3x>-3y3.用反证法证明命题“一个三角形中不能有两个角是直角”,应先假设这个三角形中( ) A .有两个角是直角 B .有两个角是钝角C .有两个角是锐角D .一个角是钝角,一个角是直角4.将不等式组1113x x >⎧⎪⎨≤⎪⎩的解集在数轴上表示,正确的是( )A .B .C .D .5.五根小棒的长度(单位:cm )分别为6,7,8,9,10,现从中选择三根,将它们首尾相接摆成三角形,其中能摆成直角三角形的是( ) A .6,7,8B .6,8,10C .7,8,9D .7,9,106.不等式335x x +>-的正整数解有( ) A .1个B .2个C .3个D .4个7.如图,在ABC V 中,DE 垂直平分BC 分别交AC BC ,边于点D ,E ,若3AB =、5AC =,则ABD △的周长为( )A .6B .7C .8D .108.下列命题的逆命题是真命题的是( ) A .对顶角相等B .如果两个实数相等,那么它们的绝对值相等C .等边三角形的三个内角都等于60︒D .若0x >,则20x >9.如图,有一块直角三角形纸片,两直角边AC=6cm ,BC=8cm ,现将直角边AC 沿直线AD 对折,使它落在斜边AB 上,且与AE 重合,则CD 等于( )A .3cmB .4cmC .5cmD .6cm10.小明同学只用两把完全相同的长方形直尺就可以作出一个角的平分线.如图:一把直尺压住射线OB ,另一把直尺压住射线OA 并且与第一把直尺交于点P ,小明说:“射线OP 就是BOA ∠的角平分线.”他这样做的依据是( )A .在角的内部,到角的两边距离相等的点在角的平分线上B .角平分线上的点到这个角两边的距离相等C .三角形的三条高交于一点D .三角形三边的垂直平分线交于一点二、填空题11.x 的12与5的差不小于3,用不等式表示为.12.若不等式组10x x t-<⎧⎨->⎩的解集是1x <,则t 的取值范围是.13.如图,在ABC V 中,90ACB ∠=︒,CD 是高,4AB =,2AC =,则CD 的长为.14.如果等腰三角形一腰上的高与另一腰的夹角为45°,那么这个等腰三角形的底角度数为.15.一次函数1y kx b =+与2y mx n =+的部分自变量和对应函数值如下表:则关于x 的不等式kx b mx n +>+的解集是.三、解答题16.解不等式组()2532123x x x x ⎧+≤+⎪⎨-<⎪⎩,并写出最小整数解.17.解不等式215132x x -+-≤1,并把它的解集在数轴上表示出来.18.如图,B C ∠=∠,AE CD ∥,AE 交BC 于点E .求证:ABE V 是等腰三角形.19.如图,已知一个等腰三角形的底边为c ,底边上的高为12c ,求作这个等腰三角形.(保留作图痕迹,不必写作法)20.如图,已知90A D ∠=∠=︒,E 、F 在线段BC 上,DE 与AF 交于点O ,且AB C D =,BE CF =,求证:Rt Rt ABF DCE ≌△△.21.某健身会馆因扩大场地,要新添置4至10台跑步机,采购人员联系了报价均为每台2000元的两家健身器材商店,甲商店的优惠条件是:两台跑步机全额收费,余下几台都按七折收费﹔乙商店的优惠条件是:所有跑步机都按八折收费.设健身会馆要购买x 台跑步机,回答下列问题:()1若到甲商店购买需花费元;若到乙商店购买需花费元;(用含有x 的式子表示) ()2该健身会馆选择在哪家商店购买跑步机更省钱.22.如图,在ABC V 中,CA CB =,4ACB A ∠=∠,点D 是AC 边的中点,DE AC ⊥交AB 于点E ,连接CE .(1)求A ∠的度数;(2)2AE =,求ABC V 的面积.23.如图,已知一次函数11y kx k =++的图象与一次函数24y x =-+的图象交于点()1,A a .(1)求a 、k 的值; (2)根据图象,填空:①不等式41x kx k -+>++的解集为______;②不等式组1040kx k x ++>⎧⎨-+≥⎩的解集为______;(3)结合图形,当22x -≤≤时,求一次函数4y x =-+函数值y 的取值范围. 24.污水治理,保护环境,某市治污公司决定购买A ,B 两种型号污水处理设备共12台,已知A ,B 两种型号的设备,每台的价格,月处理污水量如表:经调查:购买一台A 型设备比购买一台B 型设备多3万元,购买1台A 型设备比购买3台B 型设备少3万元. (1)求a ,b 的值;(2)经预算:市治污公司购买污水处理设备的资金不超过50万元,若两种设备都要购买,你认为该公司有哪几种购买方案;(3)在(2)问的条件下,若每月要求处理的污水量不低于2260吨,为了节约资金,请你为治污公司设计一种最省钱的购买方案.25.数学学习总是循序渐进、不断延伸拓展的,数学知识往往起源于人们为了解决某些问题,通过观察、测量、思考、猜想出的一些结论.但是所猜想的结论不一定都是正确的.人们从已有的知识出发,经过推理、论证后,如果所猜想的结论在逻辑上没有矛盾,就可以作为新的推理的前提,数学中称之为定理.(1)推理证明:本学期,我们利用两个含30︒的全等的三角尺拼成一个等边三角形,从而发现:在直角三角形中,如果一个锐角等于30︒,那么它所对的直角边等于斜边的一半. 如图1,在Rt ABC △中,90C ∠=︒,30A ∠=︒,则12BC AB =,请你证明这个结论. (2)迁移应用:利用上述结论解决以下问题:①如图2,在Rt ABC △中,90ACB ∠=︒,30A ∠=︒,且BC =P 是边AC 上一点.若12CP AB =,求点P 到边AB 的距离. ②如图3,在Rt ABC △中,90ACB ∠=︒,30A ∠=︒,点P 是边AC 上一点,连接BP .若3BC =,求出12BP AP +的最小值.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级数学下学期第一次月考
数学试卷
一、精心选一选,相信你一定能选对!:
(每小题3分,共计30分。

请将正确答案序号填在相应的题号下)
1、在x 1、21、212+x 、πxy 3、y
x +3、m a 1+中分式的个数有----------------( )
A 、2个
B 、3个
C 、4个
D 、5个 2、下列约分正确的是-----------------------------------------------------( )
A 、3
26x x x =; B 、0=++y x y x ; C 、x xy x y x 12=++; D 、2
14222=y x xy
3 、如果把分式
y
x xy
+中的x 和y 都扩大2倍,即分式的值---------------------( ) A 、扩大4倍; B 、扩大2倍; C 、不变; D 缩小2倍 4、对分式
2y x ,23x y ,1
4xy
通分时, 最简公分母是--------------------------( ) A .24x 2y 3
B .12x2y2 C.24xy2 D.12xy2
5、能使分式1
22--x x
x 的值为零的所有x 的值是--------------------------------( )
A 0=x
B .1=x C.0=x 或1=x D. 0=x 或1±=x
6. 反比例函数x
k
y =的图象经点(4,3)p --,则k 的值等于--------------------( )
A 、12
B 、4
3- C 、4
3 D 、12-
7、x-y (x ≠y )的倒数的相反数 ------------------------------------------( ) A .-1x y + B .y x --1 C .y x -1 D .y
x --1
8、能使分式1
22--x x
x 的值为零的所有x 的值是---------------------------------( )
A 0=x
B .1=x C.0=x 或1=x D. 0=x 或1±=x
9、当k <0, x <0时,反比例函数y=
x
k
的图象在-------------------------( )
A.第二象限
B. 第四象限
C. 第三象限
D.第一象限 10.计算
x
y y
y x x 2224-+
-的结果是----------------------------------------( ) A 、y x 24+ B 、y x +2 C 、-2 D 、2
二、耐心填一填,你一定能做对!:((每小题3分,共计24分)
11、当x 时,分式42+-x x 有意义; 当x 时,分式11
x 2+-x 的值为零。

12、化简:
21a --1
1
a -=________ 。

13、化简2()a b
ab b ab
--÷的结果为__________________。

14、科学家发现一种病毒的直径为0.000043米,用科学记数法表示为_____________米。

15、反比例函数(0)k
y k x
=≠的图象经过P,如图(1)所示,根据图象可知,反比例函数的解
析式为_______________。

(1) (2)
16、 如图(2),点p 是反比例函数2
y x
=-上的一点,PD ⊥x 轴于点D,则∆POD 的面积为
______。

17、已知反比例函数k
y x
=与一次函数y=2x+k 的图象的一个交点的纵坐标是-4,则k 的值
是_____。

18、当1-=x 时,___________________1
12
-+x x
三、仔细算一算,展现你的运算能力!
19、计算:(每题5分,共10分)
(1)、x y xy 23
618÷ (2)、2211x x +--21
x x --÷2x x -
20、先化简,后求值:2223231
1211
x x x x x x x ++-÷+--++,其中x=3。

(5分)
21、解分式方程:(每题5分,共15分) (1)、11x ++32x -=0. (2)、638x -=1-4783x x --. (3)、
2
1
63524245--+=--x x x x
六、解答题(每题8分,共16分)
22、列方程解应用题:
A、B两地的距离是200千米,一辆公共汽车从A地驶出2小时后,一辆小汽车也
从A地出发,它的速度是公共汽车的2倍,已知小汽车比公共汽车还早30分钟到达B地,求两车的速度。

23、在压力不变的情况下,某物体承受的压强p(Pa)是它的受力面积S(m2)的反比例函数,
其图象如图所示:
(1)求p与S之间的函数关系式;
(2)求当S=0.5m2时物体承受的压强p ;
(3)求当p=2500Pa时物体的受力面积S.
m2)。

相关文档
最新文档