智能进入和起动系统故障诊断..

合集下载

迈腾B8L车无钥匙进入系统及故障1例

迈腾B8L车无钥匙进入系统及故障1例

随着汽车产业的快速发展,配备无钥匙进入系统的车辆越来越多,通过携带授权的智能钥匙即可实现对车门进行解锁、闭锁控制,增加了汽车的便捷性、舒适性和安全性。

本文以2018款大众迈腾B8L车为例,介绍该车无钥匙进入系统的工作原理及故障检修方法。

1 迈腾B8L车无钥匙进入系统1.1 结构功能迈腾B8L车共有5个车外天线和3个车内天线,5个车外天线分别为驾驶人侧进入及起动系统天线(R134)、前排乘客侧进入及起动系统天线(R135)、左后侧进入及起动系统天线(R165)、右后侧进入及起动系统天线(R166)、后保险杠内的进入及起动系统天线(R136);3个车内天线分别为车内空间的进入及起动系统天线1(R138)、车内空间的进入及起动系统天线2(R139)、行李厢内的进入及起动系统天线(R137)。

R134、R135、R165、R166分别位于相应车门的车门外把手中,R136位于后保险杠迈腾B8L车无钥匙进入系统及故障1例安徽职业技术学院 王 帅,鲁 磊(4)失光是指涂膜表面失去光泽的现象,导致该缺陷的原因如下:固化剂、稀释剂等混合比例错误;中涂底漆未完全干燥就喷涂了面漆;喷涂面漆时闪干时间较短;清漆喷涂过薄;涂层未完全干燥就进行研磨抛光。

如果是小面积的失光,进行研磨抛光即可,大面积时,需等涂层彻底干燥后,用适当型号的砂纸研磨涂层,然后重新喷涂。

(5)涂料流挂是涂料垂流并硬化,可能是使用了蒸发缓慢的稀释剂、涂料粘度过低、喷涂方法不正确、层间闪干时间过短等原因造成的。

对于小流挂,涂层干燥后用砂纸研磨,然后进行抛光作业;对于大流挂,涂层干燥后,使用适当的砂纸研磨后重新喷涂。

(6)色差是重涂后的部位与周围部位颜色不一致的现象,可能是调色不正确;颜料混合不充分;喷涂方法不正确等。

处理方法是彻底干燥后,重新调色,研磨后重新施涂。

3 结论修复好的车身漆面只有经过仔细检查后才可以交车,如果发现涂层缺陷应尽快进行返工,保证修复质量。

车联网中的车辆故障诊断技术教程

车联网中的车辆故障诊断技术教程

车联网中的车辆故障诊断技术教程随着物联网技术的迅猛发展,车联网已成为汽车行业的一项重要趋势。

车联网不仅使车辆与车辆之间、车辆与道路基础设施之间实现了互联互通,还使车辆能够与互联网进行连接,实现数据交换和远程控制。

车联网中的车辆故障诊断技术,是保障车辆安全和提高维修效率的重要环节。

本文将介绍车联网中的车辆故障诊断技术,以及相关的应用和发展趋势。

一、车联网中的车辆故障诊断技术简介车联网中的车辆故障诊断技术是指通过车辆内部的传感器、控制单元和外部的远程服务器等设备,对车辆系统进行监测和诊断,实现对车辆故障的快速检测和定位。

通过车联网中的车辆故障诊断技术,车辆制造商和维修人员可以远程获取车辆的实时数据,如发动机温度、油耗情况等,以及故障码和车辆报警信息,从而及时发现和解决车辆故障。

二、车联网中的车辆故障诊断技术的应用1. 远程诊断车辆通过车联网与远程服务器进行连接,车辆故障信息可以通过无线传输技术实时传送给制造商和维修人员。

制造商和维修人员可以通过远程诊断方法,远程查看车辆故障码和实时数据,定位故障,并制定相应的维修计划。

远程诊断大大减少了维修人员上门的次数,提高了故障诊断的效率。

2. 自动诊断车辆中的故障诊断系统能够根据实时数据和设置的规则,自动进行故障诊断。

当车辆系统出现异常时,诊断系统会自动产生故障码,并通过车联网发送给制造商或维修人员。

制造商和维修人员可以根据故障码,快速判断故障的原因和位置,从而提前进行维修,避免故障进一步恶化。

3. 数据分析与预测车联网中的车辆故障诊断技术还可以通过数据分析和模型建立,对车辆故障进行预测。

通过收集和分析大量的车辆数据,制造商可以建立故障预测模型,提前发现和解决潜在的故障问题。

预测模型可以通过机器学习和人工智能算法进行优化,从而提高诊断的准确性和预测的精度。

三、车联网中的车辆故障诊断技术的发展趋势1. 云端服务随着云计算技术的发展和普及,车联网中的车辆故障诊断技术将越来越多地依赖云端服务。

汽车一键启动系统的原理和对故障的诊断

汽车一键启动系统的原理和对故障的诊断

Internal Combustion Engine &Parts0引言现如今,汽车已经成为了人们生活出行必不可少的交通工具,汽车舒适度和功能便利性不断提高和创新,很多智能化技术与电子技术应用到了汽车系统中。

其中,一键启动系统又称为无钥匙进入启动系统,顾名思义就是不需要钥匙进入就可以启动汽车,该系统技术的广泛应用彰显出了汽车智能化特点。

因此文章深入研究汽车一键启动系统功能和原因,对汽车的发展也起到了一定的意义。

1汽车一键启动系统概念及组成1.1具体概念汽车一键启动系统是指驾驶员只需手持钥匙,在距离车门0.8m 范围内就可以向车内控制器做出指令,实现车门智能开启。

当驾驶员进入车内时,不需要插入钥匙,一个按键就可启动汽车发动机。

一键启动系统与传统汽车钥匙操作系统相比,其有着非常突出的优势。

一是无钥匙系统杜绝了车内钥匙不小心触碰驾驶员膝盖而导致的损坏情况;二是一键启动系统具备的防盗功能。

该系统具备的加密算法认证必须要有智能卡才能操作方向盘和车辆,极大避免了车辆被盗的问题;三是一键启动系统还能有效控制车窗,后备箱门,从而带给了驾驶员很大的便利。

1.2汽车一键启动系统组成和功能汽车一键启动系统组成部分包括遥控钥匙、无钥匙进入及启动、电子反向锁、启动开关、防盗线圈、感应开关和天线等,详细见图1。

汽车一键启动系统的主要功能有以下几方面:①无钥匙解锁功能,一键拉动前门车门,实现行李箱的自动解锁;②无钥匙启动功能,驾驶员无需插入钥匙,直接一键启动汽车发动机;③无钥匙闭锁,关闭车门后可以一键上锁汽车;④应急启动,在无法实现遥控钥匙或遥控钥匙电能耗尽时,将钥匙靠近一键按钮旁就能应急启动汽车发动机;⑤应急关闭,驾驶员在一秒内连续按两下或者持续按一秒,则可以执行应急关闭功能。

2汽车一键启动系统工作原理2.1汽车一键启动系统原理汽车的一键启动系统主要通过钥匙和汽车之间相互传达信号来实现一系列控制操作。

驾驶员手持钥匙发送信号时,汽车控制器就能快速接收到信号,从而实现车门自动解锁。

启动机不运转故障的诊断与排除——以大众迈腾B8发动机为例

启动机不运转故障的诊断与排除——以大众迈腾B8发动机为例

852024/02·汽车维修与保养栏目编辑:高中伟******************◆文/山东 吴明达 鲁学柱 栾敏大众迈腾是一汽大众旗下的畅销B级车型,市场保有率较高。

该车配备大众经典EA888发动机,此款发动机在速腾、迈腾、途观、A4L、Q3、Q5等车型上都有配置。

启动机不运转是该款发动机常见的典型故障之一。

当今汽车电子技术发展迅速,启动系统已不再是单纯的,由点火开关控制的简单电路,而是由防盗系统、启动条件、启动相关线路等构成的复杂系统。

对于汽车维修人员来说,必须掌握启动系统控制逻辑,才能有效进行故障诊断。

本文将从防盗系统、启动条件、启动机相关线路等方面进行详细说明,并通过具体故障案例加以分析。

——以大众迈腾B8发动机为例图1 启动系统工作原理摘要:本文以大众迈腾B8发动机为例,介绍发动机启动系统工作原理及其常见故障。

通过不同故障案例,总结启动系统故障排除方法和诊断思路。

在诊断过程中,严谨的诊断思路对于维修人员极为重要,本文从故障现象描述、分析故障可能原因、故障诊断、故障机理分析4个方面进行详细说明。

通过分析,建立起诊断思路,为职业院校师生和汽车维修从业人员提供一定的参考信息。

栏目编辑:高中伟******************一、启动系统工作原理1.防盗系统工作过程迈腾B8防盗系统主要包括智能钥匙、无钥匙进入及启动系统J965、一键启动开关E378、低频天线、车载电网控制单元J519、仪表控制单元J285(内设防盗锁止系统控制单元J362)、电子转向柱锁J764、发动机控制单元J623、双离合变速器控制单元J743、数据总线诊断接口J533、FAZIT中心数据库等。

如图1所示,驾驶员携带智能钥匙进入车内,按下一键启动开关E378,无钥匙进入及启动系统J965接收到接地信号,通过舒适CAN总线向仪表控制单元J285发送上电请求信息,后者询问其是否有合法钥匙,无钥匙进入及启动系统J965激活车内低频天线(125kHz),发送一个查询码给已匹配的钥匙,同时通过硬线唤醒车载电网控制单元J519。

汽车启动系统课件

汽车启动系统课件

V2X智能车联启动
总结词
通过车联网(V2X)技术实现智能启动,提高行车安全和舒适度。
详细描述
通过车联网(Vehicle to Everything,V2X)技术,实现车辆与其他道路参与者(如其他车辆、行人、交通信号 灯等)的智能交互和信息共享,从而提高行车安全和舒适度。智能车联启动可以实现远程解锁、自动泊车、碰撞 预警等功能。
指纹识别启动
总结词
通过指纹识别技术实现快速、安全、便捷的启动方式。
详细描述
通过指纹识别技术,实现快速、安全、便捷的启动方式。用户只需将手指放在指纹识别传感器上,即 可快速启动车辆,提高用车体验和安全性。
CHAPTER 04
汽车启动系统的维护与保养
定期更换电池
总结词
汽车电池是汽车启动系统的重要组成部 分,随着使用时间的增长,电池的电量 和寿命会逐渐降低,因此需要定期更换 电池以确保汽车的正常启动。
无线充电技术应用
要点一
总结词
无线充电技术是一种新兴的充电方式,通过使用无线电能 传输技术实现电能的无线传输和充电。
要点二
详细描述
无线充电技术主要分为电磁感应式、磁共振式和无线电波 式三种类型。其中,电磁感应式是目前应用最广泛的一种 方式,其原理是利用电磁感应原理,将电能从充电设备传 输到接收设备。磁共振式则可以实现更远距离的充电,而 无线电波式则可以实现更高效的充电。无线充电技术的应 用将为电动汽车等需要频繁充电的设备带来更大的便利。
优点:可以在进入车辆之前先启动车辆,提高舒适性和便利性。
缺点:需要使用遥控器,如果遥控器电量不足或信号不好,则无法启动车辆。同时,也存在被盗的风险 。
CHAPTER 03
智能汽车启动系统
手机APP远程启动

汽车一键启动系统工作原理及故障诊断

汽车一键启动系统工作原理及故障诊断

-36-科学技术创新2019.02汽车一键启动系统工作原理及故障诊断齐传义(长城汽车股份有限公司徐水哈弗销售分公司,河北保定071000)摘要:随着经济水平的快速提高,我国汽车产业得到了前所未有的发展,在汽车零部件和各种系统中电子技术的应用十分普遍,有助于实现对相关结构的电子化操作,同时,提升汽车运行的效率,减少能源消耗,降低空气污染等。

目前,汽车中采用一键启动系统十分常见,无钥匙进入、启动系统跟随时代的发展应运而生。

一键启动系统在汽车中的应用是新时期智能化技术与汽车制造技术的结合,未来有很大的发展空间,在实际应用中还存在一些亟待解决的问题“本文首先对一键启动系统的概念进行了阐述,对其工作原理进行了分析,对其功能设计进行了必要的探讨,指出了可能存在的故障及诊断方法,进而为汽车一键启动系统的科学应用提供科学的依据。

关键词:汽车启动系统;一键启动;工作原理;故障诊断中图分类号:U463.6,U472文献标识码:A文章编号:2096-4390(2019)02-0036-02目前,汽车已经成为我们生活中必不可少的一部分,现阶段人们对于汽车使用的舒适性和便利性提出了更高的要求,因此,很多电子控制技术与智能化技术逐渐应用于汽车中,一键启动系统就是一个典型的系统结构。

一键启动系统也可称之为无钥匙进入启动系统,目前是业界十分关注的一部分,一键启动展现了汽车的智能化发展趋势,尤其在国外一些发达国家应用十分广泛,我国国内近些年也开始逐渐重视一键启动技术在汽车工业中的应用,加强其研究有利于提升汽车的智能化水平。

1一键启动系统的概念一键启动系统或者说无钥匙进入系统主要是指驾驶者持有遥控感应器,在距离车门约0.8m范围内,可以通过给车内控制器发出指令实现智能打开车门,驾驶者进入车内,一个按键就可以启动车辆。

一键启动系统由以下几个优点,首先,与传统的汽车钥匙操作相比,车钥匙一般位于驾驶员膝盖上方,驾驶途中突遇紧急刹车,有时会碰触驾驶员膝盖,会导致钥匙和车辆损坏,无钥匙进入系统会避免这些问题。

智能网联汽车故障诊断技术的新挑战与对策

智能网联汽车故障诊断技术的新挑战与对策

智能网联汽车故障诊断技术的新挑战与对策1. 智能网联汽车故障诊断技术概述随着汽车技术的飞速发展,智能网联汽车已成为现代汽车工业的重要发展方向。

智能网联汽车具备车辆间通信、道路与车辆协同等功能,通过先进的传感器、控制器和执行器等设备实现智能化控制和自动化驾驶。

智能网联汽车的复杂性和高度集成性也给故障诊断技术带来了新的挑战。

智能网联汽车故障诊断技术是对智能网联汽车中出现的故障进行识别、分析和定位的技术手段。

由于智能网联汽车涉及的系统和组件众多,包括但不限于电子控制系统、传感器、通信网络等,其故障诊断技术需要具备高度的专业性和复杂性。

与传统汽车诊断相比,智能网联汽车故障诊断不仅要考虑机械部件的故障,还要关注电子系统和网络系统的故障。

在实际应用中,智能网联汽车故障诊断技术面临着诸多挑战。

随着汽车智能化程度的提高,故障的来源和表现形式更加复杂多样。

智能网联汽车的故障诊断需要处理大量数据,包括车辆运行数据、环境数据、网络数据等,数据处理和分析的难度较大。

智能网联汽车的网络安全问题也是故障诊断技术必须面对的挑战之一。

1.1 智能网联汽车的发展历程智能网联汽车,作为当今汽车产业发展的前沿领域,其发展历程可谓波澜壮阔。

自20世纪末期开始,随着信息技术的迅猛进步,汽车行业便开始了与信息技术、通信技术和控制技术的深度融合探索。

早期的智能网联汽车主要聚焦于安全辅助系统的应用,如防抱死制动系统(ABS)、电子稳定程序(ESP)等,这些技术极大地提升了汽车的安全性能。

进入21世纪,随着互联网技术和人工智能的快速发展,智能网联汽车的概念逐渐演变为包括自动驾驶、车联网在内的更广泛领域。

在自动驾驶方面,从最初的特定场景自动驾驶到当前的全球范围内多种场景的自动驾驶商业化尝试,智能网联汽车的技术不断突破,行驶范围和智能化水平日益提升。

车联网技术的发展也让汽车具备了更加智能化、人性化的交互能力,车载信息服务、导航服务、娱乐服务等越来越丰富,极大地改善了驾驶体验。

理想汽车的智能车辆远程故障诊断

理想汽车的智能车辆远程故障诊断

理想汽车的智能车辆远程故障诊断在现代社会中,汽车已成为人们生活中不可或缺的一部分。

随着科技的不断进步,智能车辆逐渐进入我们的视野,成为人们追逐的新目标。

智能车辆不仅拥有更高的安全性能和更好的驾乘体验,还具备远程故障诊断的功能,这为车辆的维修和保养带来了很大的便利。

一、智能车辆远程故障诊断的意义随着汽车电子技术的快速发展,车辆的故障排除也变得更加复杂。

而传统的车辆故障排查方式需要依赖专业的技术人员,费时费力。

而智能车辆的远程故障诊断技术能够在车辆出现故障时,通过车联网系统实时传输车辆数据,实现远程诊断和故障排查。

这项技术的出现,对于提高车辆故障排查效率和减少人力成本具有重要意义。

二、智能车辆远程故障诊断的原理智能车辆远程故障诊断基于车联网技术和大数据分析技术。

当车辆感知到故障时,会将相关数据通过车联网系统上传至后台服务器。

后台服务器会根据预设的故障模型和大数据分析算法对数据进行分析,并对故障类型进行初步判断。

然后,根据故障类型和车辆所处的位置等信息,向车主或者维修人员发送故障报警信息,以便及时处理故障。

三、智能车辆远程故障诊断的优势1. 提高故障排查效率:智能车辆远程故障诊断可以实时上传车辆数据,并通过大数据分析快速判断出故障类型。

相比传统的排查方式,节省了大量的排查时间,提高了故障排查的效率。

2. 减少人力成本:智能车辆远程故障诊断不需要依赖专业的技术人员现场排查,只需要通过后台系统的数据分析和远程指导,即可完成故障排查。

这样可以减少人力成本,提高维修效率。

3. 提供个性化的服务:智能车辆远程故障诊断可以根据不同车型和车辆使用情况,提供个性化的服务。

根据车辆故障情况,系统可以推荐相关的维修网点或者提供在线咨询服务,满足车主的个性化需求。

四、智能车辆远程故障诊断的应用场景1. 突发故障排查:当车辆出现突发故障时,可以通过智能车辆远程故障诊断技术快速判断出故障原因,并及时提醒驾驶员采取应对措施,确保行车安全。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

国家职业资格全国统一鉴定汽车维修工技师论文(国家职业资格二级)论文题目:智能进入和起动系统故障诊断姓名: *** 身份证号: 440**********16 准考证号:所在省市:广东省广州市所在单位:广州**汽车销售服务有限公司智能进入和起动系统故障诊断***广州**汽车销售服务有限公司摘要:凯美瑞240V车型智能进入和起动系统可以通过携带钥匙但不需要使用钥匙或发射器按钮实现进入功能和按钮起动功能。

本文主要介绍一部2010年款的丰田凯美瑞轿车,由于MPX多路通信系统故障,造成智能钥匙系统不能正常工作,发动机不能正常起动。

通过仔细的线路检查,最终发现MPX系统的故障点,并顺利解决故障。

关键词:工作原理非常规强行进入系统一、前言智能进入和起动系统日益流行,在为人们带来便利的同时,也常常会因为对这项新技术的不了解而给我们的车主带来不小的麻烦。

本文通过对丰田凯美瑞240V车型的智能进入和起动系统的介绍和案例分析,使读者能够了解智能进入和起动技术,希望能帮助广大汽车客户和维修技术人员能够解决与之相关的技术问题。

凯美瑞240V智能凯进入和起动系统不仅具有无线门锁远程控制功能和发动机停机器功能,还可以通过携带钥匙但不需要使用钥匙或发射器按钮实现进入功能和按钮起动功能,如果要进入和起动没有带该系统的车,就必须使用钥匙把车门锁和点火开关打开,而带有智能进入和起动系统的汽车就可以省去了这些操作。

智能进入和起动系统不是在任何时候都能起作用,仅当钥匙处于执行区域时,智能进入和起动系统的特殊功能才能起作用,否则汽车就失去防盗作用。

该车钥匙也不是普通的钥匙,钥匙包括了机械钥匙,无线门锁摇控发射器,智能进入和起动系统收发器,以及用于发动机停机器控制的应答器芯片。

每个控制单元通过MPX多路通信系统进行连接,传送各种信号。

智能进入和起动系统的执行区域如(图一)所示,由前车室振荡器,后车室振荡器,左前门振荡器,行李厢内振荡器和行李厢外振荡器形成,而前车室振荡器和后车室振荡器形成按钮起动功能的执行区域,其它的振荡器就形成进入功能执行区域(注:中国凯美瑞副驾驶室门则没有执行区域)。

(图一)三、维修步骤(一)故障现象救援拖回车辆,客户反映,前几天贴完防爆膜,车辆试过有时不能着车,但后来不知怎么就可以着车了,这次无论怎么也着不了车。

仪表灯也不亮,经检查,确实如车主反映一样,电池有电,但仪表不能点亮。

智能钥匙系统不能打开到ACC和IG-ON状态,踩住刹车踏板,点火按钮也没有点亮绿色的指示灯,也不能启动发动机。

遥控上锁、解锁功能正常,智能进入功能失效,用钥匙贴紧点火按钮,也没有任何反应。

测量蓄电池电压,12.4V,正常。

(二)故障分析除凯美瑞240V以外的其它车型没有带智能进入和起动系统,如果要起动不带智能进入和起动系统的车型,就必须将点火钥匙插入点火开关,并转动钥匙,使点火开关从OFF挡转到START挡,而凯美瑞240V的起动只需要踩下制动踏板且钥匙处于前后振荡器形成的执行区域内的情况下,简单地按一下处于方向盘右边的推进式发动机开关就可以实现起动发动机,起动功能主要由发动机开关,钥匙,前后振荡器,调谐器,主体ECU,认证ECU,刹车灯开关,ID代码箱,转向锁止ECU,发动机ECU和组合仪表等实现。

而主体ECU控制着起动功能,如(图二)所示,起动功能具有不同的电源控制模式,以适应不同的制动踏板状态和换挡杆位置,驾驶员可根据发动机开关的指示灯点亮状态来判断当前电源模式和发动机能否起动,而指示灯有琥珀色和绿色,指示灯状态如表1所示,起动功能具有五种电源模式。

图二表1:电源状态指示灯状态松开制动踏板制动踏板被踩下,换档杆在“P”或“N”OFF OFF ON(绿色)ACC IG-ON ON(琥珀色)ON(绿色)发动机运转OFF OFF转向锁止没有开锁闪烁(绿色)15秒闪烁(绿色)15秒智能进入和起动系统故障闪烁(琥珀色)15秒闪烁(琥珀色)15秒驾驶员持有钥匙进入车内,换挡杆在“P”或“N”位置,同时踩下制动踏板,当按下发动机开关时,主体ECU可识别该开关的信号,并将钥匙认证请求传输至认证ECU,认证ECU通过前后振荡器,发出钥匙请求信号,如钥匙在起动功能的执行区域内时,接收请求信号并将其ID代码传送到调谐器,调谐器把ID代码送回认证ECU,认证ECU对ID代码进行判断和检验,当ID代码正确时,认证ECU 向主体ECU发出钥匙检验OK信号,这时主体ECU先接通ACC继电器,再接通IG继电器。

当认证ECU检查到电源从“OFF”转换“IG-ON”时,将转向开锁信号传送到主体ECU和ID代码箱,主体ECU给转向锁止ECU提供电源,而ID代码箱发送开锁信号,松开转向锁止。

认证ECU检查到转向开锁后,将发动机停机器脱开信号传送至ID代码箱,ID代码箱检验正确后,将发动机停机器脱开信号传送至发动机ECU,脱开发动机停机器,而主体ECU检查到转向处于开锁状态后,向发动机ECU发出起动机请求信号,使起动机启动。

在这个过程中,主体ECU也有直接输出起动机继电器信号,而没有通过发动机ECU,以避免起动机操作失败(如当供给发动机ECU的电源电压过低)。

当钥匙电池电量不足时,按上面的操作是不能起动发动机的,如图3所示。

如果在钥匙电池电量较低时,操作智能进入和起动系统在踩下制动踏板的同时,将钥匙靠近发动机开关,当组合仪表上蜂鸣器响起后,5秒内按下发动机开关,智能进入和起动系统将正常工作。

在正常情况下,主体ECU接收到刹车灯开关信号时,将钥匙认证请求信号传送至认证ECU。

但当认证ECU没有从调谐器接收到ID代码时,就激活内置于发动机开关中的应答器钥匙放大器,应答器钥匙放大器输出发动机停机器无线电波到钥匙,钥匙接收到无线电波并回复无线电波到应答器钥匙放大器,这时应答器钥匙放大器将钥匙ID 代码与无线电波回复合在一起,传送到认证ECU,认证ECU判断并检验ID代码,并将钥匙检验OK信号传送到主体ECU,同时使蜂鸣器响起,系统恢复正常工作,当电源处于IG—ON状态时,主体ECU 和认证ECU可以检测智能进入和起动系统中的故障,当有故障时,发动机开关的琥珀色指示灯将闪烁,以警示驾驭员,同时,ECU可根据故障在存储器中储存5位的DTC(诊断故障代码),如果出现故障则不能成功地操作该系统。

图3(三)故障诊断根据经验车辆在外面贴膜会容易导致仪表台下的电子元件进水而发生故障,再结合上面智能进入和起动系统的工作原理,初步估计故障原因:(1)认证ECU的连接器和线束进水;(2)主体ECU的连接器和线束进水;(3)ID代码箱的连接器和线束进水;(4)其他问题。

由于不能打开到“IG-ON”状态,所以不能用丰田诊断仪IT-2直接查询DTC(故障代码)。

对于电气系统的故障诊断,最理想的状态是ECU(电子控制单元)里有相应的DCT存在。

但是现在智能进入和起动系统根本不能打开,诊断仪是不能进入系统查询的,根据先易后难的原则,决定首先检查相关ECU的电源及线束情况。

(1)拆下右侧A柱踏脚板和手套箱,检查认证ECU、连接器、线束,没有发现明显的进水。

测量其工作电压为12.4V,正常范围,接地良好。

(2)拆下左侧A柱踏脚板和仪表板下饰板,检查主体ECU背面的连接器、线束,也没有明显的进水痕迹。

主体ECU正面的连接器进水几率不高,没有重点检查。

此时,我们的工作遇到了问题,如果要检查仪表台下方的线束就得耗费大量的时间拆掉仪表台,即使把仪表台拆掉,剩下大量的线束和连接器的检查也要耗费很多的时间。

于是,我们只好请求技术支援。

经过技术主管的诊断,采用了一种非常规的方法方便的解决了问题。

如下:根据智能进入和起动系统的电路图(图六),决定强行接通ACC继电IG1图六继电器,让智能系统工作起来,如(图四)所示。

此时可以用IT-2进入“Entry&Start”系统,读取DTC,发现有两个历史故障码,如(图五)所示。

B2785 LIN连接的ECU之间通信故障;B2789 ID BOX 无响应。

B2785 LIN连接的ECU之间通信故障说明如下:当来自认证ECU 的LIN 通信停止一段时间时,这个DTC 被输出。

根据维修手册如果同时检测到DTC B2785 和DTC B2786、B2789 或B2287,则应首先排除DTC B2786、B2789 或B2287故障。

如(图七)B2789 ID BOX 无响应故障说明:当认证ECU 连续10 秒没有接收到来自ID 代码箱的LIN 通信时,该DTC 被输出。

表2:图七(四)故障排除根据检测到的DTC,可以判定问题出现智能进入和起动系统的LIN通信线路上,重点检查MPX多路通信系统。

在把仪表板总成拆下来,根据丰田凯美瑞维修手册的指导,详细检查认证ECU到ID代码箱的通信线路,没有发现异常,ID代码箱的连接器和电路板也没有进水痕迹。

根据丰田凯美瑞的电路图,顺着LIN线的走向检查,4号接线盒外观没有异常,测量LIN线到认证ECU和ID代码箱的电阻,全部正常。

再次检查4号接线盒到主体ECU的通信线路,终于发现故障点,如(图八)所示,IR连接器9号端子和10号端子出现铜绿,9号端子正好就是LIN通信线路。

10号端子是自动防眩目后视镜的电源线。

图八由于主体ECU的IR连接器进水,导致LIN通信线路断路,MPX 多路通信系统不能正常工作。

把两个端子清理干净,装复试车,智能进入和起动系统全部恢复正常,故障排除。

交车三天后,电话回访客户,故障再也没有出现,故障彻底解决。

三、结束语本次维修采用非常规诊断方法,使得电子控制单元可以工作起来,通过使用诊断仪读取电控单元的故障代码,快速确定故障点,节省了大量电气线路测量的时间。

但这种方法的运用必须建立在充分熟悉和理解系统原理的基础上。

现代汽车的功能越来越强大,电子设备也越来越复杂。

作为一名合格汽车维修技师,必须熟悉各种电子控制系统的工作原理,熟练掌握各种诊断仪器的使用,熟练掌握智能诊断仪的故障码查询、数据流查询、执行器测试等功能。

致谢:由于本人水平有限,写作过程中难免有错漏,恳请各位老师批评指正。

同时本文在写作过程中得到技术主管和广东机电职业技术学院汽车专业各位老师的大力帮助,在此深表感谢。

五、参考文献(一)TOYOTA 凯美瑞新车特征2006年6 月(二)TOYOTA 凯美瑞维修手册2006年6 月(三)TOYOTA 凯美瑞电路图2006年6 月。

相关文档
最新文档