灰色关联度计算步骤

合集下载

灰色模型算术公式

灰色模型算术公式

灰色模型算术公式灰色模型是一种用于预测和分析数据的方法,其基本思想是将数据分为两类:已知数据和未知数据。

已知数据是指已经确定并可以用来建模的数据,而未知数据则是需要预测或者分析的数据。

为了对未知数据进行预测或分析,灰色模型使用了灰色系统理论中的灰色预测方法。

灰色模型的算术公式包括:灰色微分方程、灰色模型GM(1,1)、灰色关联度等。

其中,灰色微分方程是灰色预测方法的核心公式,它的形式为:$$ frac{dx}{dt} + a x = u $$其中,$x$ 表示原始数据序列,$t$ 表示时间,$a$ 表示灰色微分方程的参数,$u$ 表示灰色微分方程的非齐次项。

通过对该方程进行求解,可以得到灰色模型的预测结果。

另外,灰色模型GM(1,1)是一种常用的灰色预测模型,它的基本形式为:$$ x(k+1) = (x(1)-frac{u}{a})e^{-ak} + frac{u}{a} $$ 其中,$x(k+1)$ 表示预测值,$x(1)$ 表示初始值,$a$ 和$u$ 分别表示灰色微分方程的参数。

通过对历史数据进行处理,可以得到灰色模型GM(1,1)的预测结果。

此外,灰色关联度是用于分析数据间关系的一种方法,在灰色系统理论中被广泛应用。

灰色关联度的计算公式为:$$ r_{ij} = frac{sum_{k=1}^nmin(x_i(k),x_j(k))}{sum_{k=1}^n x_i(k)} $$其中,$x_i(k)$ 和 $x_j(k)$ 分别表示第 $i$ 个和第 $j$ 个数据在第 $k$ 个时刻的值,$n$ 表示时刻数。

通过计算灰色关联度,可以了解数据之间的关系,从而对其进行进一步的分析和预测。

总之,灰色模型的算术公式包括灰色微分方程、灰色模型GM(1,1)、灰色关联度等,这些公式是灰色预测和分析方法的核心内容。

在实际应用中,可以根据具体情况选择合适的公式进行计算和分析。

灰色关联度评价模型

灰色关联度评价模型

灰色关联度评价模型一、介绍1.1 任务概述灰色关联度评价模型是一种用于分析多因素相互关联度的方法。

该模型通过对不同因素之间的数据进行比较和分析,来确定它们之间的相似性和相关性程度。

灰色关联度评价模型广泛应用于各种领域,如经济、环境、工程等,旨在帮助决策者做出科学合理的决策。

1.2 灰色关联度评价模型的起源灰色关联度评价模型最早由中国科学家李四光在上世纪六十年代提出。

当时,他面临的问题是如何评估不同因素对灌区水资源分配的影响程度。

他发现,传统的因子分析方法往往无法很好地处理多因素之间的关联关系。

因此,李四光提出了灰色关联度评价模型,通过对因素之间的相关数据进行处理和比较,得出相应的关联度指标,从而解决了他所面临的问题。

二、灰色关联度评价模型的应用2.1 经济领域灰色关联度评价模型在经济领域的应用非常广泛。

例如,在市场营销中,可以利用灰色关联度评价模型来确定不同市场因素对产品销售的影响程度。

这有助于企业合理调整营销策略,提高产品销售额。

另外,灰色关联度评价模型也可以用于股票市场的决策分析。

通过对不同因素与股票价格的关联程度进行评估,投资者可以更好地把握市场走势,做出明智的投资决策。

2.2 环境领域在环境领域,灰色关联度评价模型可以用于评估不同因素对环境污染程度的影响。

例如,在大气污染控制中,可以利用灰色关联度评价模型来确定不同因素(如工业排放、交通排放等)对空气污染的影响程度,从而制定出相应的减排措施。

此外,灰色关联度评价模型还可以应用于评估水质和土壤质量。

通过对不同因素与水质或土壤质量的关联度进行评估,环保部门可以及时采取相应的污染治理措施,保护环境和人民的健康。

三、灰色关联度评价模型的基本原理灰色关联度评价模型的基本原理是通过对因素数据进行标准化和比较,来确定它们之间的相似性和相关性程度。

具体而言,该模型主要包括以下几个步骤:3.1 数据标准化首先,需要对因素数据进行标准化处理。

标准化的目的是消除不同数据之间的量纲和数量级的差异,使得它们可以进行有效的比较和分析。

灰色关联分析

灰色关联分析

灰⾊关联分析⼀、模型介绍 灰⾊关联分析的基本思想是根据序列曲线的⼏何形状的相似程度来判断其联系是否紧密。

曲线越接近,相应序列之间的关联度就越⼤,反之就越⼩。

灰⾊关联分析有两个应⽤。

⼀是可以⽤来进⾏系统分析,分析每个因素对结果的影响程度;⼆是⽤来解决随时间变化的综合评价类问题。

⼆、基本步骤(1)确定分析数列母序列(⼜称参考数列、母指标):能反映系统⾏为特征的数据序列。

类似于因变量Y,此处记为X0。

⼦序列(⼜称⽐较数列,⼦指标):影响系统⾏为的因素组成的数据序列。

类似于⾃变量X,此处记为(X1,X2,...,X m)。

(2)对变量进⾏预处理(两个⽬的:去量纲、缩⼩变量范围简化计算)对母序列和⼦序列中的每个指标进⾏预处理:先求出每个指标的均值,再⽤该指标中的每个元素都除以其均值(3)计算⼦序列中各个指标与母序列的关联系数记两级最⼩差a=min(min(abs(X0(k)-X i(k)))),两级最⼤差b=max(max(abs(X0(k)-X i(k))))关联系数如下:ρ为分辨系数,⼀般取0.5,其中i=1,2,..,m;k=1,2,..,n(4)计算灰⾊关联度X0和X i之间的灰⾊关联度为gamma(X0,X i)越⼤,说明⼦序列中的第i项指标对母序列的影响程度越⼤。

三、模型应⽤(1)什么时候⽤标准化回归,什么时候⽤灰⾊关联分析?当样本个数较⼤时,⼀般使⽤标准化回归;当样本个数较少时,才使⽤灰⾊关联分析。

(2)如果母序列中有多个指标,应该怎么分析?例如Y1和Y2是母序列,X1,X2,...Xm是⼦序列那么我们⾸先计算Y1和X1,X2,...Xm的灰⾊关联度进⾏分析;再计算Y2和X1,X2,...Xm的灰⾊关联度进⾏分析。

灰色关联分析(算法步骤)

灰色关联分析(算法步骤)

灰色关联分析灰色关联分析是指对一个系统发展变化态势的定量描述和比较的方法,其基本思想是通过确定参考数据列和若干个比较数据列的几何形状相似程度来判断其联系是否紧密,它反映了曲线间的关联程度[1]。

灰色系统理论是由著名学者邓聚龙教授首创的一种系统科学理论(Grey Theory),其中的灰色关联分析是根据各因素变化曲线几何形状的相似程度,来判断因素之间关联程度的方法。

此方法通过对动态过程发展态势的量化分析,完成对系统内时间序列有关统计数据几何关系的比较,求出参考数列与各比较数列之间的灰色关联度。

与参考数列关联度越大的比较数列,其发展方向和速率与参考数列越接近,与参考数列的关系越紧密。

灰色关联分析方法要求样本容量可以少到4个,对数据无规律同样适用,不会出现量化结果与定性分析结果不符的情况。

其基本思想是将评价指标原始观测数进行无量纲化处理,计算关联系数、关联度以及根据关联度的大小对待评指标进行排序。

灰色关联度的应用涉及社会科学和自然科学的各个领域,尤其在社会经济领域,如国民经济各部门投资收益、区域经济优势分析、产业结构调整等方面,都取得较好的应用效果。

[2]关联度有绝对关联度和相对关联度之分,绝对关联度采用初始点零化法进行初值化处理,当分析的因素差异较大时,由于变量间的量纲不一致,往往影响分析,难以得出合理的结果。

而相对关联度用相对量进行分析,计算结果仅与序列相对于初始点的变化速率有关,与各观测数据大小无关,这在一定程度上弥补了绝对关联度的缺陷。

[2]灰色关联分析的步骤[2]灰色关联分析的具体计算步骤如下:第一步:确定分析数列。

确定反映系统行为特征的参考数列和影响系统行为的比较数列。

反映系统行为特征的数据序列,称为参考数列。

影响系统行为的因素组成的数据序列,称比较数列。

设参考数列(又称母序列)为Y={Y(k) | k= 1,2,Λ,n};比较数列(又称子序列)X i={X i(k) | k= 1,2,Λ,n},i= 1,2,Λ,m。

灰色关联度公式范文

灰色关联度公式范文

灰色关联度公式范文灰色关联度是指若干个指标之间的相关性或相互关系。

相对于传统的相关系数方法,灰色关联度能够描述指标之间的非线性关系,并且不受数据变化范围的影响。

因此,在处理具有不确定性和非线性特征的问题时,灰色关联度具有独特的优势。

$$\rho(i, j) = \frac{\sum_{k=1}^n \min(x_{0i},x_{0j}) +0.5\sum_{k=1}^{n-1} (\quad , \frac{x_{ki}-x_{kj}}{x_{maxj}-x_{minj}} , + \quad ,\frac{x_{ki+1}-x_{kj+1}}{x_{maxj}-x_{minj}} , \quad )}{\sum_{k=1}^n \min(x_{0i}, x_{0j}) + n-1}$$其中,$i$ 和 $j$ 分别表示指标的序号,$k$ 表示时间的序号,$x_{ki}$ 和 $x_{kj}$ 表示指标 $i$ 和 $j$ 在时间 $k$ 时的观测值。

$x_{0i}$ 和 $x_{0j}$ 分别为指标 $i$ 和 $j$ 的历史均值,$x_{maxj}$ 和 $x_{minj}$ 分别为指标 $j$ 在整个时间序列中的最大值和最小值。

1.初始化数据:给定一个时间序列的数据集,包含$m$个指标和$n$个时间点。

2. 标准化处理:对于每个指标,计算其历史均值 $x_{0i}$ 和最大最小值 $x_{maxi}$、$x_{mini}$。

3. 计算灰色关联度:对于每一对指标 $i$ 和 $j$,计算其灰色关联度 $\rho(i, j)$。

4.排序和筛选:根据灰色关联度的大小排序,并选择关联度较高的指标。

灰色关联度公式的核心思想是将指标之间的差异进行归一化处理,并通过对每个差异的绝对值求和来计算关联程度。

其中,第一项$\sum_{k=1}^n \min(x_{0i},x_{0j})$表示指标 $i$ 和 $j$ 的历史均值之和,用于表示相似度。

数学建模之灰色关联度(二)

数学建模之灰色关联度(二)
❖ 步骤3.求两级最大和最小差值。设E中最大值为Emax, 最小值为Emin,其余类推;这样一共就有六个数,分 别是Emax;Emin;Fmax;Fmin;Gmax和Gmin。 从这六个数中,再选出一个最大值和一个最小值,假 设为M和N——而这就是上述公式当中双重最值的部 分
❖ 步骤4.带入公式,得到三组关联系数(单行)矩阵。
min 0, max 4.437
(3)计算关联度
❖取
1 2 3 4 5 0.2 ,比较因素和
参考因素的关联度为
r01
1 5
5
k 1
01(k )
0.942
r04
1 5
5
04 (k)
k 1
0.826
r02
1 5
5
02 (k)
k 1
0.954
r05
1 5
5
05 (k)
k 1
0.608
, 5,其他各因素作为比较因素序
,8, k 1, ,,5 对各因素初值化处理,得
yi (k),i 1, ,8, k 1, ,5
标准化数据表
因素
大气污染 值
NO TSP
SO2
工业总产 值 基建投资
机动车数 量 煤炭用量
沙尘天数
1999 1
x
1 1 1 1
1
1
1 1
2000 0.883
0.816 0.890 0.708 1.131
1.872 0.869
0.999 1.300
2001 0.869
1.105 0.884 0.625 1.315
2.613 1.005
1.044 1.300
2002 0.817
0.947 0.811 0.625 1.587

什么是灰色关联分析

什么是灰色关联分析灰色关联分析是指对一个系统发展变化态势的定量描述和比较的方法,其基本思想是通过确定参考数据列和若干个比较数据列的几何形状相似程度来判断其联系是否紧密,它反映了曲线间的关联程度[1]。

灰色系统理论是由著名学者邓聚龙教授首创的一种系统科学理论(Grey Theory),其中的灰色关联分析是根据各因素变化曲线几何形状的相似程度,来判断因素之间关联程度的方法。

此方法通过对动态过程发展态势的量化分析,完成对系统内时间序列有关统计数据几何关系的比较,求出参考数列与各比较数列之间的灰色关联度。

与参考数列关联度越大的比较数列,其发展方向和速率与参考数列越接近,与参考数列的关系越紧密。

灰色关联分析方法要求样本容量可以少到4个,对数据无规律同样适用,不会出现量化结果与定性分析结果不符的情况。

其基本思想是将评价指标原始观测数进行无量纲化处理,计算关联系数、关联度以及根据关联度的大小对待评指标进行排序。

灰色关联度的应用涉及社会科学和自然科学的各个领域,尤其在社会经济领域,如国民经济各部门投资收益、区域经济优势分析、产业结构调整等方面,都取得较好的应用效果。

[2]关联度有绝对关联度和相对关联度之分,绝对关联度采用初始点零化法进行初值化处理,当分析的因素差异较大时,由于变量间的量纲不一致,往往影响分析,难以得出合理的结果。

而相对关联度用相对量进行分析,计算结果仅与序列相对于初始点的变化速率有关,与各观测数据大小无关,这在一定程度上弥补了绝对关联度的缺陷。

[2][编辑]灰色关联分析的步骤[2]灰色关联分析的具体计算步骤如下:第一步:确定分析数列。

确定反映系统行为特征的参考数列和影响系统行为的比较数列。

反映系统行为特征的数据序列,称为参考数列。

影响系统行为的因素组成的数据序列,称比较数列。

设参考数列(又称母序列)为Y={Y(k) | k= 1,2,Λ,n};比较数列(又称子序列)Xi={X i(k) | k = 1,2,Λ,n},i= 1,2,Λ,m。

灰色关联分析法与TOPSIS评价法

i 1 ,2 , 3 ; t 2 0 0 0 ,,2 0 0 5
0 i ( t ) 称为序列xi和序列x0在第t期的灰色关联系 数(或简称为关联系数).
由(6.1)式可以看出, 取 值的大小可以控制 (max)
对数据转化的影响, 取较小的值,可以提高关联系
数间差异的显著性,因而 称为 分辨系数.
利用(6.1)对表6-3中绝对差值 进0 i行( t规) 范化,取
结0.果4,见表6-4,以
计0算1(2为00例0):
( m i n ) 0 .0 0 0 6 , ( m a x ) 0 .1 8 5 7
0 1 (2 0 0 0 ) 0 0 ..0 1 0 0 0 4 6 4 0 0 ..4 4 0 0 ..1 1 8 8 5 5 7 7 0 .4 1 9 1
18987529
27875738
39796647
46888436
58669838
68957648
3.确定参考数据列:
{ x 0 } { 9 , 9 , 9 , 9 , 8 , 9 , 9 }
4.计算 x0(k)xi(k) , 见下表
编号 专业 外语 教学 科研 论文 著作 出勤 量
1
1
0
1
2
参考数据列应该是一个理想的比较标准, 可以以各指标的最优值 (或最劣值)构 成参考数据列,也可根据评价目的选择 其它参照值.记作
X 0 x 0 ( 1 ) , x 0 2 , , x 0 m
3.对指标数据进行无量纲化 无量纲化后的数据序列形成如下矩阵:
X0,X1, ,Xnxx001 2 x0m
年份t GDP x0(t) 一产业 x1(t) 二产业 x2(t) 三产业 x3(t)

灰色关联分析方法

灰色关联分析方法是我国著名学者邓聚龙教授于1982年创立的灰色系统理论中的一种重要方法,它是分析不同数据项之间相互影响、相互依赖的关系.其本质是指在系统动态发展过程中,根据子系统(因素)之间发展趋势的相似或相异程度,作为衡量子系统(因素)间关联程度的一种方法.若两个子系统(因素)变化的趋势具有一致性,即同步变化程度较高,则可以认为两者关联程度较大;反之,认为两者关联程度较小.对于某一个多属性决策问题,设12{,,,}m X x x x = 为方案集,12{,,,C c c =}n c 为属性集,Tn w w w w },,,{21 =为属性的权重向量,且0≥j w ,11=∑=nj j w .方案i x 在属性j c 下的属性值为ij a ,从而得到决策矩阵为:111212122212n n m m mn a a a a a a A a a a ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦. 灰色关联分析方法的步骤可归纳为:第一步:将决策矩阵进行规范化处理.对于多属性决策问题,最常见的属性类型一般分为效益型和成本型两种,其中效益型属性是指属性值越大越好的属性,成本型属性是指属性值越小越好的属性.由于不同的评价属性通常具有不同的物理量纲和量纲单位,且不同量纲和量纲单位会带来不可公度性.为了消除不同物理量纲和量纲单位对决策结果的影响,可按如下规范化公式进行处理,将决策矩阵()ij m nA a ⨯=转化为规范化决策矩阵()ijm nR r ⨯=.对于效益型属性,有:min max min ij ijiij ij ijiia a r a a -=-, (3.1)对于成本型属性,有:max max min ij ijiij ij ijiia a r a a -=-. (3.2)第二步:确定参考数列.确定参考数列的原则是:参考数列中的元素应由各备选方案规范化后的属性值的最优解组成.即:{}001020, ,, .n R r r r = (3.3)这里,0max , 1,2,,.j ij jr x j n ==第三步:计算参考数列与属性值数列对应元素之差的绝对值(即计算参考数列与属性值数列对应元素之间的Hamming 距离)ij ∆,即0(,)i j j i j d r r ∆=,1,2,,; 1,2,,.i m j n == (3.4) 第四步:求最大差max ∆和最小差min ∆.其中:max ,max ij i j∆=∆, (3.5)min ,min ij i j∆=∆. (3.6)第五步:计算各备选方案属性值数列与参考数列之间的关联系数矩阵()ij m n ξ⨯.其中关联系数公式为:min maxmaxij ij ρξρ∆+∆=∆+∆,1,2,,; 1,2,,.i m j n == (3.7)式中,ij ξ是比较数列与参考数列在第j 个评价指标上的相对差值.[0,1]ρ∈称为分辨系数,ρ越小,分辨能力越大.通常情况下取ρ=0.5.第六步:计算各备选方案属性值数列与参考数列之间的灰色关联度i γ.其中:1ni ij j i w γξ==⋅∑,1,2,,.i m = (3.8)第七步:依据灰色关联度i γ(1,2,,)i m = 值的大小对各备选方案进行排序并且择优.关联度值越大,对应的方案就越优.Multiple attribute decision making 多属性决策 Grey relational analysis (GRA) 灰色关联分析 Intuitionistic fuzzy numbers 直觉模糊数Incomplete weight information 不完全权重信息 Degree of grey relation 灰色关联度 positive-ideal solution (PIS) 正理想方案 negative-ideal solution (NIS) 负理想方案 membership degree 隶属度non-membership degree 非隶属度 degree of indeterminacy 不确定度 Hamming distance 海明距离 weighting vector 权重向量grey relational coefficient 灰色关联系数。

灰色关联度

灰色关联度分析灰色关联分析(Grey Correlation Analysis )是一种分析多因素之间关系的方法,由邓聚龙教授创立,通过不同样本之间关联度分析,对各因素进行排序,对各因素之间关系进行描述的一种统计方法。

我们假设以及知道某一个指标可能是与其他的某几个因素相关的,那么我们想知道这个指标与其他哪个因素相对来说更相关,与哪个因素相对关系弱一点,依次类推,把这些因素排个序,得到一个分析结果,我们就可以知道我们关注的这个指标,与因素中的哪些更相关。

1、确定母数列(参考序列)和子数列(比较序列)设参考数列0X ,比较数列12,,,n X X X ,由于各因素之间的单位等各不相同,可能会造成有的数大有的数很小。

但是这并不是由于它们内禀的性质决定的,而只是由于量纲不同导致的,因此我们需要对它们进行无量纲化。

因此,为了使得不同因素能够进行比较,且保证结果的误差,需要对数据进行无量纲化处理。

GRA 常用的方法是初值化,即把这一个序列的数据统一除以最开始的值,由于同一个因素的序列的量级差别不大,所以通0,1,2,,4.2''0()|()()|(1,2,3,4)j j k X k X k j ∆=-= max 0min 0max max |()()|min min |()()|i i k i i k X k X k X k X k ∆=-∆=- 3、求关联度minmax max ()()j j k k ρζρ∆+∆=∆+∆ 其中,一般调节系数ρ的取值区间为()10,,通常取0.5ρ=。

4、作关联度 4、关联度排序,如果21r r <,则参考数列0x 与比较数列1x 更相似,最终的目的也是为了计算变量之间的关联程度。

GRA 算法本质上来讲就是提供了一种度量两个向量之间距离的方法,对于有时间性的因子,向量可以看成一条时间曲线,而GRA 算法就是度量两条曲线的形态和走势是否相近。

为了避免其他干扰,凸出形态特征的影响,GRA 先做了归一化,将所有向量矫正到同一个尺度和位置,然后计算每个点的距离。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档