膜片钳技术

膜片钳技术

摘要:80年代初发展起来的膜片钳技术(patch clamp technique)为了解生物膜离子单通道的门控动力学特征及通透性、选择性膜信息提供了最直接的手段。该技术的兴起与应用,使人们不仅对生物体的电现象和其他生命现象更进一步的了解,而且对于疾病和药物作用的认识也不断的更新,同时还形成了许多病因学与药理学方面的新观点。

关键字:膜片钳细胞膜电位膜片构型通道

膜片钳技术是一种以记录通过离子通道的离子电流来反映细胞膜单一的或多个

的离子通道分子活动的技术。它和基因克隆技术(gene cloning)并架齐驱,给生命科学研究带来了巨大的前进动力。

膜片钳技术发展历史

1976年德国马普生物物理化学研究所Neher和Sakmann首次在青蛙肌细胞上用双电极钳制膜电位的同时,记录到ACh激活的单通道离子电流,从而产生了膜片钳技术。

1980年Sigworth等在记录电极内施加5-50 cmH2O的负压吸引,得到10-100GΩ的高阻封接(Giga-seal),大大降低了记录时的噪声实现了单根电极既钳制膜片电位又记录单通道电流的突破。

1981年Hamill和Neher等对该技术进行了改进,引进了膜片游离技术和全细胞记录技术,从而使该技术更趋完善,具有1pA的电流灵敏度、1μm的空间分辨率和10μs的时间分辨率。

1983年10月,《Single-Channel Recording》一书问世,奠定了膜片钳技术的里程碑。Sakmann 和Neher也因其杰出的工作和突出贡献,荣获1991年诺贝尔医学和生理学奖。

膜片钳技术基本原理与特点

膜片钳技术本质上也属于电压钳范畴,两者的区别关键在于:①膜电位固定的方法不同;

②电位固定的细胞膜面积不同,进而所研究的离子通道数目不同。电压钳技术主要是通过保持细胞跨膜电位不变,并迅速控制其数值,以观察在不同膜电位条件下膜电流情况。因此只能用来研究整个细胞膜或一大块细胞膜上所有离子通道活动。目前电压钳主要用于巨大细胞的全性能电流的研究,特别在分子克隆的卵母细胞表达电流的鉴定中发挥着其他技术不能替代的作用。该技术的主要缺陷是必须在细胞内插入两个电极,对细胞损伤很大,在小细胞如中枢神经元,就难以实现,又因细胞形态复杂,很难保持细胞膜各处生物特性的一致。

膜片钳的基本原理则是利用负反馈电子线路,将微电极尖端所吸附的一个至几个平方微米的细胞膜的电位固定在一定水平上,对通过通道的微小离子电流作动态或静态观察,从而研究其功能。膜片钳技术实现膜电流固定的关键步骤是在玻璃微电极尖端边缘与细胞膜之间形成高阻密封,其阻抗数值可达10~100 GΩ(此密封电阻是指微电极内与细胞外液之间的电阻)。由于此阻值如此之高,故基本上可看成绝缘,其上之电流可看成零,形成高阻密封的力主要有氢健、范德华力、盐键等。此密封不仅电学上近乎绝缘,在机械上也是较牢固的。又由于玻璃微电极尖端管径很小,其下膜面积仅约1 μm2,在这么小的面积上离子通道数量很少,一般只有一个或几个通道,经这一个或几个通道流出的离子数量相对于整个细胞来讲很少,可以忽略,也就是说电极下的离子电流对整个细胞的静息电位的影响可以忽略,那么,只要保持电极内电位不变,则电极下的一小片细胞膜两侧的电位差就不变,从而实现电位固定。

另外,高阻封接技术还大大降低了电流记录的背景噪声,从而戏剧性地提高了时间、空间及电流分辨率,如时间分辨率可达10 μs、空间分辨率可达1平方微米及电流分辨率可达10-12A。影响电流记录分辨率的背景噪声除了来自于膜片钳放大器本身外,最主要还是信号源的热噪声。信号源如同一个简单的电阻,其热噪声为

σn=4Kt△f/R

式中σn为电流的均方差根,K为波尔兹曼常数,t为绝对温度,△f为测量带宽,R

为电阻值。可见,要得到低噪声的电流记录,信号源的内阻必需非常高。如在1kHz带宽,10%精度的条件下,记录1pA的电流,信号源内阻应为2 GΩ以上。电压钳技术只能测量内阻通常达100 kΩ~50 MΩ的大细胞的电流,从而不能用常规的技术和制备达到所要求的分辨率。

膜片钳记录的几种形式

高阻封接问题的解决不仅改善了电流记录性能,还随之出现了研究通道电流的多种膜片钳方式。根据不同的研究目的,可制成不同的膜片构型。

(1)细胞吸附膜片(cell-attached patch) 将两次拉制后经加热抛光的微管电极置于清洁的细胞膜表面上,形成高阻封接,在细胞膜表面隔离出一小片膜,既而通过微管电极对膜片进行电压钳制,高分辨测量膜电流,称为细胞贴附膜片。由于不破坏细胞的完整性,这种方式又称为细胞膜上的膜片记录。此时跨膜电位由玻管固定电位和细胞电位决定。因此,为测定膜片两侧的电位,需测定细胞膜电位并从该电位减去玻管电位。从膜片的通道活动看,这种形式的膜片是极稳定的,因细胞骨架及有关代谢过程是完整的,所受的干扰小。

(2)内面向外膜片(inside-out patch) 高阻封接形成后,在将微管电极轻轻提起,使其与细胞分离,电极端形成密封小泡,在空气中短暂暴露几秒钟后,小泡破裂再回到溶液中就得到“内面向外”膜片。此时膜片两侧的膜电位由固定电位和电压脉冲控制。浴槽电位是地电位,膜电位等于玻管电位的负值。如放大器的电流监视器输出是非反向的,则输出将与膜电流(Im)的负值相等。

(3)外面向外膜片(out-side patch) 高阻封接形成后,继续以负压抽吸,膜片破裂再将玻管慢慢地从细胞表面垂直地提起,断端游离部分自行融合成脂质双层,此时高阻封接仍然存在。而膜外侧面接触浴槽液。这种膜片形式应测膜片电阻,并消除漏电流和电容电流。整个过程要当心是否形成囊泡。如果浴槽保持地电位水平,膜电位即与玻管电位相等。如放大器是非反向的,放大器的输出将与Im值相等。

(4)全细胞记录构型(whole-cell recording) 高阻封接形成后,继续以负压抽吸使电极管内细胞膜破裂,电极胞内液直接相通,而与浴槽液绝缘,这种形式称为“全细胞”记录。它既可记录膜电位又可记录膜电流。其中膜电位可在电流钳情况下记录,或将玻管连到标准高阻微电极放大器上记录。在电压钳条件下记录到的大细胞全细胞电流可达nA级,全细胞钳的串联电阻(玻管和细胞内部之间的电阻)应当补偿。任何流经膜的电流均流经这一电阻,所引起的电压降将使玻管电压不同于细胞内的真正电位。电流愈大,愈需对串联电阻进行补偿。全细胞钳应注意细胞必需合理的小到其电流能被放大器测到的范围(25~50 nA)。减少串联电阻的方法是玻管尖要比单通道记录大。

膜片钳技术的应用

膜片钳技术发展至今,已经成为现代细胞电生理的常规方法,它不仅可以作为基础生物医学研究的工具,而且直接或间接为临床医学研究服务。

目前膜片钳技术广泛应用于神经(脑)科学、心血管科学、药理学、细胞生物学、病理生理学、中医药学、植物细胞生理学、运动生理等多学科领域研究。

随着全自动膜片钳技术(Automatic patch clamp technology)的出现,膜片钳技术因其具有的自动化、高通量特性,在药物研发、药物筛选中显示了强劲的生命力。

(1)膜片钳在通道研究中的重要作用

用膜片钳技术可以直接观察和分辨单离子通道电流及其开闭时程、区分离子通道的离子选择性、同时可发现新的离子通道及亚型,并能在记录单细胞电流和全细胞电流的基础上进一步计算出细胞膜上的通道数和开放概率,还可以用以研究某些胞内或胞外物质对离子通道开闭及通道电流的影响等。同时用于研究细胞信号的跨膜转导和

细胞分泌机制。结合分子克隆和定点突变技术,膜片钳技术可用于离子通道分子结构

与生物学功能关系的研究。

利用膜片钳技术还可以用于药物在其靶受体上作用位点的分析。如神经元烟碱受

体为配体门控性离子通道,膜片钳全细胞记录技术通过记录烟碱诱发电流,可直观地

反映出神经元烟碱受体活动的全过程,包括受体与其激动剂和拮抗剂的亲和力,离子

通道开放、关闭的动力学特征及受体的失敏等活动。使用膜片钳全细胞记录技术观察

拮抗剂对烟碱受体激动剂量效曲线的影响,来确定其作用的动力学特征。然后根据分

析拮抗剂对受体失敏的影响,拮抗剂的作用是否有电压依赖性、使用依赖性等特点,可从功能上区分拮抗剂在烟碱受体上的不同作用位点,即判断拮抗剂是作用在受体的

激动剂识别位点,离子通道抑或是其它的变构位点上。

(2)与药物作用有关的心肌离子通道

心肌细胞通过各种离子通道对膜电位和动作电位稳态的维持而保持正常的功能。近年来,国外学者在人类心肌细胞离子通道特性的研究中取得了许多进展,使得心肌

药理学实验由动物细胞模型向人心肌细胞成为可能。

(3)对离子通道生理与病理情况下作用机制的研究

通过对各种生理或病理情况下细胞膜某种离子通道特性的研究,了解该离子的生

理意义及其在疾病过程中的作用机制。如对钙离子在脑缺血神经细胞损害中作用机制

的研究表明,缺血性脑损害过程中,Ca2+ 介导现象起非常重要的作用,缺血缺氧使Ca2+通道开放,过多的Ca2+进入细胞内就出现Ca2+超载,导致神经元及细胞膜损害,

膜转运功能障碍,严重的可使神经元坏死

(4)对单细胞形态与功能关系的研究

将膜片钳技术与单细胞逆转录多聚酶链是反应技术结合,在全细胞膜片钳记录下,将单细胞内容物或整个细胞(包括细胞膜)吸入电极中,将细胞内存在的各种mRNA

全部快速逆转录成cDNA,再经常规PCR扩增及待检的特异mRNA的检测,借此可对形

态相似而电活动不同的结果做出分子水平的解释或为单细胞逆转录多聚酶链式反应

提供标本,为同一结构中形态非常相似但功能不同的事实提供分子水平的解释。目前

国际上掌握此技术的实验室较少,我国北京大学神经科学研究所于1994年在国内率

先开展。

(5)对药物作用机制的研究

在通道电流记录中,可分别于不同时间、不同部位(膜内或膜外)施加各种浓度的药物,研究它们对通道功能的可能影响,了解那些选择性作用于通道的药物影响人和动物生理功能的分子机理。这是目前膜片钳技术应用最广泛的领域,既有对西药药物机制的探讨,也广泛用在重要药理的研究上。如开丽等报道细胞贴附式膜片钳单通道记录法观测到人参二醇组皂苷可抑制正常和“缺血”诱导的大鼠大脑皮层神经元

L-型钙通道的开放,从而减少钙内流,对缺血细胞可能有保护作用。陈龙等报道采用细胞贴附式单通道记录法发现乌头碱对培养的Wistar大鼠心室肌细胞L-型钙通道有阻滞作用。

(6)在心血管药理研究中的应用

随着膜片钳技术在心血管方面的广泛应用,对血管疾病和药物作用的认识不仅得到了不断更新,而且在其病因学与药理学方面还形成了许多新的观点。正如诺贝尔基金会在颁奖时所说:“Neher和Sadmann的贡献有利于了解不同疾病机理,为研制新的更为特效的药物开辟了道路”。

(7)创新药物研究与高通量筛选

目前在离子通道高通量筛选中主要是进行样品量大、筛选速度占优势、信息量要求不太高的初级筛选。最近几年,分别形成了以膜片钳和荧光探针为基础的两大主流技术市场。将电生理研究信息量大、灵敏度高等特点与自动化、微量化技术相结合,产生了自动化膜片钳等一些新技术。

总的来说,膜片钳技术的创立取代了电压钳技术,是细胞电生理研究的一个飞跃,使得离子通道的研究,从宏观深入到微观,使昔日的“肉汤生理学(broth physiology)”与“闪电生理学(lightning physiology)”在分子水平上结合起来,使人们对膜通道的认识耳目一新。当前,生理学、生物物理学、生物化学、分子生物学和药理学等多种学科正在把膜片钳技术和膜通道蛋白重组技术、同位素示踪技术和光谱技术等非电生理技术结合起来,协同对离子通道进行全面的研究。不少实验室已经将基因工程与膜片钳技术结合起来,把通道蛋白有目的地重组于人工膜中进行研究。设想将合成的通道蛋白分子接种入机体以替换有缺陷和异常的通道的功能而达到治疗的目的。

膜片钳技术原理与基本操作

膜片钳技术原理与基本操作 1976 年Neher 和Sakmann 建立了膜片钳技术(Patch clamp technique),这是一种以记录通过离子通道的离子电流来反映细胞膜上单一的或多数的离子通道分子活动的技术。1981 年Hamill, Neher 等人又对膜片钳实验方法和电子线路进行了改进,形成了当今广泛应用的膜片钳实验技术。该技术可应用于许多细胞系的研究,也是目前唯一可记录一个蛋白分子电活动的方法,膜片钳技术和克隆技术并驾齐驱给生命科学研究带来了巨大的前进动力,这一伟大的贡献,使Neher 和Sakmann 获得1991 年诺贝尔医学与生理学奖。 一、膜片钳技术的基本原理 用一个尖端直径在1.5~3.0μm 的玻璃微电极接触细胞膜表面,通过负压吸引使电极尖端与细胞膜之间形成千兆欧姆以上的阻抗封接,此时电极尖端下的细胞膜小区域(膜片,patch)与其周围在电学上分隔,在此基础上固定(钳制,Clamp)电位,对此膜片上的离子通道的离子电流进行监测及记录。 基本的仪器设备有膜片钳放大器、计算机、倒置显微镜、示波器、双步电极拉制器、三轴液压显微操纵器、屏蔽防震实验台、恒温标本灌流槽、玻璃微电极研磨器。膜片钳放大器是离子单通道测定和全细胞记录的关键设备,具有高灵敏度、高增益、低噪音及高输入阻抗。膜片钳放大器是通过单根电极对细胞或膜片进行钳制的同时记录离子流经通道所产生的电流。膜片钳放大器的核心部分是以运算放大器和反馈电阻构成的电流-电压(I-V)转换器,运算放大器作为电压控制器自动控制,使钳制电位稳定在一定的水平上。 二、操作步骤 1.膜片钳微电极制作 (1) 玻璃毛细管的选择:有二种玻璃类型,一是软质的苏打玻璃,另一是硬质的硼硅酸盐玻璃。软质玻璃在拉制和抛光成弹头形尖端时锥度陡直,可降低电极的串联电阻,对膜片钳的全细胞记录模式很有利;硬质玻璃的噪声低,在单通道记录时多选用。玻璃毛细管的直径应符合电极支架的规格,一般外部直径在 1.1~1.2mm。内径1mm。 (2) 电极的拉制:分二步拉制。第一部是使玻璃管中间拉长成一窄细状,第二次拉制窄细部位断成二根,其尖端直径一般在1~5μm,充入电极内液后电极电阻在1~5MΩ为宜。调节第一步和第二步拉制时加热线圈的电流强度,即可得到所需要的电极尖端直径。电极必须保持干净,应现用现拉制。 (3) 涂硅酮树酯:记录单通道电流时,为了克服热噪声、封接阻抗噪声及电极浸入溶液产生的浮游电容性噪声,需要在电极尖颈部(距离微电极尖端50mm)的表面薄薄地涂一层硅酮树酯(sylgard),它具有疏水性、与玻璃交融密切、非导

膜片钳技术SOP

膜片钳技术SOP 关键词:膜片钳 目的: 研究膜片上几个甚至一个离子通道的电流,对单个离子通道在各种电位状态及每种电位状态下对产生电流的离子作出定性、定量的分析,来反映细胞膜上离子通道活动,为研究离子通道结构与功能关系提供关于生物电特性的新资料。基本原理: 膜片钳制技术(patch clamp technique)是对一块单独的细胞膜片(或整个细胞)的电位进行钳制的一项电生理技术。 通过对膜电位的钳制可以观察通过离子通道的电流,膜片钳放大器正是通过维持电压的恒定而测出这种电流。运用膜片钳技术记到的最小电流可达到pA级(10-12 A)。膜片钳的本质属于电压钳范畴,其基本工作原理是:采用经典的负反馈放大技术作电压固定,但改用细胞外微吸管作电极,将微电极管尖端与细胞膜表面接触,经负压抽吸,形成具极高阻抗的紧密封接,其电阻值高达10-100千欧(即GΩ=109Ω)。只有在这种封接存在时,通过膜电极引导记录的电流才是通过该膜的离子通道电流。 膜片钳技术原理示意图 Rs是膜片阻抗相串联的局部串联电阻(输入阻抗),Rseal是封接阻抗。Rs通常为1~5MΩ,如果Rseal高达10GΩ(1010Ω)以上时,IP/I=Rseal/(Rs+ Rseal)-1。此Ip可为在I-V转换器(点线)内的高阻抗负反馈电阻(Rf)的电压降而被检测出。

药品和试剂: 根据不同的实验设计选择不同的药品和试剂。 主要仪器设备与材料: ①屏蔽防震实验台(TMC 63-544) ②数字式超级恒渐浴槽(HSS-1 CHENDU INSTRUMENT China) ③微管电极拉制器(PP-83 NARISHIGE Japan) ④微管电极抛光仪(ME-83 NAEISHIFE Japan) ⑤电子刺激器(SEN-2030, NIHON KOHDEN, Japan) ⑥膜片钳放大器(AXOPATCH 200B Axon Instruments U.S.A) ⑦倒置相差显微镜(AXIOVERT 135 ZEISS Germany) ⑧计算机(PⅢ 800) ⑨A/D、D/A转换器(DIGIDATA-1200 Axon Instruments U.S.A) ⑩pClamp软件(10.0)Axon Instruments U.S.A ) 实验对象: 兔、大鼠、猪、和人的组织细胞(直径小于30μm的细胞),都可用于膜片钳实验。动物由泸州医学院(许可证号:SYXK(川)2008-063)提供;人体组织来源于临床手术丢弃物。本SOP以猪冠状动脉平滑肌细胞为例,选取体重约120~150 Kg的猪,雌雄不拘,猪心脏购自泸州市屠宰场。 实验环境: 常温(22o C)下进行, 湿度(70-80%) 操作步骤: 1.液体配制 主要根据研究通道的不同,所用细胞的不同,配制相应的液体,可参考相应的文献进行调整。包括:电极液;细胞外液等。基本原则是保持2个平衡,渗透压平衡和酸碱平衡。另外,所有液体在使用前必须过滤,以保持液体洁净。(详见细胞的分离与培养SOP:L Y-XJD-SYJS-014/015) 2.标本制备 膜片钳实验一般是在单个细胞上进行。实验用单细胞主要来自培养细胞或急性酶分离的细胞,也可来自脑片细胞中的原位细胞。常用的酶是胶原酶和蛋白酶,

膜片钳技术的原理

膜片钳技术的原理及应用(综述) Intro: 细胞是构成生物体的基本单位。细胞内和细胞之间的信号传导的重要途径是通过镶嵌在细胞膜上的离子通道蛋白进行的。1976年,德国的两位细胞生物学家埃尔温. 内尔(Er win Neher)和贝尔特. 萨克曼(Bert Sakmann)建立了一种以记录通过离子通道的离子电流来反映细胞膜上单一或多数离子通道分子活动的技术,成为膜片钳技术(Patch Clamp)。这一技术使对细胞电活动的研究精度提高到1pA的电流分辨率,1μm的空间分辨率和10μs的时间分辨率水平,是细胞和分子水平的生理学研究领域的一次革命性突破。它与基因克隆技术(Gene Cloning)并驾齐驱,推动了生命科学研究的迅速发展。为此,1991年的诺贝尔医学与生理学奖授予了这两位学者,以表彰他们的突出贡献。这一能精确描述细胞通道特征的实验方法在问世后的短短十几年时间里,已经在生物学研究领域显示出了非常重要的意义和广阔的应用前景。 一. 膜片钳技术的基本原理 膜片钳技术运用微玻管电极(膜片电极或膜片吸管)接触细胞膜,以千兆欧姆[gigaoh m seal,1010欧姆(GΩ)]以上的阻抗使之对接,使与电极尖开口处相接的细胞膜小片区域(膜片)与其周围在电学上分隔,在此基础上固定电位,对此膜片上的离子通道的离子电流(pA级)进行检测记录。(如图1) 图1 膜片钳技术原理图 Rs是与膜片阻扰相串联的局部串联电阻(或称入路阻扰),Rseal是封接阻抗。Rs通常为1-5MΩ,若Rseal高达1 0GΩ以上时成为Ip/I=Rseal/(Rs+Rseal)-1,此Ip可作为在I-V转换器(点线)内的高阻扰反馈电阻(Rf)的电压下降而被检出。实际上这时场效应管运算放大器(A1)的输出中包括着膜电阻成分,这部分将在通过第二级场管效应运算放大器(A2)时被减掉。 用场效应管运算放大器(图1-A1)构成的I-V转换器[converter,即膜片钳放大器的前级探头(Head stage)]是整个测量回路的核心部分。在场效应运算放大器的正负输入端子为等电位。向正输入端子施加指令电位(Command Voltage,V CMD)时,由于短路负端子和膜片都可等电位地达到钳制的目的,当膜片微电极尖端与膜片之间形成10 GΩ以上封接时,其间的分流电流达到最小,横跨膜片的电流(I)可全部作为来自膜片电极的记录电流(Ip)而被测量出来。(如图1) 二. 膜片钳技术的各种模式 图2是表示膜片钳技术各种模式(mode)的示意图。首先建立的单通道记录法(Singl e Channel Recording)是细胞吸附模式(Cell-attached Mode),其后又建立了膜内面向外(Inside-out)和膜外面向外(Outside-out)的模式。后来又建立了开放的细胞吸附式膜内面向外(Open cell-attached inside-out mode)和穿孔囊泡膜外面向外(Perforated vesicle out side-out mode)模式。全细胞记录法是在常规方法的基础上附加穿孔膜片(perforated patc h mode)的模式。 图2 膜片钳技术的各种模式 1. 单通道记录法-细胞吸附模式(Cell-attached Mode)

膜片钳技术

膜片钳技术 1、膜片钳技术原理 膜片钳技术是用玻璃微电极吸管把只含1-3个离子通道、面积为几个平方微米的细胞膜通过负压吸引封接起来,由于电极尖端与细胞膜的高阻封接,在电极尖端笼罩下的那片膜事实上与膜的其他部分从电学上隔离,因此,此片膜内开放所产生的电流流进玻璃吸管,用一个极为敏感的电流监视器(膜片钳放大器)测量此电流强度,就代表单一离子通道电流。 膜片钳的基本原理则是利用负反馈电子线路,将微电极尖端所吸附的一个至几个平方微米的细胞膜的电位固定在一定水平上,对通过通道的微小离子电流作动态或静态观察,从而研究其功能。膜片钳技术实现膜电流固定的关键步骤是在玻璃微电极尖端边缘与细胞膜之间形成高阻密封,其阻抗数值可达10~100 GΩ(此密封电阻是指微电极内与细胞外液之间的电阻)。由于此阻值如此之高,故基本上可看成绝缘,其上之电流可看成零,形成高阻密封的力主要有氢健、范德华力、盐键等。此密封不仅电学上近乎绝缘,在机械上也是较牢固的。又由于玻璃微电极尖端管径很小,其下膜面积仅约1 μm2,在这么小的面积上离子通道数量很少,一般只有一个或几个通道,经这一个或几个通道流出的离子数量相对于整个细胞来讲很少,可以忽略,也就是说电极下的离子电流对整个细胞的静息电位的影响可以忽略,那么,只要保持电极内电位不变,则电极下的一小片细胞膜两侧的电位差就不变,从而实现电位固定。

膜片钳技术的原理图[51] Rs是与膜片抗阻串联的局部串联电阻(或称入路阻抗),Rseal是封接阻抗。RS通常为1~5MΩ,如果Rseal高达10GΩ以上是成为Ip/I=Rseal/(Rs+Rseal)-1。此Ip可作为I~V转换器(点线)内的高阻抗负反馈电阻(Rf)的电压下降而被检测出。实际上这是场效应管运算放大器(A1)的输出中包括着膜电阻成分,这部分将在通过第二级场效应管运算放大器(A2)时被减掉。 本实验采用的是全细胞记录模式。全细胞记录构型(whole-cell recording)高阻封接形成后,继续以负压抽吸使电极管内细胞膜破裂,电极胞内液直接相通,而与浴槽液绝缘,这种形式称为“全细胞”记录。它既可记录膜电位又可记录膜电流。全细胞记录模式是向膜片电极施加正压同时使电极尖端接近细胞表面。此时,将电位固定在0mV,连续给与强度为1mV,间期为10~20ms的去极化或超极化脉冲波,并对此时的电流变化进行监视。当电极尖端接近细胞表面时,可以看到应答脉冲波的电流减小。这是将电极内压从正压转变为弱的负压,从而使电流进一步减小,即在电极尖端和细胞膜之间形成了阻抗高的封接。如将固定电位像负电压侧移动,则可以促进封接的形成。当将固定电位调到细胞的静息膜电位近傍时,如果流动的电流大致上成为零时,脉冲波波幅增大,把电流测定增益提高就可测定封接电阻。密闭封接形成之后,封接电阻可达10GΩ以上,这时观测到的电流是单一离子通道电流,他是判断电极阻塞或者已形成很好的密闭封接的良好指标。与脉冲波向上或向下浮动时,可测定出一过性电流[52]。 2、全细胞记录的程序 (1)玻璃微电极的拉制 拉制微电极用的玻璃毛胚外径在1.5mm,内径在0.86mm,用PB-7电极拉制器分两步进行拉制而成。第一步热力为13.5时可使玻璃软化,并拉开一个距离,形成一个细管,第二步用热力为9.4拉断电极细管部,成为两个基本相同的玻璃微电极,此步控制电极的尖部。由于玻璃电极尖端易于粘附灰尘,因此要求现用现拉制。 (2)玻璃微电极的充灌 充灌前,电极内液必须用微孔滤膜(0.2um)进行过滤,目的是除去妨碍巨阻抗封接形成的灰尘。用1ml注射器在玻璃微电极尾部充灌电极内液,

嘉兴全自动膜片钳技术原理

嘉兴全自动膜片钳技术原理 嘉兴全自动膜片钳技术是一种高效、精准的钳工技术,它的原理是利用电脑控制系统,将钳工操作自动化,从而提高生产效率和产品质量。该技术广泛应用于汽车、电子、机械、医疗等行业,成为现代工业生产中不可或缺的一部分。 全自动膜片钳技术的原理是基于电脑控制系统,通过编程控制机器人手臂的动作,实现自动化的钳工操作。该技术主要包括以下几个方面: 1. 机器人手臂控制系统 全自动膜片钳技术的核心是机器人手臂控制系统,它由电脑控制器、伺服电机、减速器、传感器等组成。电脑控制器是整个系统的大脑,它通过编程控制机器人手臂的动作,实现自动化的钳工操作。伺服电机和减速器则负责控制机器人手臂的运动,传感器则用于检测机器人手臂的位置和状态,确保钳工操作的精准性和安全性。 2. 膜片钳夹具 膜片钳夹具是全自动膜片钳技术的重要组成部分,它是用于夹持工件的装置。膜片钳夹具具有高精度、高稳定性、高可靠性等特点,能够适应不同形状、大小的工件,实现精准的夹持和定位。 3. 膜片钳头

膜片钳头是膜片钳夹具的核心部件,它是用于夹持工件的钳子。膜片钳头具有高精度、高稳定性、高可靠性等特点,能够适应不同形状、大小的工件,实现精准的夹持和定位。 4. 编程控制 全自动膜片钳技术的编程控制是实现自动化钳工操作的关键。编程控制是通过编写程序,控制机器人手臂的动作,实现自动化的钳工操作。编程控制需要考虑工件的形状、大小、材料等因素,以及钳工操作的精度、速度、力度等要求,确保钳工操作的精准性和安全性。 5. 传感器检测 全自动膜片钳技术的传感器检测是确保钳工操作的精准性和安全性的重要手段。传感器检测可以检测机器人手臂的位置和状态,以及工件的形状、大小、材料等因素,确保钳工操作的精准性和安全性。嘉兴全自动膜片钳技术是一种高效、精准的钳工技术,它的原理是利用电脑控制系统,将钳工操作自动化,从而提高生产效率和产品质量。该技术的核心是机器人手臂控制系统,它由电脑控制器、伺服电机、减速器、传感器等组成。膜片钳夹具、膜片钳头、编程控制和传感器检测等也是该技术的重要组成部分。全自动膜片钳技术的应用范围广泛,可以适用于汽车、电子、机械、医疗等行业,成

膜片钳技术

膜片钳技术 膜片钳技术是一种用于夹持和夹持薄膜材料的高精度工具。它被广泛应用于各种领域,包括医疗、电子、航空航天、光学等。本文将介绍膜片钳技术的原理、应用、优势和未来发展方向。 膜片钳技术的原理是利用薄膜的柔性和弹性特性,将其夹持在两个夹持片之间,通过施加适当的压力来固定和控制膜片。它的结构简单,通常由两个平行的金属夹持片组成,夹持片之间有一层薄膜,可以是金属、塑料或橡胶材料。 膜片钳技术在医疗领域中广泛应用于微创手术。它可以用于夹持和处理各种组织样本,如血管、肾脏、肺部等。膜片钳可以通过精确控制夹持力来保护脆弱的组织,减少手术风险和创伤。此外,膜片钳还可以用于制作微小的缝线和缝合器,用于手术缝合和内脏重建。 在电子领域,膜片钳技术用于处理和夹持微小的电子元件。由于膜片钳的夹持力可调节且均匀,它可以用于精确地定位和安装电子组件,确保元件之间的准确对齐和联系。此外,膜片钳还可以用于处理柔性电路板和柔性显示屏等薄膜电子产品,保证其完整性和性能。 在航空航天领域,膜片钳技术用于夹持和固定航天器表面的绝热膜。夹持膜片的合适压力可以确保膜片与表面的紧密贴合,提供良好的隔热性能,减少航天器受到的热能损失。此外,膜片钳还可以用于夹持航天器的其他部件和设备,确保它们在运行过程中的稳定性和可靠性。 在光学领域,膜片钳技术用于夹持和夹持光学元件,如透镜、棱镜和滤光片。膜片钳的夹持力和表面平整度可以确保光学元件的精确定位和对准度,从而提供高质量的光学性能和成像效果。此外,膜片钳还可以用于夹持光学材料的样本,如光学薄膜和光学纤维,用于实验和测试。 膜片钳技术具有许多优势。首先,它具有高精度和可调节的夹持力,可以适应不同材料和应用的要求。其次,膜片钳结构简单,易于

膜片钳技术及其在神经科学研究中的应用

膜片钳技术及其在神经科学研究中的应用 膜片钳技术是一种在神经科学研究中广泛应用的技术,它可以用来记录和操纵神经元的电活动,为研究神经系统的功能和疾病提供重要的工具。本文将介绍膜片钳技术的原理和应用,并探讨其在神经科学研究中的重要性。 膜片钳技术是一种通过在神经元的细胞膜上形成一个微小的孔洞,并利用微电极记录神经元内外的电位差的方法。这种技术可以精确地记录神经元的动作电位,从而了解神经元的兴奋性和抑制性。膜片钳技术的原理基于电生理学的基本原理,即神经元的电活动是由离子通道的开关控制的。通过在神经元膜上形成一个微小的孔洞,可以通过微电极记录到神经元内外的电位差,从而了解离子通道的开关状态和神经元的电活动。 膜片钳技术在神经科学研究中有广泛的应用。首先,它可以用来研究神经元的膜电位和动作电位。研究人员可以通过在神经元膜上形成一个微小的孔洞,并利用膜片钳记录到神经元内外的电位差,从而了解神经元的电活动。这对于研究神经元的兴奋性和抑制性非常重要,有助于理解神经元的工作原理和信息传递过程。 膜片钳技术还可以用来研究离子通道的功能。离子通道是神经元膜上的蛋白质通道,它们控制着离子在神经元膜上的通透性,从而调节神经元的电活动。通过利用膜片钳技术,研究人员可以记录到离

子通道的电流,并分析离子通道的开关状态和功能特性。这对于研究离子通道的结构和功能非常重要,有助于揭示离子通道与神经系统功能和疾病之间的关系。 膜片钳技术还可以用来研究突触传递和突触可塑性。突触是神经元之间的连接点,通过突触传递神经信号。膜片钳技术可以用来记录到突触传递的电位变化,并研究突触的功能特性和可塑性。这对于理解神经系统的信息传递和学习记忆等高级功能非常重要。 在神经科学研究中,膜片钳技术的应用还包括单细胞蛋白质表达、药物筛选和基因编辑等方面。通过将膜片钳技术与其他技术结合,研究人员可以进一步探索神经系统的功能和疾病机制,为神经科学研究提供更加全面和深入的理解。 膜片钳技术是一种在神经科学研究中非常重要的技术,它可以记录和操纵神经元的电活动,为研究神经系统的功能和疾病提供重要的工具。通过膜片钳技术,研究人员可以了解神经元的膜电位和动作电位,研究离子通道的功能,研究突触传递和突触可塑性等。膜片钳技术的应用还包括单细胞蛋白质表达、药物筛选和基因编辑等方面。膜片钳技术的发展和应用将进一步推动神经科学的研究和应用,为我们揭示神经系统的奥秘提供更多的线索。

膜片钳技术及应用

膜片钳技术及应用 膜片钳技术及应用是一种常见的力学装置,由薄膜片、夹持手柄和支撑结构组成。膜片钳可用于夹持和固定物体,并且在广泛的领域中有着重要的应用。下面将对膜片钳的技术原理和应用领域进行详细介绍。 膜片钳的技术原理主要基于材料的力学性质。一般情况下,膜片钳采用弹性薄膜片作为夹持物体的夹持部分。当施加外力使薄膜片发生形变时,薄膜片会产生力与形变量成正比的特性,这种力被称为弹性力。通过调整薄膜片的形变程度和位置,可以达到对不同物体的夹持和固定的目的。 膜片钳的应用领域非常广泛。以下是一些常见的应用领域: 1. 医疗行业:膜片钳被广泛用于医疗器械的设计和制造。例如,在手术中,膜片钳可以用于夹持和固定组织、血管和器官,以便医生进行手术操作。膜片钳的特点是夹持力均匀,不会损伤组织和血管。 2. 实验室研究:膜片钳在实验室研究中也有广泛的应用。例如,在细胞学研究中,膜片钳可以用于夹持、拉伸和操纵细胞,以研究细胞的力学特性和细胞间的相互作用。此外,膜片钳还可以用于微流体实验中的液滴操纵和胶体粒子的固定。 3. 微机电系统(MEMS):膜片钳是制作微机电系统中常用的工具。在MEMS 器件制造过程中,需要对微米级物体进行精确操纵和固定。膜片钳结构简单,加

工工艺成熟,可以实现对微米级物体的夹持和固定。 4. 机械制造:膜片钳在机械制造过程中也有重要的应用。例如,在精密加工中,膜片钳可以用于夹持和固定零件,以确保加工精度。另外,膜片钳还可以用于装配过程中的夹持和定位。 总的来说,膜片钳技术及其应用在医疗、实验室研究、微机电系统和机械制造等领域起到了重要的作用。膜片钳具有结构简单、操作方便、夹持力均匀等特点,使其成为一种广泛使用的力学装置。随着科技的不断发展,膜片钳的应用领域还将不断扩大,为各个领域的科研和应用带来更多的便利和可能性。

细胞电生理学基本原理与膜片钳技术

细胞电生理学基本原理与膜片钳技术 细胞电生理学是研究细胞内外电流、电压变化以及与生物学功能的关系的学科。而膜片钳技术则是细胞电生理学中最重要的实验技术之一,用于测量细胞膜上离子通道的电流。 细胞电生理学的基本原理是通过测量细胞膜上的电位变化来研究细胞内外离子的分布和运动。细胞膜是由脂质双层组成的,其中包含了各种离子通道和离子泵,这些离子通道和泵的开闭状态会导致细胞内外离子浓度的变化,从而产生电位的变化。 膜片钳技术是一种高精度的电生理记录技术,通过将玻璃微电极与细胞膜紧密接触,形成一个微小的隔离空间,从而可以测量细胞膜上的电位变化。膜片钳技术主要包括两种形式:全细胞膜片钳和单通道膜片钳。 全细胞膜片钳技术是将玻璃微电极与细胞膜上的一个小区域接触,通过控制微电极与细胞膜的紧密接触程度,形成一个微小的隔离空间,从而可以记录到整个细胞膜上的电位变化。全细胞膜片钳技术可以用来研究细胞内外离子浓度的变化、离子通道的活性以及细胞内外离子的转运等。 单通道膜片钳技术是将玻璃微电极与细胞膜上的某一个离子通道接触,通过控制微电极与细胞膜的紧密接触程度,形成一个微小的隔离空间,从而可以记录到单个离子通道的电流变化。单通道膜片钳

技术可以用来研究离子通道的电导率、选择性以及开闭状态等。 膜片钳技术的关键是保持微电极与细胞膜的紧密接触,这需要一定的技术和经验。在进行膜片钳实验时,需要注意控制微电极与细胞膜的距离、微电极的阻抗以及细胞膜的稳定性等因素,以确保记录到准确的电位变化或电流变化。 膜片钳技术的应用非常广泛。它可以用来研究离子通道的结构和功能,揭示离子通道与各种生物学功能的关系。比如,通过记录钠通道的电流变化,可以研究神经细胞的兴奋性和抑制性传递过程;通过记录钾通道的电流变化,可以研究细胞的稳定性和兴奋性调节等。膜片钳技术还可以用于药物筛选和药理学研究。通过记录离子通道的电流变化,可以评估不同药物对离子通道的影响,从而筛选出具有特定药理作用的药物。 细胞电生理学基本原理与膜片钳技术是研究细胞内外电流、电压变化以及与生物学功能的关系的重要工具。膜片钳技术通过高精度的电位和电流记录,能够揭示细胞膜上离子通道的电活性和离子通道与生物学功能的关系,对于理解细胞生理学和药理学具有重要意义。

膜片钳技术的基本原理

(一)膜片钳技术的基本原理: 膜片钳技术是用尖端直径1~2μm的玻璃微电极吸管与经蛋白酶处理干净的细胞膜接触,通过20~30cm H2O的负压吸引造成电极尖端与细胞膜形成高阻封接(10~100GΩ),使电极尖端下的小块膜片与膜的其它部分在电学上绝缘,并在此基础上固定膜片电位,监测几个μm2膜片上1~3个离子通道活动的方法。 高阻封接的形成:高阻封接形成与否是记录细胞离子通道电流能否成功的前提,是进行膜片钳实验的关键一步。微电极尖端与细胞膜形成封接的过程,可以采用软件或刺激器发出一个脉冲电压作用于微电极,造成膜两侧电位差发生变化,产生电极电流,再通过示波器或显示屏,观察电极电流幅度的变化来确定封接程度。在电极未入溶液之前,在显示器或示波器上可见一直线。当电极入液后,软件或刺激器发出的电脉冲经记录微电极、浴液及参考电极形成回路,1mV的封接电压流径5MΩ的电极阻抗,则会产生0.2nA的电流浮动,随着微电极尖端接近、接触细胞膜,电极电阻则进一步增加,而电流幅度则随之减小,当在显示器或示波器上看到电流方波变为直线时,则形成低阻封接(50MΩ),然后经微电极给予负压(-10~-30cm H2O),即可形成高阻封接。再将电脉冲调为10mV,调节快、慢电容电流补偿,消除电容电流,就可进行细胞贴附式膜片钳实验,如果在此基础上再次给予负压或电脉冲,使微电极尖端下膜片破裂,则形成全细胞式。

进行高阻封接时,需注意的是: ①在微电极未入液之前常施以正压,使电极内有液体从电极尖端流出,防止浴液表面灰尘或溶液中粒子附着于电极尖端,影响高阻封接。 ②如果微电极尖端与细胞膜接触后,仍不能形成高阻封接,则电极即不能再用,需重新换一根微电极继续封接。 ③电极尖端与细胞膜接触,稍加负压后电流波形变得平坦,此时,如使电极超极化,则有助于加速形成高阻封接。 ④电极入液后封接的成功率与入浴液后的时间呈反比,电极内液中的肽类或蛋白质成分也会有碍于封接形成。(入浴时间愈短,封接愈快)

膜片钳全细胞记录方式

膜片钳全细胞记录方式 一、膜片钳技术简介 膜片钳技术(Patch Clamp)是一种用于研究细胞膜离子通道及其功能的高精度实验技术。它通过高电阻的玻璃微吸管(patch pipette)与细胞膜形成一个密封的腔室,从而实现对细胞膜上的离子通道进行实时、定量检测。全细胞记录方式(Whole-Cell Patch Clamp)是膜片钳技术中的一种记录方式,可以广泛应用于神经生物学、药理学、生理学等领域。 二、全细胞记录方式原理 全细胞记录方式的原理是将玻璃微吸管插入细胞膜上,通过微吸管内部的电流放大器记录细胞膜上的离子通道电流。在实验过程中,首先将微吸管内的溶液与细胞外溶液达到平衡,然后逐渐增加微吸管内溶液的电位,使得细胞膜上的离子通道打开,记录到电流信号。随着微吸管内溶液电位的改变,离子通道的状态也会发生相应变化,从而得到全细胞电流记录。 三、实验操作步骤 1.选择合适的细胞样本:根据研究目的,选择具有相应离子通道的细胞类型。 2.制备玻璃微吸管:利用特殊设备切割玻璃片,制作出直径约为1-2μm的微吸管。 3.填充微吸管:将内径较细的毛细管插入微吸管,填充电极内溶液(如KCl、EGP-TEA等)。 4.贴附细胞:将制备好的微吸管轻轻接触到细胞膜,形成一个密封的腔

室。 5.封接:通过轻微的吸允作用,使微吸管与细胞膜紧密贴合,形成全细胞记录模式。 6.记录电流:逐渐增加微吸管内溶液的电位,记录细胞膜上的离子通道电流。 7.数据分析:根据电流信号,分析离子通道的开放状态、电流幅度和电压依赖性等特征。 四、应用领域及意义 全细胞记录方式广泛应用于神经生物学、药理学、生理学等领域,有助于深入了解离子通道的结构和功能,为相关疾病的诊断和治疗提供理论依据。例如,在神经科学领域,全细胞记录技术可以用于研究神经元动作电位的产生和传导机制;在药理学领域,可通过全细胞记录研究药物作用于离子通道的机制,为新药研发提供参考。 五、注意事项及优化方法 1.选择合适的细胞样本:细胞状态良好、形态完整是获得可靠实验结果的前提。 2.微吸管制作:高质量的微吸管是实现高精度记录的关键。 3.贴附和封接:操作过程中要保持轻柔,避免对细胞膜造成损伤。 4.优化实验条件:如温度、溶液成分等,以提高记录的稳定性和准确性。 5.数据分析:运用专业软件对电流信号进行处理和分析,挖掘有价值的信息。 综上所述,全细胞记录方式作为一种高精度、高灵敏度的实验技术,在生

膜片钳技术原理与基本操作

膜片钳技术原理与基本操作(总7 页) -本页仅作为文档封面,使用时请直接删除即可- -内页可以根据需求调整合适字体及大小- 膜片钳技术原理与基本操作

1976 年Neher 和Sakmann 建立了膜片钳技术(Patch clamp technique), 这是一种以记录通过离子通道的离子电流来反映细胞膜上单一的或多数的离子通道分子活动的技术。1981年Hamill, Neher等人又对膜片钳实验方法和电子线路进行了改进,形成了当今广泛应用的膜片钳实验技术。该技术可应用于许多细胞系的研究,也是目前唯一可记录一个蛋白分子电活动的方法,膜片钳技术和克隆技术并驾齐驱给生命科学研究带来了巨大的前进动力,这一伟大的贡献,使Neher和Sakmann获得1991年诺贝尔医学与生理学奖。—、膜片钳技术的基本原理 二、用一个尖端直径在〜um的玻璃微电极接触细胞膜表面,通过负压吸引使电极尖端与细胞膜之间形成千兆欧姆以上的阻抗封接,此时电极尖端下的细胞膜小区域(膜片,patch)与其周围在电学上分隔,在此基础上固定(钳制,Clamp)电位,对此膜片上的离子通道的离子电流进行监测及记录。 三、基本的仪器设备有膜片钳放大器、计算机、倒置显微镜、示波器、双步电极拉制器、三轴液压显微操纵器、屏蔽防震实验台、恒温标本灌流槽、玻璃微电极研磨器。膜片钳放大器是离子单通道测定和全细胞记录的关键设备,具有高灵敏度、高増益、低噪音及高输入阻抗。膜片钳放大器是通过单根电极对细胞或膜片进行钳制的同时记录离子流经通道所产生的电流。膜片钳放大器的核心部分是以运算放大器和反馈电阻构成的电流-电压(I-V)转换器,运算放大器作为电压控制器自动控制,使钳制电位稳定在一定的水平上。 四、二、操作步骤 2.膜片钳微电极制作(1)玻璃毛细管的选择:有二种玻璃类型,一是软质的苏打玻璃,另一是硬质的硼硅酸盐玻璃。软质玻璃在拉制和抛光成弹头形尖端时锥度陡直,可降低电极的串联电阻,对膜片钳的全细胞记录模式很有利;硬质玻璃的噪声低,在单通道记录时多

宁波神经生物学膜片钳技术原理

宁波神经生物学膜片钳技术原理 神经科学中,膜片钳技术是一种非常重要的实验方法,可以用于记录细胞内外的电位变化。宁波神经生物学膜片钳技术是一种经典的膜片钳技术,它是由中国神经科学家于1976年发明并发表的。宁波神经生物学膜片钳技术是一种完美结合电荷动力学和化学物理学原理的技术,能够非常精确地记录神经元膜内外的电位变化。 宁波神经生物学膜片钳技术使用的是一种特殊的仪器,称为电压钳扳平仪。它能够通过光学系统将微小的电压变化转换成可视化的信号。在这个仪器的帮助下,实验者可以观察到细胞内的微小电位变化。通常,这种变化只有几毫伏甚至只有几微伏。 该技术主要是通过控制电压钳的外径,使之与神经细胞的细胞膜缩在一起。一旦电压钳缩在神经细胞膜上,就能够记录该细胞内外的电位变化。 使用宁波神经生物学膜片钳技术进行记录时,需要将一小块玻璃切成一小片,并将其与电压钳结合。之后,将整个电路与一片外部电极连接,从而能够读取到神经细胞内外的电位变化。 一旦成功固定上述组件,实验者就可以观察到神经细胞膜上的电压变化。通过对电位变化进行分析,实验者可以非常准确地计算神经细胞离子通道的开放概率。 宁波神经生物学膜片钳技术是一种非常重要而且精确的实验方法,能够帮助神经生物学研究者更好地了解神经元的电学性质。该技术能够以先进、精确的方式记录细胞内外的电压变化,并通过对这些变化进行分析,获得对离子通道开放概率的准确计算。利用宁波神经生物学膜片钳技术可以更深入地了解神经元病理生理学,为探索神经系统的基本问题提供有力的工具。除了记录神经元膜内外的电位变化,宁波神经生物学膜片钳技术还可以用于研究离子通道动力学和突触传递。利用该技术可以研究离子通道的不同类型、大小及其开放概率等,以及神经元膜上不同离子通道的作用关系,这对于理解神经元的电气特性和调节机制非常重要。 宁波神经生物学膜片钳技术还可以研究神经元突触传递信号的方式。通过记录神经元膜内外电位变化,可以观察到神经元突触释放的神经递质导致的膜电位变化,并对神经元突触传递功能进行研究。该技术可以直接测量神经元之间互相传递信息的速度,了解突触传递中阈值的大小、传递速度和传递抑制等机制,更好地理解神经元间的信息传递机理。 宁波神经生物学膜片钳技术还可以应用于药理学、毒理学和神经退行性疾病等领域。通过研究神经元膜的电气活动和离子通道的变化,可以评价药物、毒物对神经元活动的影响。一些药物可能会干扰膜上的钠离子通道和钾离子通道,从而改变神经元的电气活动,而这种改变与药物的治疗效果和副作用密切相关。宁波神经生物学膜片钳技术还可以研究神经退行性疾病,如阿尔茨海默病等的机理,从而为这些疾病的治疗和预防提供依据。

相关主题
相关文档
最新文档