变形镁合金的成形工艺(一)
ZK61M变形镁合金铸造工艺研究

ZK61M变形镁合金铸造工艺研究周江;刘科研;金龙兵;张宏伟;张燕飞【摘要】ZK61M变形镁合金铸造过程中经常出现铸锭表面开裂.据此试验研究了合金成分(Zn、Zr含量)对铸锭组织和性能的影响,铸造工艺参数(铸造温度、冷却强度、铸造速度、结品器)对铸锭质量和开裂缺陷的影响,铸锭均匀化丁艺参数对铸锭组织和加工塑性的影响.确定了ZK61M镁合金的成分范嗣,w(Zn)=5.3%~5.5%,w(Zr)=0.6%~0.8%;优化了铸造工艺参数,防止熔体过热,铸造温度695℃~705℃,铸造速度36 mm/min~40 mm/min,改进结晶器,减少二次水冷却强度;铸锭均匀化工艺参数390℃ 12 h.这样形成了ZK61M镁合金铸锭稳定的生产工艺,大大减少了铸锭表血开裂.【期刊名称】《轻合金加工技术》【年(卷),期】2010(038)008【总页数】4页(P13-16)【关键词】ZK61M变形镁合金;铸锭开裂;铸造工艺【作者】周江;刘科研;金龙兵;张宏伟;张燕飞【作者单位】东北轻合金有限责任公司,黑龙江,哈尔滨,150060;东北轻合金有限责任公司,黑龙江,哈尔滨,150060;东北轻合金有限责任公司,黑龙江,哈尔滨,150060;东北轻合金有限责任公司,黑龙江,哈尔滨,150060;东北轻合金有限责任公司,黑龙江,哈尔滨,150060【正文语种】中文【中图分类】TG292根据生产工艺不同,镁合金可分为铸造镁合金和变形镁合金。
由于镁合金属于密排六方结构,塑性变形能力差,很难加工成板、带、棒、型材和锻件,因此当前应用较广的是铸造镁合金,采用铸件作为结构材料使用。
变形镁合金的生产难度很大,技术也不完善,成为限制镁合金广泛应用的主要问题。
本课题针对ZK 61M变形镁合金铸造过程中经常出现的表面开裂问题进行系统分析,深入分析ZK61M镁合金的强韧化机理,通过对合金成分、铸造工艺以及均匀化工艺展开全面研究,确定合金成分的合理配比,优化熔铸工艺,保证铸锭质量,制定均匀化处理制度,减少开裂,提高成品率,最终形成稳定、成熟的铸造生产工艺。
镁合金生产工艺流程

镁合金生产工艺流程
镁合金生产工艺流程主要包括原材料准备、熔炼制备、浇铸成型、热处理和表面处理等环节。
首先,原材料准备。
镁合金的主要原材料是镁及其合金中的其它金属元素,包括镁粉、纯镁、锌、锰、铝等。
这些原材料需要经过矿石选矿、粉碎筛分等步骤,保证原材料的纯度和粒度,以便后续的熔炼制备。
其次,熔炼制备。
将准备好的原材料按照一定比例混合,然后放入电炉或真空炉中进行熔炼。
熔炼时需要控制熔炼温度、熔炼时间和气氛成分等参数,以保证熔炼获得的合金成分符合要求。
然后,浇铸成型。
将熔融的镁合金倒入模具中,经过凝固和冷却,使其形成所需的工件、铸件或半成品。
浇注时需要避免气体和杂质的混入,以及温度的过快或过慢,以免引起缺陷和变形。
接下来,热处理。
这一步骤用于改善镁合金的组织和性能。
常见的热处理方法包括固溶处理、时效处理和变形热处理等。
固溶处理用于溶解合金中的析出相,提高合金的塑性和韧性;时效处理用于产生弥散弱化相,提高合金的强度和硬度;变形热处理用于通过塑性变形和热处理相结合的方式来改善合金的组织和性能。
最后,表面处理。
根据具体需求,镁合金的表面可以进行防腐
蚀处理、电镀、喷涂、阳极氧化等。
这些处理可以提高镁合金的耐蚀性、外观质量和装饰效果,从而满足不同应用领域的需求。
总之,镁合金生产工艺流程包括原材料准备、熔炼制备、浇铸成型、热处理和表面处理等环节。
每个环节都需要严格控制工艺参数,以确保生产出符合要求的镁合金产品。
铸造工艺必然造成镁合金内部变形原因-概述说明以及解释

铸造工艺必然造成镁合金内部变形原因-概述说明以及解释1.引言1.1 概述镁合金作为一种重要的结构材料,在航空、汽车和电子等领域有广泛的应用。
然而,在镁合金的铸造过程中,不可避免地会产生一定的内部变形。
这种内部变形可能会对材料的性能和使用寿命产生负面影响,因此了解造成镁合金内部变形的原因显得尤为重要。
铸造工艺是造成镁合金内部变形的主要原因之一。
在铸造过程中,温度的变化可能会导致热应力的产生。
当镁合金在冷却过程中迅速从高温状态转变为低温状态时,由于不同部分的冷却速度不一致,会在材料内部产生应力,从而导致变形现象的发生。
此外,快速冷却也是导致镁合金内部变形的一个重要原因。
快速冷却会使镁合金迅速凝固收缩,并且由于凝固过程中的体积变化不一致,可能会引起材料的内部应力,导致材料发生变形。
在浇注过程中,气孔和缩孔的存在也会对镁合金的内部变形产生影响。
气孔和缩孔是由于气体在浇注过程中被困在材料内部或者材料受到收缩作用而形成的。
这些孔隙会导致材料的局部应力集中,从而引起变形。
除了铸造工艺外,材料本身的性质也会对镁合金的内部变形起到重要的影响。
首先,镁合金具有较低的熔点和较高的热膨胀系数,使得在铸造过程中容易出现热应力和热收缩引起的变形。
其次,材料的非均匀性和晶粒结构也会导致内部变形的发生。
这些因素会使得材料的内部应力不均匀分布,从而引起变形。
此外,化学成分的变化和杂质的存在也可能对镁合金的内部变形产生影响。
化学成分的改变可能改变材料的热膨胀系数和熔点,导致变形问题的发生。
而存在于合金中的杂质则可能影响材料的晶粒结构和力学性能,从而导致变形的发生。
总结而言,铸造工艺必然会对镁合金的内部产生一定程度的变形。
这种变形主要是由于温度变化导致的热应力、快速冷却引起的凝固收缩以及浇注过程中的气孔和缩孔等因素所致。
此外,材料本身的性质如低熔点、高热膨胀系数、非均匀性和晶粒结构,以及化学成分的变化和杂质的存在也会对变形问题产生影响。
镁合金凝固技术专题综述

镁合金凝固技术专题综述作为工程应用中最轻的金属结构材料,镁合金具有比刚度及比强度高、电磁屏蔽性能强、尺寸稳定、资源丰富等一系列优点,在汽车、电子、航空、航天等领域具有越来越广阔的应用前景。
但镁合金自身的一些缺点,如变形能力差、抗腐蚀性能和耐高温性能不高以及传统制备技术不足等成为其发展应用的瓶颈。
采用快速凝固技术可以克服镁合金的一些缺点,实现镁合金综合性能的改善。
近年来世界各国投入大量人力物力开展快速凝固镁合金的研究,并取得了大量成果。
1镁合金快速凝固特征相对于传统铸锭冶金10-3~102K·S-I的冷却速度,快速凝固技术的冷却速度一般为103~109K呵1。
在快的冷却速度下,镁合金凝固过程中的各种传输现象被抑制,从而使合金元素在固态基体中能继续保持高的溶解度,晶粒组织的长大受到抑制,合金成分及组织变得均匀,同时在凝固过程中也易产生一些新相。
快速凝固镁合金组织结构上的改变也导致了镁合金力学性能和抗腐蚀性能的改善。
1.1扩展a(Mg)基固溶体的固溶度快速凝固技术能明显扩展合金元素在基体镁中的固溶度,冷速越高,同溶度越大。
原子半径与镁原子半径差在±15%范围内的合金元素在d(Mg)基体中的固溶度都可通过快速凝固提高。
经熔体快淬后,银在镁中的最大固溶度提高1.5倍,钡则提高约1 000倍。
快速凝固镁合金中的同溶度扩展比机械合金化高,例如在快速凝固Mg.A1系合金中,Al在Mg中的最大固溶度为9 lat.%,而在机械合金化处理的合金中仅为4.5at.%q。
合金元素在a(Mg)基体中同溶度的增加,能使密排六方晶体结构的a(Mg)的轴比c/a值明显减小,可以在常温下激活非基面滑移,从而提供更多的滑移系以提高镁合金的塑性变形能力。
1.2细化组织形成多相弥散体系快速凝固技术能有效细化镁合金的晶粒组织,减小枝晶网胞尺寸,在晶界或网胞上生成细小弥散的沉淀相,从而减小或消除合金成分偏析,抑制孪晶的形成。
镁合金的塑性变形及再结晶热处理对其组织性能的影响

4
轧制前的平均晶粒尺寸约40um, 15%压下量轧制并退火后平均晶粒
3.3 EX-AZ31B: tensile properties on different directions
TD 45
TD
orientation
σb/ MPa
σ0.2/ MPa
δ/ %
ED
280.0
200.4
13.2
ED
45°
258.0
125.2
19.0
TD
276.0
107.4
16.2
ED
350
➢ 有色金属材料制品中70%以上是板、带材,轧制变形 镁合金板材的研究和加工技术的突破对开发变形镁合 金产品有重要促进作用。
2、变形镁合金塑性变形原理
➢ 镁合金的塑性变形特征:HCP晶体结构及c/a轴比值造成镁的 塑性变形困难。
➢ 塑性变形机制:滑移、孪生、超塑性; ➢ 板材塑性加工方法:热加工、温加工、冷(常温)加工;
压下量
14
退火工艺
15%
30%
45%
55%
12
200度退火1h
8.9um
6.9um
5.8um
4.9um
10
400度退火5min
12.1um
8.2um
7.5umum
9.2um
7.8um
7.0um
6
annealing1h at 2000c annealing1h at 3500c
0.01 s-1
0.1 s-1
1 s-1
5s-1
10s-1
1
σ
1 0.0227
l 82
n
Z 5.5 5 1 01 2
变形镁合金(一).

金的焊接性稍差。MB2镁合金主要用于制作形状复杂的
锻件、模锻件及中等载荷的机械零件;MB3主要用于飞 机内部组件、壁板等;MB5可制作板、带及锻件,用于
承受较大工作载荷的部件;MB6、MB7可制作挤压棒材、
型材及锻件。
金属材料与热处理
职业教育材料成型与控制技术专业教学资源库
MB15合金具有很高的抗拉强度和屈服强度,常用来 制造在室温下承受较大负荷的零件。例如:飞机机翼、 桁架、翼肋等,如作为高温下使用的零件,使用温度不 能超过150℃。
金属材料与热处理
职业教育材料成型与控制技术专业教学资源库
2.常用变形镁合金
MB1和MB8均属于Mg-Mn系镁合金,这类合金虽然 强度较低,但具有良好的耐蚀性,焊接性良好,并且高 温塑性较好,可进行轧制、挤压和锻造。MB1主要用于 制造承受外力不大,但要求焊接性和耐蚀性好的零件, 如汽油和润滑油系统的附件。MB8由于强度较高,其板
金属材料与热处理
职业教育材料成型与控制技术专业教学资源库
小结
变形镁合金的牌号:
MB+顺序号
常用变形镁合金:
MB1、 MB2、 MB3、 MB5、 MB6、 MB7、 MB8、 MB15
金属材料与热处理
职业教育材料成型与控制技术专业教学资源库
金属材料与热处理课程
变形镁合金
主讲教师:唐 婷 西安航空职业技术学院
职业教育材料成型与控制技术专业教学资源库
变形镁合金
变形镁合金的牌号 常用变形镁合金
金属材学资源库
镁合金按成型工艺可分为哪两类?
铸造镁合金和变形镁合金。
金属材料与热处理
职业教育材料成型与控制技术专业教学资源库
变形镁合金标准

变形镁合金标准变形镁合金标准1.概述2.变形镁合金是一种轻质、高强、耐腐蚀的金属材料,具有优异的力学性能和良好的加工性能。
变形镁合金广泛应用于航空、航天、汽车、电子、通讯等领域。
本标准主要规定了变形镁合金的化学成分、机械性能、制造工艺、物理性能、耐腐蚀性、使用寿命、安全性和环保要求以及质量控制等方面的要求。
3.化学成分4.变形镁合金的化学成分应符合相关国家标准或行业标准的规定。
其中,主要元素包括镁、铝、锌、锆等,辅助元素包括铁、硅、锰等。
在化学成分方面,变形镁合金应具有合适的合金元素含量和良好的杂质控制,以确保其优异的力学性能和耐腐蚀性。
5.机械性能6.变形镁合金应具有良好的机械性能,包括抗拉强度、屈服强度、延伸率和硬度等。
这些指标应符合相关国家标准或行业标准的规定。
在机械性能方面,变形镁合金应具有高强度、高刚性和良好的塑性,以满足各种工程应用的需求。
7.制造工艺8.变形镁合金的制造工艺主要包括熔炼、铸造、挤压、轧制、锻造等环节。
在制造工艺方面,应控制好各个环节的参数,以确保变形镁合金的尺寸精度、表面质量和加工性能。
此外,应采用适当的热处理工艺,以优化变形镁合金的力学性能和耐腐蚀性。
9.物理性能10.变形镁合金应具有良好的物理性能,包括密度、热导率、比热容、线膨胀系数等。
这些指标应符合相关国家标准或行业标准的规定。
在物理性能方面,变形镁合金应具有轻质、高比强度、优良的热导率和良好的尺寸稳定性等特点。
11.耐腐蚀性12.变形镁合金应具有良好的耐腐蚀性,能够在各种腐蚀环境下长期稳定工作。
耐腐蚀性主要包括化学耐腐蚀性和电化学耐腐蚀性两个方面。
在耐腐蚀性方面,变形镁合金应具有较好的抗大气腐蚀、抗海洋腐蚀和抗化工腐蚀等能力。
13.使用寿命14.变形镁合金的使用寿命应满足工程应用的要求。
在正常工作条件下,变形镁合金应具有较长的使用寿命和良好的抗疲劳性能。
在使用寿命方面,应对变形镁合金的耐磨性、抗疲劳性和耐久性等进行评估和优化。
镁合金板材超塑性成形性能及变形失稳

镁合金板材超塑性成形性能及变形失稳文章研究了轧制AZ31B镁合金板材的超塑性与变形失稳,对镁合金板材进行了超塑性拉伸试验和超塑性凸模胀形试验。
通过对AZ31B镁合金进行超塑性单向拉伸(初始应变比?籽00)实验,研究其在不同加载途径下变形过程中板平面内的两主应变(?着1,?着2)的分布和最小截面处的应变路径变化。
结果表明:在一定变形速度与温度下,工业态AZ31B镁合金板材具有优良的超塑性;在变形温度为573K中温条件下的超塑性成形性合乎成形零件的基本要求。
标签:AZ31B镁合金;超塑性;成形性能;变形失稳Abstract:The superplasticity and deformation instability of rolled AZ31B magnesium alloy sheet were studied in this paper. The superplastic tensile test and the bulging test of superplastic convex die were carried out on the magnesium alloy sheet. The superplastic uniaxial tensile test (initial strain ratio ρ00)were carried out on AZ31B magnesium alloy. The distribution of two principal strains (?著1,?着2)and the variation of strain path at the minimum cross section in the plate plane during different loading paths are studied. The results show that the industrial AZ31B magnesium alloy sheet has excellent superplasticity at a certain deformation rate and temperature,and the superplastic formability at a deformation temperature of 573K meets the basic requirements of forming parts.Keywords:AZ31B magnesium alloy;superplasticity;formability;deformation instability目前,工业中的铝、钛等合金零件的生产多使用超塑性成形工艺,而超塑性成形工艺较少用于镁合金零件的生产过程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
变形镁合金的成形工艺(一)
镁合金与其他易成形金属一样,变形镁合金几乎可以用所有的金属塑性成形工艺来实现成形。
成形原理相同,不同的是具体工艺参数的变化。
1、镁合金挤压成形工艺
典型的挤压成形工艺流程为:挤压坯生产→加热→挤压→矫直→热处理。
变形镁合金的加热温度一般不超过4000C,可用电炉加热挤压坯,一般不需要保护气氛。
挤压温度为300~4000C之间。
挤压截面收缩范围在10:1~100:1之间。
在挤压过程中,由于大变形而产生大量的热量,需要采取冷却措施,以避免温度过高,出现热裂纹。
坯料挤压成型后进行热处理,可以获得细小而均匀的合金组织,去除残余应力,稳定形状和尺寸,改善其使用性能。
金属挤压工艺生产变形镁合金型材和管材目前在国内正趋向成熟,主要缺陷如裂纹、皱纹和扭曲等已经得到了很大的改善。
福建坤孚股份有限公司拥有先进的大型镁合金挤压成套设备,可以生产出符合中国国家标准和国际标准的镁合金板材、镁合金棒材和镁合金型材。
目前,福建坤孚股份有限公司可以生产的挤压镁合金棒材型号是AZ31B、AZ91D、AZ61A、ZK60、ZK61等,直径Ø8mm-Ø130mm. 可以生产的型材合金牌号是AZ40M,AZ31B,ME20M,ZK61M。
2、镁合金板轧制工艺
变形镁合金板材的生产主要是通过轧制工艺来完成,铸造工艺已经被淘汰。
轧制工艺流程如下:
铸锭铣面→铸锭均匀化→加热→开坯→板坯剪切→板坯加热→粗轧→酸洗→加热→中轧→中断或下料→加热→精轧→产品退火→精整→氧化上色→涂油包装。
福建坤孚股份有限公司生产的镁合金板材的轧制采用热轧方式,必要时进行中间退火。
采用多道次、小压下量工艺进行轧制。
一般厚度6.3-200mm的板材为厚板,厚度6.3mm以下为薄板。
(1)镁合金厚板轧制工艺
镁合金板坯在轧制前要在轧制面或侧面铣面并经过探伤检查。
要求板坯内部组织均匀,晶粒细小,第二相分布均匀。
采用带有空气循环的电阻链式加热炉加热,加热温度一般为450-5000C,加热过程中要使炉膛内温度分布均匀,避免局部高温。
在轧制过程中要保证轧制温度在2500C以上,确保镁合金具有良好塑性变形能力。
镁合金厚度的组织和性能主要取决于终轧温度。
随着终轧温度的提高,除伸长率增加外,抗拉强度和
屈服强度均有所下降。
(2)镁合金薄板轧制工艺
福建坤孚股份有限公司生产的镁合金薄板生产采用轧制板坯。
热轧时加热温度一般比铸锭温度低30~600C,加热时间主要取决于加热温度、板坯厚度、装炉量及采用加热炉的形式。
常用的板坯加热炉有箱式电阻空气循环电阻加热炉。
一般采用厚度为5~6㎜,特殊情况用厚度3㎜的镁板作为薄板坯。
薄板在轧制过程中要保证轧辊的温度维持在200~2500C范围,轧辊温度过低会降低合金的轧制性能和表面质量,而温度过高难以保证板材平直度。
镁合金板材在轧制以后要进行退火热处理,使加工组织发生回复和再结晶,消除应力。
镁合金冷作硬化的敏感性很大,矫顽力很高,低温下很难矫平,因此厚板在较高温度下矫直。
由于镁合金滑移系小,一般采用辊式矫直而不是拉伸矫直的方法。
变形镁合金板材的生产,我国已具备工业化生产能力,福建坤孚股份有限公司可以生产多品种多规格变形镁合金板材,如MB1、MB2、MB3、MB8以及AZ31B, AZ40等合金的厚板和薄板。
福建坤孚股份有限公司经过多年的生产和研究,已具备镁合金板材的成熟生产技术和生产工艺,已经可以生产出厚度0.5-6.3mm的薄板,性能优异,板型良好。